HOPF HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH \mathfrak{D}-PARALLEL SHAPE OPERATOR

HYUNJIN LEE, EUNMI PAK and YOUNG JIN SUH*

Abstract

In this paper we consider a generalized condition for shape operator of a real hypersurface M in complex two-plane Grassmannian $G_{2}\left(\mathrm{C}^{m+2}\right)$, namely, \mathfrak{D}-parallel shape operator of M. Using such a notion, we prove that there does not exist a real hypersurface in complex two-plane Grassmannian $G_{2}\left(\mathrm{C}^{m+2}\right)$ with \mathfrak{D}-parallel shape operator.

Introduction

A real Grassmann manifold is known to be the set of all linear subspaces in R^{n} with the same dimension. As a kind of complex Grassmann manifold, we introduce the complex two-plane Grassmannian $G_{2}\left(\mathrm{C}^{m+2}\right)$ which consists of all complex two-dimensional linear subspaces in C^{m+2}. This Riemannian symmetric space $G_{2}\left(\mathrm{C}^{m+2}\right)$ is the unique compact irreducible Riemannian manifold with both a Kähler structure J and a quaternionic Kähler structure \mathfrak{J} not containing J. For a real hypersurface M in $G_{2}\left(\mathrm{C}^{m+2}\right)$ we have the two natural geometric conditions that the 1 -dimensional distribution $[\xi]=\operatorname{Span}\{\xi\}$ and the 3-dimensional distribution $\mathfrak{D}^{\perp}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ are invariant under the shape operator A of M (see [2] and [3]).

The almost contact structure vector field ξ defined by $\xi=-J N$ is said to be the Reeb vector field, where N denotes a local unit normal vector field of M in $G_{2}\left(\mathrm{C}^{m+2}\right)$. The almost contact 3-structure vector fields $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ spanning the 3 -dimensional distribution \mathfrak{D}^{\perp} of M in $G_{2}\left(\mathrm{C}^{m+2}\right)$ are defined by $\xi_{v}=-J_{v} N(v=1,2,3)$, where J_{v} denotes a canonical local basis of a quaternionic Kähler structure \mathfrak{J} and $T_{x} M=\mathfrak{D} \oplus \mathfrak{D}^{\perp}, x \in M$.

By using two invariant conditions mentioned above and the result in Alekseevskii [1], Berndt and Suh [2] proved the following:

[^0]ThEOREM A. Let M be a connected orientable real hypersurface in $G_{2}\left(\mathrm{C}^{m+2}\right), m \geq 3$. Then both $[\xi]$ and \mathfrak{D}^{\perp} are invariant under the shape operator of M if and only if
(A) M is an open part of a tube around a totally geodesic $G_{2}\left(\mathrm{C}^{m+1}\right)$ in $G_{2}\left(\mathrm{C}^{m+2}\right)$,or
(B) m is even, say $m=2 n$, and M is an open part of a tube around a totally geodesic $\mathrm{H} P^{n}$ in $G_{2}\left(\mathrm{C}^{m+2}\right)$.

Furthermore, the Reeb vector field ξ is said to be Hopf if it is invariant under the shape operator A. The one dimensional foliation of M by the integral manifolds of the Reeb vector field ξ is said to be the Hopffoliation of M. We say that M is a Hopf hypersurface in $G_{2}\left(\mathrm{C}^{m+2}\right)$ if and only if the Hopf foliation of M is totally geodesic. By the formulas in section 1 it can be easily checked that M is Hopf if and only if the Reeb vector field ξ is Hopf.

Using Theorem A, many geometers have given various characterizations of real hypersurfaces in $G_{2}\left(\mathrm{C}^{m+2}\right)$ with certain geometric objects, for example, shape operator, normal (or structure) Jacobi operator, Ricci tensor, and so on (see [3], [10], [11], [12] and [13]). From such a point of view, Lee and Suh [5] gave a characterization of Hopf hypersurfaces of Type (B) in $G_{2}\left(\mathrm{C}^{m+2}\right)$ in terms of the Reeb vector field ξ as follows:

Theorem B. Let M be a connected orientable Hopf hypersurface in complex two-plane Grassmannian $G_{2}\left(\mathrm{C}^{m+2}\right), m \geq 3$. Then the Reeb vector field ξ belongs to the distribution \mathfrak{D} if and only if M is locally congruent to an open part of a tube around a totally geodesic $\mathrm{H} P^{n}$ in $G_{2}\left(\mathrm{C}^{m+2}\right), m=2 n$, where the distribution \mathfrak{D} denotes an orthogonal complement of $\mathfrak{D}^{\perp}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$.

For a real hypersurface M in quaternionic projective space $\mathrm{H} P^{n}$, Pérez [8] considered the notion of \mathfrak{D}^{\perp}-parallel shape operator, that is, $\nabla_{\xi_{i}} A=0, i=$ $1,2,3$, where the three dimensional distribution \mathfrak{D}^{\perp} is spanned by $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. For real hypersurfaces M in complex projective space $C P^{n}$, Pérez, Santos and Suh [9] studied a notion of Reeb parallel structure Jacobi operator with respect to the Lie derivatives, that is $\mathfrak{R}_{\xi} R_{\xi}=0$.

