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HOPF HYPERSURFACES IN COMPLEX TWO-PLANE
GRASSMANNIANS WITH �-PARALLEL

SHAPE OPERATOR

HYUNJIN LEE, EUNMI PAK and YOUNG JIN SUH∗

Abstract
In this paper we consider a generalized condition for shape operator of a real hypersurface M in
complex two-plane Grassmannian G2(Cm+2), namely, �-parallel shape operator of M . Using such
a notion, we prove that there does not exist a real hypersurface in complex two-plane Grassmannian
G2(Cm+2) with �-parallel shape operator.

Introduction

A real Grassmann manifold is known to be the set of all linear subspaces
in Rn with the same dimension. As a kind of complex Grassmann manifold,
we introduce the complex two-plane Grassmannian G2(Cm+2) which consists
of all complex two-dimensional linear subspaces in Cm+2. This Riemannian
symmetric space G2(Cm+2) is the unique compact irreducible Riemannian
manifold with both a Kähler structure J and a quaternionic Kähler structure
� not containing J . For a real hypersurface M in G2(Cm+2) we have the two
natural geometric conditions that the 1-dimensional distribution [ξ ] = Span{ξ}
and the 3-dimensional distribution �⊥ = Span{ξ1, ξ2, ξ3} are invariant under
the shape operator A of M (see [2] and [3]).

The almost contact structure vector field ξ defined by ξ = −JN is said
to be the Reeb vector field, where N denotes a local unit normal vector field
of M in G2(Cm+2). The almost contact 3-structure vector fields {ξ1, ξ2, ξ3}
spanning the 3-dimensional distribution �⊥ of M in G2(Cm+2) are defined
by ξν = −JνN (ν = 1, 2, 3), where Jν denotes a canonical local basis of a
quaternionic Kähler structure � and TxM = � ⊕ �⊥, x ∈ M .

By using two invariant conditions mentioned above and the result inAlekse-
evskii [1], Berndt and Suh [2] proved the following:
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Theorem A. Let M be a connected orientable real hypersurface in
G2(Cm+2), m ≥ 3. Then both [ξ ] and �⊥ are invariant under the shape
operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HP n in G2(Cm+2).

Furthermore, the Reeb vector field ξ is said to be Hopf if it is invariant
under the shape operator A. The one dimensional foliation of M by the integral
manifolds of the Reeb vector field ξ is said to be the Hopf foliation of M . We
say that M is a Hopf hypersurface in G2(Cm+2) if and only if the Hopf foliation
of M is totally geodesic. By the formulas in section 1 it can be easily checked
that M is Hopf if and only if the Reeb vector field ξ is Hopf.

Using Theorem A, many geometers have given various characterizations of
real hypersurfaces in G2(Cm+2) with certain geometric objects, for example,
shape operator, normal (or structure) Jacobi operator, Ricci tensor, and so on
(see [3], [10], [11], [12] and [13]). From such a point of view, Lee and Suh [5]
gave a characterization of Hopf hypersurfaces of Type (B) in G2(Cm+2) in
terms of the Reeb vector field ξ as follows:

Theorem B. Let M be a connected orientable Hopf hypersurface in com-
plex two-plane Grassmannian G2(Cm+2), m ≥ 3. Then the Reeb vector field ξ

belongs to the distribution � if and only if M is locally congruent to an open
part of a tube around a totally geodesic HP n in G2(Cm+2), m = 2n, where the
distribution � denotes an orthogonal complement of �⊥ = Span{ξ1, ξ2, ξ3}.

For a real hypersurface M in quaternionic projective space HP n, Pérez [8]
considered the notion of �⊥-parallel shape operator, that is, ∇ξi

A = 0, i =
1, 2, 3, where the three dimensional distribution �⊥ is spanned by {ξ1, ξ2, ξ3}.
For real hypersurfaces M in complex projective space CP n, Pérez, Santos and
Suh [9] studied a notion of Reeb parallel structure Jacobi operator with respect
to the Lie derivatives, that is �ξRξ = 0.