In [12], Suh proved a non-existence property for all hypersurfaces in $G_{2}\left(\mathrm{C}^{m+2}\right)$ with parallel shape operator, that is, $\left(\nabla_{X} A\right) Y=0$ for any tangent vector fields X and Y on M. As a generalization of this result, Suh [13] considered a new condition weaker than usual parallelism. When we restrict the shape operator to the distribution $\mathfrak{F}=[\xi] \cup \mathfrak{D}^{\perp}$, the shape operator A is said to be \mathfrak{F}-parallel. In such a case, Suh [13] could prove a non-existence theorem for a Hopf hypersurface in $G_{2}\left(\mathrm{C}^{m+2}\right)$ with \mathfrak{F}-parallel shape operator.

Motivated by these results, we consider a new notion weaker than parallel
shape operator, that is, \mathfrak{D}-parallel shape operator which is defined by

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=0 \tag{*}
\end{equation*}
$$

for all vector fields $X \in \mathfrak{D}$ and $Y \in T M$. This means that eigenspaces of the shape operator A are parallel along the geodesic curve γ with initial conditions $\gamma(0)=x \in M$ and $\dot{\gamma}(0)=X \in \mathfrak{D} \subset T_{x} M$. Here, the eigenspaces of the shape operator A are said to be parallel along γ if they are invariant with respect to any parallel displacement along γ. Related to the curvature function of a curve, we will give a more detailed geometric meaning of this notion in section 4. Using such a notion, we give a complete classification of Hopf hypersurfaces in $G_{2}\left(\mathrm{C}^{m+2}\right)$ with \mathfrak{D}-parallel shape operator as follows:

Main Theorem. There does not exist any Hopf hypersurface in complex two-plane Grassmannian $G_{2}\left(\mathrm{C}^{m+2}\right), m \geq 3$, with \mathfrak{D}-parallel shape operator.

1. Preliminaries

In this section we summarize basic material about $G_{2}\left(\mathrm{C}^{m+2}\right)$, for details we refer to [2], [3] and [11]. The complex two-plane Grassmannian becomes a Riemannian homogeneous space, even a Riemannian symmetric space. Using Lie algebra, we normalize g such that the maximal sectional curvature of $\left(G_{2}\left(\mathrm{C}^{m+2}\right), g\right)$ is eight. A canonical local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} consists of three local almost Hermitian structures J_{v} in $\mathfrak{\Im}$ such that $J_{v} J_{v+1}=J_{v+2}=$ $-J_{v+1} J_{v}$, where the index v is taken modulo three. Since \mathfrak{J} is parallel with respect to the Riemannian connection $\tilde{\nabla}$ of $\left(G_{2}\left(\mathrm{C}^{m+2}\right), g\right)$, there exist for any canonical local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} three local one-forms q_{1}, q_{2}, q_{3} such that

$$
\begin{equation*}
\tilde{\nabla}_{X} J_{v}=q_{v+2}(X) J_{v+1}-q_{v+1}(X) J_{v+2} \tag{1.1}
\end{equation*}
$$

for all vector fields X on $G_{2}\left(\mathrm{C}^{m+2}\right)$.
Furthermore, the Riemannian curvature tensor \tilde{R} of $G_{2}\left(\mathrm{C}^{m+2}\right)$ is locally given by

$$
\begin{align*}
\tilde{R}(X, Y) & Z \\
= & g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X \\
& -g(J X, Z) J Y-2 g(J X, Y) J Z \\
& +\sum_{v=1}^{3}\left\{g\left(J_{v} Y, Z\right) J_{v} X-g\left(J_{v} X, Z\right) J_{v} Y-2 g\left(J_{v} X, Y\right) J_{v} Z\right\} \tag{1.2}\\
& +\sum_{v=1}^{3}\left\{g\left(J_{v} J Y, Z\right) J_{v} J X-g\left(J_{v} J X, Z\right) J_{v} J Y\right\}
\end{align*}
$$

where $\left\{J_{1}, J_{2}, J_{3}\right\}$ denotes a canonical local basis of \mathfrak{I}.
Now, let M be a real hypersurface of $G_{2}\left(\mathrm{C}^{m+2}\right)$, that is, a hypersurface of $G_{2}\left(\mathrm{C}^{m+2}\right)$ with real codimension one. The induced Riemannian metric on M will also be denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a local unit normal vector field of M and A the shape operator of M with respect to N. Let us put

$$
\begin{equation*}
J X=\phi X+\eta(X) N, \quad J_{v} X=\phi_{v} X+\eta_{v}(X) N \tag{1.3}
\end{equation*}
$$

for any tangent vector field X on M in $G_{2}\left(\mathrm{C}^{m+2}\right)$, where N denotes a unit normal vector field of M in $G_{2}\left(\mathrm{C}^{m+2}\right)$. From the Kähler structure J of $G_{2}\left(\mathrm{C}^{m+2}\right)$ there exists an almost contact metric structure (ϕ, ξ, η, g) on M in such a way that

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta(X)=g(X, \xi) \tag{1.4}
\end{equation*}
$$

for any vector field X on M. Furthermore, let $\left\{J_{1}, J_{2}, J_{3}\right\}$ be a canonical local basis of \mathfrak{J}. Then the quaternionic Kähler structure J_{v} of $G_{2}\left(\mathrm{C}^{m+2}\right)$, together with the condition $J_{v} J_{v+1}=J_{v+2}=-J_{v+1} J_{v}$, induces an almost contact metric 3 -structure ($\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g$) on M as follows:

$$
\begin{align*}
& \phi_{v}^{2} X=-X+\eta_{v}(X) \xi_{v}, \quad \eta_{v}\left(\xi_{v}\right)=1, \quad \phi_{v} \xi_{v}=0 \\
& \phi_{v+1} \xi_{v}=-\xi_{v+2}, \quad \phi_{v} \xi_{v+1}=\xi_{v+2} \tag{1.5}\\
& \phi_{v} \phi_{v+1} X=\phi_{v+2} X+\eta_{v+1}(X) \xi_{v} \\
& \phi_{v+1} \phi_{v} X=-\phi_{v+2} X+\eta_{v}(X) \xi_{v+1}
\end{align*}
$$

for any vector field X tangent to M. Moreover, from the commuting property of $J_{v} J=J J_{v}, v=1,2,3$, the relation between these two contact metric structures (ϕ, ξ, η, g) and $\left(\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g\right), \nu=1,2,3$, can be given by

$$
\begin{align*}
& \phi \phi_{v} X=\phi_{\nu} \phi X+\eta_{v}(X) \xi-\eta(X) \xi_{v} \tag{1.6}\\
& \eta_{\nu}(\phi X)=\eta\left(\phi_{v} X\right), \quad \phi \xi_{v}=\phi_{v} \xi
\end{align*}
$$

On the other hand, from the Kähler structure J, that is, $\tilde{\nabla} J=0$ and the quaternionic Kähler structure J_{v} (see (1.1)), together with Gauss and Weingarten formulas it follows that

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi, \quad \nabla_{X} \xi=\phi A X \tag{1.7}\\
\nabla_{X} \xi_{v}=q_{v+2}(X) \xi_{v+1}-q_{v+1}(X) \xi_{v+2}+\phi_{v} A X \tag{1.8}\\
\left(\nabla_{X} \phi_{v}\right) Y=-q_{v+1}(X) \phi_{v+2} Y+q_{v+2}(X) \phi_{v+1} Y \tag{1.9}\\
+\eta_{v}(Y) A X-g(A X, Y) \xi_{v}
\end{gather*}
$$

Using the above expression for the curvature tensor \tilde{R} of $G_{2}\left(\mathrm{C}^{m+2}\right)$, the equation of Codazzi is given by

$$
\begin{align*}
& \left(\nabla_{X} A\right) Y- \\
& =\eta\left(\nabla_{Y} A\right) X \\
& \quad+\sum_{v=1}^{3}\left\{\eta_{\nu}(X) \phi_{\nu} Y-\eta_{v}(Y) \phi_{v} X-2 g\left(\phi_{v} X, Y\right) \xi_{v}\right\} \tag{1.10}\\
& \quad+\sum_{v=1}^{3}\left\{\eta_{v}(\phi X) \phi_{v} \phi Y-\eta_{\nu}(\phi Y) \phi_{v} \phi X\right\} \\
& \quad+\sum_{v=1}^{3}\left\{\eta(X) \eta_{v}(\phi Y)-\eta(Y) \eta_{v}(\phi X)\right\} \xi_{v}
\end{align*}
$$

2. Key lemmas

From now on, we assume that M is a Hopf hypersurface in $G_{2}\left(\mathrm{C}^{m+2}\right)$ with \mathfrak{D}-parallel shape operator, that is, the shape operator A of M is given by

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=0 \tag{*}
\end{equation*}
$$

for all vector fields $X \in \mathfrak{D}$ and $Y \in T M$.
Then from the equation of Codazzi (1.10), it implies that

$$
\begin{aligned}
0=(& \left.\nabla_{Y} A\right) X+\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \\
& +\sum_{v=1}^{3}\left\{-\eta_{\nu}(Y) \phi_{v} X-2 g\left(\phi_{v} X, Y\right) \xi_{v}\right\} \\
& +\sum_{v=1}^{3}\left\{\eta_{v}(\phi X) \phi_{\nu} \phi Y-\eta_{v}(\phi Y) \phi_{\nu} \phi X\right\} \\
& +\sum_{v=1}^{3}\left\{\eta(X) \eta_{v}(\phi Y)-\eta(Y) \eta_{v}(\phi X)\right\} \xi_{v}
\end{aligned}
$$

for all vector fields $X \in \mathfrak{D}$ and $Y \in T M$.
In particular, since $\left(\nabla_{X} A\right) \xi=(X \alpha) \xi+\alpha \phi A X-A \phi A X$, the condition ($*$) implies

$$
\begin{equation*}
0=(X \alpha) \xi+\alpha \phi A X-A \phi A X \tag{2.2}
\end{equation*}
$$

for any vector field $X \in \mathfrak{D}$.

Taking the inner product of (2.2) with ξ, we have $X \alpha=0$ for any vector field $X \in \mathfrak{D}$. From this, we obtain the following result:

Lemma 2.1. Let M be a Hopf hypersurface in complex two-plane Grassmannian $G_{2}\left(\mathrm{C}^{m+2}\right)$, $m \geq 3$, with \mathfrak{D}-parallel shape operator. Then $X \alpha=0$ for any vector field $X \in \mathfrak{D}$. Moreover, the vector $\phi A X$ becomes a principal vector of A with the corresponding principal curvature α, that is, $A \phi A X=\alpha \phi A X$ for any vector $X \in \mathfrak{D} \subset T_{x} M$ for any point $x \in M$.