In [12], Suh proved a non-existence property for all hypersurfaces in
G2(Cm+2) with parallel shape operator, that is, (∇XA)Y = 0 for any tan-
gent vector fields X and Y on M . As a generalization of this result, Suh [13]
considered a new condition weaker than usual parallelism. When we restrict
the shape operator to the distribution � = [ξ ] ∪ �⊥, the shape operator A is
said to be �-parallel. In such a case, Suh [13] could prove a non-existence
theorem for a Hopf hypersurface in G2(Cm+2) with �-parallel shape operator.

Motivated by these results, we consider a new notion weaker than parallel
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shape operator, that is, �-parallel shape operator which is defined by

(∗) (∇XA)Y = 0

for all vector fields X ∈ � and Y ∈ TM. This means that eigenspaces of the
shape operator A are parallel along the geodesic curve γ with initial conditions
γ (0) = x ∈ M and γ̇ (0) = X ∈ � ⊂ TxM . Here, the eigenspaces of the
shape operator A are said to be parallel along γ if they are invariant with
respect to any parallel displacement along γ . Related to the curvature function
of a curve, we will give a more detailed geometric meaning of this notion
in section 4. Using such a notion, we give a complete classification of Hopf
hypersurfaces in G2(Cm+2) with �-parallel shape operator as follows:

Main Theorem. There does not exist any Hopf hypersurface in complex
two-plane Grassmannian G2(Cm+2), m ≥ 3, with �-parallel shape operator.

1. Preliminaries

In this section we summarize basic material about G2(Cm+2), for details we
refer to [2], [3] and [11]. The complex two-plane Grassmannian becomes a
Riemannian homogeneous space, even a Riemannian symmetric space. Using
Lie algebra, we normalize g such that the maximal sectional curvature of
(G2(Cm+2), g) is eight. A canonical local basis {J1, J2, J3} of � consists of
three local almost Hermitian structures Jν in � such that JνJν+1 = Jν+2 =
−Jν+1Jν , where the index ν is taken modulo three. Since � is parallel with
respect to the Riemannian connection ∇̃ of (G2(Cm+2), g), there exist for any
canonical local basis {J1, J2, J3} of � three local one-forms q1, q2, q3 such that

(1.1) ∇̃XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2

for all vector fields X on G2(Cm+2).
Furthermore, the Riemannian curvature tensor R̃ of G2(Cm+2) is locally

given by

(1.2)

R̃(X, Y )Z

= g(Y, Z)X − g(X, Z)Y + g(JY , Z)JX

− g(JX, Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1

{
g(JνY, Z)JνX − g(JνX, Z)JνY − 2g(JνX, Y )JνZ

}

+
3∑

ν=1

{
g(JνJY , Z)JνJX − g(JνJX, Z)JνJY

}
,
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where {J1, J2, J3} denotes a canonical local basis of �.
Now, let M be a real hypersurface of G2(Cm+2), that is, a hypersurface of

G2(Cm+2) with real codimension one. The induced Riemannian metric on M

will also be denoted by g, and ∇ denotes the Riemannian connection of (M, g).
Let N be a local unit normal vector field of M and A the shape operator of M

with respect to N . Let us put

(1.3) JX = φX + η(X)N, JνX = φνX + ην(X)N

for any tangent vector field X on M in G2(Cm+2), where N denotes a unit nor-
mal vector field of M in G2(Cm+2). From the Kähler structure J of G2(Cm+2)

there exists an almost contact metric structure (φ, ξ, η, g) on M in such a way
that

(1.4) φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(X) = g(X, ξ)

for any vector field X on M . Furthermore, let {J1, J2, J3} be a canonical local
basis of �. Then the quaternionic Kähler structure Jν of G2(Cm+2), together
with the condition JνJν+1 = Jν+2 = −Jν+1Jν , induces an almost contact
metric 3-structure (φν, ξν, ην, g) on M as follows:

(1.5)

φ2
νX = −X + ην(X)ξν, ην(ξν) = 1, φνξν = 0,

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φνφν+1X = φν+2X + ην+1(X)ξν,

φν+1φνX = −φν+2X + ην(X)ξν+1

for any vector field X tangent to M . Moreover, from the commuting property
of JνJ = JJν , ν = 1, 2, 3, the relation between these two contact metric
structures (φ, ξ, η, g) and (φν, ξν, ην, g), ν = 1, 2, 3, can be given by

(1.6)
φφνX = φνφX + ην(X)ξ − η(X)ξν,

ην(φX) = η(φνX), φξν = φνξ.

On the other hand, from the Kähler structure J , that is, ∇̃J = 0 and the qua-
ternionic Kähler structure Jν (see (1.1)), together with Gauss and Weingarten
formulas it follows that

(1.7) (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φAX,

(1.8) ∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX,

(1.9) (∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y

+ ην(Y )AX − g(AX, Y )ξν.
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Using the above expression for the curvature tensor R̃ of G2(Cm+2), the
equation of Codazzi is given by

(1.10)

(∇XA)Y − (∇Y A)X

= η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν

}

+
3∑

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}

+
3∑

ν=1

{
η(X)ην(φY ) − η(Y )ην(φX)

}
ξν.

2. Key lemmas

From now on, we assume that M is a Hopf hypersurface in G2(Cm+2) with
�-parallel shape operator, that is, the shape operator A of M is given by

(∗) (∇XA)Y = 0

for all vector fields X ∈ � and Y ∈ TM.
Then from the equation of Codazzi (1.10), it implies that

(2.1)

0 = (∇Y A)X + η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
− ην(Y )φνX − 2g(φνX, Y )ξν

}

+
3∑

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}

+
3∑

ν=1

{
η(X)ην(φY ) − η(Y )ην(φX)

}
ξν

for all vector fields X ∈ � and Y ∈ TM.
In particular, since (∇XA)ξ = (Xα)ξ + αφAX − AφAX , the condition (∗)

implies

(2.2) 0 = (Xα)ξ + αφAX − AφAX

for any vector field X ∈ �.



222 h. lee, e. pak and y. j. suh

Taking the inner product of (2.2) with ξ , we have Xα = 0 for any vector
field X ∈ �. From this, we obtain the following result:

Lemma 2.1. Let M be a Hopf hypersurface in complex two-plane Grass-
mannian G2(Cm+2), m ≥ 3, with �-parallel shape operator. Then Xα = 0 for
any vector field X ∈ �. Moreover, the vector φAX becomes a principal vector
of A with the corresponding principal curvature α, that is, AφAX = αφAX
for any vector X ∈ � ⊂ TxM for any point x ∈ M .

In this section, we want to show that the Reeb vector field ξ belongs to either
the distribution � or its orthogonal complement �⊥, where TxM = � ⊕ �⊥,
x ∈ M , in G2(Cm+2). In order to do this, without loss of generality, we may
put the Reeb vector field ξ as follows:

(∗∗) ξ = η(X0)X0 + η(ξ1)ξ1

for some unit vector fields X0 ∈ � and ξ1 ∈ �⊥.
On the other hand, using the notion of the geodesic Reeb flow, Berndt and

Suh ([2]) proved the following:

Lemma A. If M is a connected orientable real hypersurface in G2(Cm+2)

with geodesic Reeb flow, then we have the following equation

(2.3) Yα = (ξα)η(Y ) − 4
3∑

ν=1

ην(ξ)ην(φY )

for any tangent vector field Y on M .

Now, using these facts, we prove the following:

Lemma 2.2. Let M be a Hopf hypersurface in complex two-plane Grass-
mannian G2(Cm+2), m ≥ 3, with �-parallel shape operator. Then the Reeb
vector field ξ belongs to either the distribution � or the distribution �⊥.