In this section, we want to show that the Reeb vector field ξ belongs to either the distribution \mathfrak{D} or its orthogonal complement \mathfrak{D}^{\perp}, where $T_{x} M=\mathfrak{D} \oplus \mathfrak{D}^{\perp}$, $x \in M$, in $G_{2}\left(\mathrm{C}^{m+2}\right)$. In order to do this, without loss of generality, we may put the Reeb vector field ξ as follows:

$$
\begin{equation*}
\xi=\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1} \tag{**}
\end{equation*}
$$

for some unit vector fields $X_{0} \in \mathfrak{D}$ and $\xi_{1} \in \mathfrak{D}^{\perp}$.
On the other hand, using the notion of the geodesic Reeb flow, Berndt and Suh ([2]) proved the following:

Lemma A. If M is a connected orientable real hypersurface in $G_{2}\left(\mathrm{C}^{m+2}\right)$ with geodesic Reeb flow, then we have the following equation

$$
\begin{equation*}
Y \alpha=(\xi \alpha) \eta(Y)-4 \sum_{v=1}^{3} \eta_{\nu}(\xi) \eta_{v}(\phi Y) \tag{2.3}
\end{equation*}
$$

for any tangent vector field Y on M.
Now, using these facts, we prove the following:
Lemma 2.2. Let M be a Hopf hypersurface in complex two-plane Grassmannian $G_{2}\left(\mathrm{C}^{m+2}\right)$, $m \geq 3$, with \mathfrak{D}-parallel shape operator. Then the Reeb vector field ξ belongs to either the distribution \mathfrak{D} or the distribution \mathfrak{D}^{\perp}.

Proof. Actually, when the smooth function $\alpha=g(A \xi, \xi)$ identically vanishes, this lemma can be verified directly from Pérez and Suh ([10, pp. 220221]).

Thus, in this proof we consider only the case that the function α is nonvanishing. Moreover, under our assumptions, we have already proved that the principal curvature α is constant on \mathfrak{D} in Lemma 2.1. So, if Y is restricted to \mathfrak{D} in (2.3), then we get $(\xi \alpha) \eta(Y)-4 \eta_{1}(\xi) \eta_{1}(\phi Y)=0$. Since $\phi \xi_{1}=\eta\left(X_{0}\right) \phi_{1} X_{0}$, it follows

$$
\begin{equation*}
(\xi \alpha) \eta\left(X_{0}\right) g\left(X_{0}, Y\right)+4 \eta\left(X_{0}\right) \eta_{1}(\xi) g\left(\phi_{1} X_{0}, Y\right)=0 \tag{2.4}
\end{equation*}
$$

for any $Y \in \mathfrak{D}$.

Substituting Y into X_{0}, the equation (2.4) becomes

$$
\eta\left(X_{0}\right)(\xi \alpha)=0
$$

because the structure tensor ϕ is skew-symmetric.
If $\xi \alpha \neq 0$, it gives $\eta\left(X_{0}\right)=0$. From this, the Reeb vector field ξ becomes $\xi=\eta\left(\xi_{1}\right) \xi_{1}$. So, we conclude that ξ belongs to the distribution \mathfrak{D}^{\perp}.

Next, it remains to consider that $\xi \alpha=0$. Since $\phi_{1} X_{0} \in \mathfrak{D}$, substituting Y into $\phi_{1} X_{0}$ in (2.4), we get

$$
\eta\left(X_{0}\right) \eta_{1}(\xi)=0
$$

that is, $\eta\left(X_{0}\right)=0$ or $\eta_{1}(\xi)=\eta\left(\xi_{1}\right)=0$. Accordingly, we get a complete proof of our Lemma 2.2.

3. Proofs of the Main Theorem

Let M be a Hopf hypersurface in $G_{2}\left(\mathrm{C}^{m+2}\right)$ with \mathfrak{D}-parallel shape operator, that is, the shape operator A satisfies the following condition:

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=0 \tag{*}
\end{equation*}
$$

for all vector fields $X \in \mathfrak{D}$ and $Y \in T M$. Then by virtue of Lemma 2.2 we have the following two cases:

Case I: the Reeb vector field ξ belongs to the distribution \mathfrak{D}^{\perp},
Case II: the Reeb vector field ξ belongs to the distribution \mathfrak{D}.
Now, let us consider the first case, $\xi \in \mathfrak{D}^{\perp}$. For convenience's sake, we may put $\xi=\xi_{1}$.

Lemma 3.1. Let M be a Hopf hypersurface in complex two-plane Grassmannian $G_{2}\left(\mathrm{C}^{m+2}\right), m \geq 3$, with \mathfrak{D}-parallel shape operator. If the Reeb vector field ξ belongs to the distribution \mathfrak{D}^{\perp}, then the distribution \mathfrak{D}^{\perp} is invariant under the shape operator A of M.

Proof. Since we assume that the shape operator A of M is parallel on \mathfrak{D}, the equation of Codazzi (1.10) can be written as

$$
2 g(\phi X, Y)+2 \sum_{v=1}^{3} g\left(\phi_{\nu} X, Y\right) \eta\left(\xi_{v}\right)=0
$$

for all vector fields X and $Y \in \mathfrak{D}$.
From this, together with $\xi \in \mathfrak{D}^{\perp}$, it follows that

$$
\begin{equation*}
g\left(\phi X+\phi_{1} X, Y\right)=0 \tag{3.1}
\end{equation*}
$$

for any tangent vector fields X and Y on \mathfrak{D}.
Let $\left\{e_{1}, e_{2}, \ldots, e_{4 m-1}\right\}$ be an orthonormal basis of $T_{x} M$, where x is any point of M. Without loss of generality, we may put $e_{4(m-1)+v}=\xi_{v}, v=1,2,3$.

Then the tangent vector field $\phi X+\phi_{1} X$ on M is given by

$$
\begin{aligned}
\phi X+\phi_{1} X & =\sum_{i=1}^{4 m-1} g\left(\phi X+\phi_{1} X, e_{i}\right) e_{i} \\
& =\sum_{i=1}^{4 m-4} g\left(\phi X+\phi_{1} X, e_{i}\right) e_{i}+\sum_{v=1}^{3} g\left(\phi X+\phi_{1} X, \xi_{v}\right) \xi_{v} \\
& =0
\end{aligned}
$$

for any $X \in \mathfrak{D}$. The third equality holds from the equation (3.1) and the facts $\phi \xi_{v}, \phi_{1} \xi_{v} \in \mathfrak{D}^{\perp}$. Moreover, from our assumption $\xi=\xi_{1}$, we have naturally

$$
\phi \xi_{v}+\phi_{1} \xi_{v}=0, \quad v=1,2,3
$$

Summing up these two facts, we assert

$$
\begin{equation*}
\phi X+\phi_{1} X=0 \tag{3.2}
\end{equation*}
$$

for any tangent vector field X on M.
On the other hand, differentiating $\xi=\xi_{1}$ along any vector field $X \in T M$, we have

$$
\begin{equation*}
\phi A X=q_{3}(X) \xi_{2}-q_{2}(X) \xi_{3}+\phi_{1} A X \tag{3.3}
\end{equation*}
$$

where we have used (1.7) and (1.8).
Moreover, by taking the inner product with ξ_{2} and ξ_{3}, we obtain

$$
g\left(\phi A X, \xi_{2}\right)=q_{3}(X)+g\left(\phi_{1} A X, \xi_{2}\right)
$$

and

$$
g\left(\phi A X, \xi_{3}\right)=-q_{2}(X)+g\left(\phi_{1} A X, \xi_{3}\right)
$$

respectively. It follows that

$$
q_{3}(X)=2 g\left(A X, \xi_{3}\right) \quad \text { and } \quad q_{2}(X)=2 g\left(A X, \xi_{2}\right)
$$

From these relations, the equation (3.3) can be written as

$$
\begin{equation*}
\phi A X=2 g\left(A X, \xi_{3}\right) \xi_{2}-2 g\left(A X, \xi_{2}\right) \xi_{3}+\phi_{1} A X \tag{3.4}
\end{equation*}
$$

By applying ϕ to (3.4), we have

$$
\begin{equation*}
A X=\eta(A X) \xi+2 g\left(A X, \xi_{2}\right) \xi_{2}+2 g\left(A X, \xi_{3}\right) \xi_{3}-\phi \phi_{1} A X \tag{3.5}
\end{equation*}
$$

for any vector field X on M.
By the way, from (3.2) we know that $\phi_{1} X=-\phi X$ for any X on M. Then equation (3.5) can be written as

$$
A X=\eta(A X) \xi+2 g\left(A X, \xi_{2}\right) \xi_{2}+2 g\left(A X, \xi_{3}\right) \xi_{3}+\phi^{2} A X
$$

that is,

$$
A X=\eta(A X) \xi+g\left(A X, \xi_{2}\right) \xi_{2}+g\left(A X, \xi_{3}\right) \xi_{3}
$$

for any tangent vector filed X on M. Therefore we prove that the distribution \mathfrak{D}^{\perp} is invariant under the shape operator A of M, that is, $A X \in \mathfrak{D}^{\perp}$ for $X \in \mathfrak{D}^{\perp}$.

From this Lemma and Theorem A, we assert the following:
Proposition 3.2. Let M be a Hopf hypersurface in $G_{2}\left(\mathrm{C}^{m+2}\right)$ with \mathfrak{D} parallel shape operator. If the Reeb vector field ξ belongs to the distribution \mathfrak{D}^{\perp}, then M is locally congruent to an open part of a tube around a totally geodesic $G_{2}\left(\mathrm{C}^{m+1}\right)$ in $G_{2}\left(\mathrm{C}^{m+2}\right)$.

Now, let us check whether the shape operator A for a real hypersurface of Type (A) satisfies the condition $(*)$ for all vector fields $X \in \mathfrak{D}$ and $Y \in T M$.

In order to do this, we introduce one proposition due to Berndt and Suh [2]. They proved that a real hypersurface of Type (A) has three or four distinct constant principal curvatures as follows:

Proposition A. Let M be a connected real hypersurface of $G_{2}\left(C^{m+2}\right)$. Suppose that $A \mathfrak{D} \subset \mathfrak{D}, A \xi=\alpha \xi$, and ξ is tangent to \mathfrak{D}^{\perp}. Let $J_{1} \in \mathfrak{J}$ be the almost Hermitian structure such that $J N=J_{1} N$. Then M has three (if $r=\pi / 2 \sqrt{8}$) or four (otherwise) distinct constant principal curvatures

$$
\alpha=\sqrt{8} \cot (\sqrt{8} r), \quad \beta=\sqrt{2} \cot (\sqrt{2} r), \quad \lambda=-\sqrt{2} \tan (\sqrt{2} r), \quad \mu=0
$$

with some $r \in(0, \pi / \sqrt{8})$. The corresponding multiplicities are

$$
m(\alpha)=1, \quad m(\beta)=2, \quad m(\lambda)=2 m-2=m(\mu)
$$

and the corresponding eigenspaces are

$$
\begin{aligned}
& T_{\alpha}=\mathrm{R} \xi=\mathrm{R} J N=\mathrm{R} \xi_{1}=\operatorname{Span}\{\xi\}=\operatorname{Span}\left\{\xi_{1}\right\} \\
& T_{\beta}=\mathrm{C}^{\perp} \xi=\mathrm{C}^{\perp} N=\mathrm{R} \xi_{2} \oplus \mathrm{R} \xi_{3}=\operatorname{Span}\left\{\xi_{2}, \xi_{3}\right\} \\
& T_{\lambda}=\left\{X \mid X \perp \mathrm{H} \xi, J X=J_{1} X\right\} \\
& T_{\mu}=\left\{X \mid X \perp \mathrm{H} \xi, J X=-J_{1} X\right\}
\end{aligned}
$$

where $\mathrm{R} \xi, \mathrm{C} \xi$ and $\mathrm{H} \xi$ respectively denotes real, complex and quaternionic span of the structure vector field ξ and $\mathrm{C}^{\perp} \xi$ denotes the orthogonal complement of $\mathrm{C} \xi$ in $\mathrm{H} \xi$.

From now on, to check our question for a real hypersurface M of Type (A) in $G_{2}\left(\mathrm{C}^{m+2}\right)$, let us assume M has the \mathfrak{D}-parallel shape operator. In particular, putting $X \in T_{\lambda} \subset \mathfrak{D}$ and $Y=\xi=\xi_{1} \in T_{\alpha}$ in (2.1), it becomes

$$
\begin{aligned}
0= & \left(\nabla_{\xi} A\right) X+\eta(X) \phi \xi-\eta(\xi) \phi X-2 g(\phi X, \xi) \xi \\
& +\sum_{\nu=1}^{3}\left\{-\eta_{\nu}(\xi) \phi_{\nu} X-2 g\left(\phi_{\nu} X, \xi\right) \xi_{v}\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}(\phi X) \phi_{\nu} \phi \xi-\eta_{\nu}(\phi \xi) \phi_{\nu} \phi X\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta(X) \eta_{\nu}(\phi \xi)-\eta(\xi) \eta_{v}(\phi X)\right\} \xi_{v} \\
= & \left(\nabla_{\xi} A\right) X-\phi X-\phi_{1} X \\
= & \alpha \phi A X-A \phi A X+\phi X+\phi_{1} X-\phi X-\phi_{1} X \\
= & \alpha \lambda \phi X-\lambda^{2} \phi X
\end{aligned}
$$

where we have used the equation of Codazzi (1.10) and $A \xi=\alpha \xi$.
Taking the inner product with ϕX in the above equation, we get

$$
\lambda^{2}-\alpha \lambda=0
$$

Since $\alpha=\sqrt{8} \cot (\sqrt{8} r)$ and $\lambda=-\sqrt{2} \tan (\sqrt{2} r)$, this gives a contradiction. So we have given a proof of our main Theorem for $\xi \in \mathfrak{D}^{\perp}$.

Next, let us consider the case $\xi \in \mathfrak{D}$. From Theorem B, we have the following:

Proposition 3.3. Let M be a Hopf hypersurface in $G_{2}\left(\mathrm{C}^{m+2}\right)$ with \mathfrak{D} parallel shape operator. If the Reeb vector field ξ belongs to the distribution \mathfrak{D}, then M is locally congruent to an open part of a tube around a totally geodesic $\mathrm{H} P^{n}$ in $G_{2}\left(\mathrm{C}^{m+2}\right), m=2 n$.

Now, let us check whether the shape operator A of a real hypersurface M of Type (B) satisfies the condition ($*$) for all vector fields $X \in \mathfrak{D}$ and $Y \in T M$. As it is well known, a real hypersurface M of Type (B) has five distinct constant principal curvatures as follows [2]:

Proposition B. Let M be a connected real hypersurface of $G_{2}\left(C^{m+2}\right)$. Suppose that $A \mathfrak{D} \subset \mathfrak{D}, A \xi=\alpha \xi$, and ξ is tangent to \mathfrak{D}. Then the quaternionic
dimension m of $G_{2}\left(\mathrm{C}^{m+2}\right)$ is even, say $m=2 n$, and M has five distinct constant principal curvatures

$$
\alpha=-2 \tan (2 r), \quad \beta=2 \cot (2 r), \quad \gamma=0, \quad \lambda=\cot (r), \quad \mu=-\tan (r)
$$

with some $r \in(0, \pi / 4)$. The corresponding multiplicities are

$$
m(\alpha)=1, \quad m(\beta)=3=m(\gamma), \quad m(\lambda)=4 n-4=m(\mu)
$$

and the corresponding eigenspaces are

$$
\begin{aligned}
& T_{\alpha}=\mathrm{R} \xi=\operatorname{Span}\{\xi\}, \\
& T_{\beta}=\Im J \xi=\operatorname{Span}\left\{\xi_{v} \mid v=1,2,3\right\}, \\
& T_{\gamma}=\Im \xi \xi=\operatorname{Span}\left\{\phi_{\nu} \xi \mid v=1,2,3\right\}, \\
& T_{\lambda}, \quad T_{\mu},
\end{aligned}
$$

where

$$
T_{\lambda} \oplus T_{\mu}=(\mathrm{HC} \xi)^{\perp}, \quad \mathfrak{J} T_{\lambda}=T_{\lambda}, \quad \mathfrak{J} T_{\mu}=T_{\mu}, \quad J T_{\lambda}=T_{\mu}
$$

The distribution $(\mathrm{HC} \xi)^{\perp}$ is the orthogonal complement of $\mathrm{HC} \xi$ where

$$
\mathrm{HC} \xi=\mathrm{R} \xi \oplus \mathrm{R} J \xi \oplus \mathfrak{J} \xi \oplus \mathfrak{J} J \xi
$$

Putting $X=\xi \in \mathfrak{D}$ and $Y=\xi_{2} \in T_{\beta}$ in (2.1), we obtain

$$
0=\alpha \beta \phi \xi_{2},
$$

because $A \phi_{2} \xi=\gamma \phi_{2} \xi$ and $\gamma=0$. From this, it follows that

$$
\alpha \beta=0 .
$$

However, from Proposition B, we see that $\alpha \beta=-4$ for some radius $r \in$ $(0, \pi / 4)$. This gives a contradiction. So this case can not occur.

Hence summing up two cases mentioned above, we give a complete proof of our main theorem in the introduction.

4. Geometric meaning of \mathfrak{D}-parallel shape operator

Let \bar{M} be a Kähler manifold with the Riemannian metric G and Riemannian connection $\bar{\nabla}$. Let M be a real hypersurface in \bar{M} with the induced metric g and the induced Riemannian connection ∇. Since M is a real hypersurface in
\bar{M}, there only exists one normal vector field N on M in \bar{M}. Thus we have the following two formulas:

$$
\begin{array}{ll}
\bar{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) N & \\
\bar{\nabla}_{X} N=-A X & \tag{4.1}\\
(\text { Gauss formula }) \\
& \text { Weingarten formula) }
\end{array}
$$

for arbitrary tangent vector fields X, Y on M.
Now, we introduce some notions for parallelism of the shape operator:
A real hypersurface M in \bar{M} is called cyclic parallel (or cyclic \mathfrak{T}-parallel, resp.) if it satisfies

$$
\begin{aligned}
& \Im_{X, Y, Z} g\left(\left(\nabla_{X} A\right) Y, Z\right)=g\left(\left(\nabla_{X} A\right) Y, Z\right) \\
& \\
& +g\left(\left(\nabla_{Y} A\right) Z, X\right)+g\left(\left(\nabla_{Z} A\right) X, Y\right)=0
\end{aligned}
$$

for any tangent vector fields X, Y, Z on M (or $X, Y, Z \in \mathfrak{I}$, resp.). Here \mathfrak{I} denotes a certain distribution defined on M. In particular, when it holds on $\mathfrak{I}=\mathfrak{h}$ where the distribution \mathfrak{h} is given by $\mathfrak{h}=\{X \in T M \mid X \perp \xi\}$, the shape operator A of M is said to be cyclic η-parallel (see [4]).

Under these situations, for arbitrary geodesic γ on M in \bar{M}, we assert:
Lemma 4.1. The shape operator A of M in \bar{M} is cyclic parallel if and only if
$\left(\mathrm{C}_{1}\right)$ the first curvature function of γ as a curve in the ambient space \bar{M} is a constant function.

Proof. Assume that the first curvature function for an arbitrary geodesic curve $\gamma: I \rightarrow \bar{M}$ is constant. By definition it means that $\bar{\nabla}_{\dot{\gamma}} \dot{\gamma}$ has constant length in \bar{M}, that is, $G\left(\bar{\nabla}_{\dot{\gamma}} \dot{\gamma}, \bar{\nabla}_{\dot{\gamma}} \dot{\gamma}\right)$ is constant on the interval I. From the Gauss formula in (4.1), we have $G\left(\bar{\nabla}_{\dot{\gamma}} \dot{\gamma}, \bar{\nabla}_{\dot{\gamma}} \dot{\gamma}\right)=g(A \dot{\gamma}, \dot{\gamma})^{2}$. Hence our assumption is equivalent to the constancy of $g(A \dot{\gamma}, \dot{\gamma})$ on I.

By differentiation and using $\nabla_{\dot{\gamma}} \dot{\gamma}=0$, we obtain $g\left(\left(\nabla_{\dot{\gamma}} A\right) \dot{\gamma}, \dot{\gamma}\right)=0$ on I. Therefore our assumption is equivalent to

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) X, X\right)=0 \tag{4.2}
\end{equation*}
$$

for any tangent vector X of M.
Using the linearity of the Riemannian connection, it follows that

$$
\begin{equation*}
g\left(\left(\nabla_{X+Y+Z} A\right)(X+Y+Z), X+Y+Z\right)=2 \widetilde{\Im}_{X, Y, Z} g\left(\left(\nabla_{X} A\right) Y, Z\right)=0 \tag{4.3}
\end{equation*}
$$

where we have used

$$
\begin{aligned}
& g\left(\left(\nabla_{X+Y} A\right)(X+Y), X+Y\right) \\
& \quad=g\left(\left(\nabla_{X} A\right) X, Y\right)+g\left(\left(\nabla_{X} A\right) Y, X\right)+g\left(\left(\nabla_{Y} A\right) Y, X\right) \\
& \quad+g\left(\left(\nabla_{Y} A\right) X, X\right)+g\left(\left(\nabla_{Y} A\right) X, Y\right)+g\left(\left(\nabla_{X} A\right) Y, Y\right)
\end{aligned}
$$

for tangent vector fields X, Y, Z on M. Therefore, we can assert M is cyclic parallel under our assumption.

The converse is trivial if we put $X=Y=Z$ for arbitrary tangent vector fields $X, Y, Z \in T_{p} M$.

Remark 4.2. The contents in Lemma 4.1 above were remarked by S. Maeda [7]. But in this section we have proved the statement in detail.

Motivated by Lemma 4.1, we can assert the following
Lemma 4.3. The shape operator A of M in \bar{M} is cyclic \mathfrak{I}-parallel if and only if
$\left(\mathrm{C}_{2}\right)$ every geodesic curve γ with $\gamma(0)=p \in M$ and $\dot{\gamma}(0)=X \in \mathfrak{I} \subset T_{p} M$ has constant first curvature.
Now let us consider our case for $\bar{M}=G_{2}\left(\mathrm{C}^{m+2}\right)$. That is, we want to give a geometric meaning of \mathfrak{D}-parallel shape operator for a real hypersurface M in $G_{2}\left(\mathrm{C}^{m+2}\right)$. It means that the shape operator A of M satisfies

$$
\left(\nabla_{X} A\right) Y=0
$$

for any tangent vector field $X \in \mathfrak{D}$ and $Y \in T M$ where the distribution \mathfrak{D} denotes an orthogonal complement of $\mathfrak{D}^{\perp}=\operatorname{Span}\left\{\xi_{v} \mid v=1,2,3\right\}$. From this, we know that the shape operator A naturally becomes cyclic \mathfrak{D}-parallel. Therefore by virtue of Lemma 4.3, we can give a geometric meaning of \mathfrak{D} parallel as follows:

Lemma 4.4. Let M be a real hypersurface in $G_{2}\left(\mathrm{C}^{m+2}\right)$ with \mathfrak{D}-parallel shape operator, $m \geq 3$. Then every geodesic γ with initial conditions $\gamma(0)=$ $p \in M$ and $\dot{\gamma}(0)=X \in \mathfrak{D}$ has constant first curvature.

Remark 4.5. By the Codazzi equation (1.10), we know that any cyclic \mathfrak{D}-parallel hypersurface in $G_{2}\left(\mathrm{C}^{m+2}\right)$ can not be \mathfrak{D}-parallel. Therefore, the converse of Lemma 4.4 does not hold.

Acknowledgments. The present authors would like to express their sincere gratitude to the referee for his/her careful reading of our manuscript and many kinds of valuable comments to develop this paper.

REFERENCES

1. Alekseevskii, D. V., Compact quaternion spaces, Funct. Anal. Appl. 2 (1968), 106-114.
2. Berndt, J., and Suh, Y. J., Real hypersurfaces in complex two-plane Grassmannians, Monatsh. Math. 127 (1999), 1-14.
3. Berndt, J., and Suh, Y. J., Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians, Monatsh. Math. 137 (2002), 87-98.
4. Lee, H., and Kim, S., Hopfhypersurfaces with η-parallel shape operator in complex two-plane Grassmannians, Bull. Malays. Math. Sci. Soc. 36 (2013), 937-948.
5. Lee, H., and Suh, Y. J., Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector, Bull. Korean Math. Soc. 47 (2010), 551-561.
6. Kimura, M., Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
7. Maeda, S., Real hypersurfaces of complex projective spaces, Math. Ann. 263(1983), 473-478.
8. Pérez, J. D., Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_{i}} A=0$, J. Geom. 49 (1994), 166-177.
9. Pérez, J. D., Santos, F. G., and Suh, Y. J., Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ-parallel, Differential Geom. Appl. 22 (2005), 181-188.
10. Pérez, J. D., and Suh, Y. J., The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J. Korean Math. Soc. 44 (2007), 211-235.
11. Pérez, J. D., Suh, Y. J., and Watanabe, Y., Generalized Einstein real hypersurfaces in complex two-plane Grassmannians, J. Geom. Phys. 60 (2010), 1806-1818.
12. Suh, Y. J., Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator, Bull. Aust. Math. Soc. 68 (2003), 493-502.
13. Suh, Y. J., Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator II, J. Korean Math. Soc. 41 (2004), 535-565.
```
DEPARTMENT OF MATHEMATICS
KYUNGPOOK NATIONAL UNIVERSITY
DAEGU 702-701
KOREA
E-mail: lhjibis@hanmail.net
    empak@knu.ac.kr
    yjsuh@knu.ac.kr
```


[^0]: * This work was supported by grant Proj. No. NRF-2015-R1A2A1A01002459 from National Research Foundation of Korea. The first author by grant Proj. No. NRF-2012-R1A1A3002031 and the third by NRF-2012-R1A2A2A01043023.

 Received 4 January 2013, in final form 4 February 2013.