Proof. Actually, when the smooth function α = g(Aξ, ξ) identically van-
ishes, this lemma can be verified directly from Pérez and Suh ([10, pp. 220–
221]).

Thus, in this proof we consider only the case that the function α is non-
vanishing. Moreover, under our assumptions, we have already proved that the
principal curvature α is constant on � in Lemma 2.1. So, if Y is restricted to �
in (2.3), then we get (ξα)η(Y )−4η1(ξ)η1(φY ) = 0. Since φξ1 = η(X0)φ1X0,
it follows

(2.4) (ξα)η(X0)g(X0, Y ) + 4η(X0)η1(ξ)g(φ1X0, Y ) = 0,

for any Y ∈ �.
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Substituting Y into X0, the equation (2.4) becomes

η(X0)(ξα) = 0,

because the structure tensor φ is skew-symmetric.
If ξα 
= 0, it gives η(X0) = 0. From this, the Reeb vector field ξ becomes

ξ = η(ξ1)ξ1. So, we conclude that ξ belongs to the distribution �⊥.
Next, it remains to consider that ξα = 0. Since φ1X0 ∈ �, substituting Y

into φ1X0 in (2.4), we get

η(X0)η1(ξ) = 0,

that is, η(X0) = 0 or η1(ξ) = η(ξ1) = 0. Accordingly, we get a complete
proof of our Lemma 2.2.

3. Proofs of the Main Theorem

Let M be a Hopf hypersurface in G2(Cm+2) with �-parallel shape operator,
that is, the shape operator A satisfies the following condition:

(∗) (∇XA)Y = 0

for all vector fields X ∈ � and Y ∈ TM. Then by virtue of Lemma 2.2 we
have the following two cases:

Case I: the Reeb vector field ξ belongs to the distribution �⊥,

Case II: the Reeb vector field ξ belongs to the distribution �.

Now, let us consider the first case, ξ ∈ �⊥. For convenience’s sake, we may
put ξ = ξ1.

Lemma 3.1. Let M be a Hopf hypersurface in complex two-plane Grass-
mannian G2(Cm+2), m ≥ 3, with �-parallel shape operator. If the Reeb vector
field ξ belongs to the distribution �⊥, then the distribution �⊥ is invariant
under the shape operator A of M .

Proof. Since we assume that the shape operator A of M is parallel on �,
the equation of Codazzi (1.10) can be written as

2g(φX, Y ) + 2
3∑

ν=1

g(φνX, Y )η(ξν) = 0

for all vector fields X and Y ∈ �.
From this, together with ξ ∈ �⊥, it follows that

(3.1) g(φX + φ1X, Y ) = 0
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for any tangent vector fields X and Y on �.
Let {e1, e2, . . . , e4m−1}be an orthonormal basis ofTxM , wherex is any point

of M . Without loss of generality, we may put e4(m−1)+ν = ξν , ν = 1, 2, 3.
Then the tangent vector field φX + φ1X on M is given by

φX + φ1X =
4m−1∑
i=1

g(φX + φ1X, ei)ei

=
4m−4∑
i=1

g(φX + φ1X, ei)ei +
3∑

ν=1

g(φX + φ1X, ξν)ξν

= 0

for any X ∈ �. The third equality holds from the equation (3.1) and the facts
φξν, φ1ξν ∈ �⊥. Moreover, from our assumption ξ = ξ1, we have naturally

φξν + φ1ξν = 0, ν = 1, 2, 3.

Summing up these two facts, we assert

(3.2) φX + φ1X = 0

for any tangent vector field X on M .
On the other hand, differentiating ξ = ξ1 along any vector field X ∈ TM,

we have

(3.3) φAX = q3(X)ξ2 − q2(X)ξ3 + φ1AX,

where we have used (1.7) and (1.8).
Moreover, by taking the inner product with ξ2 and ξ3, we obtain

g(φAX, ξ2) = q3(X) + g(φ1AX, ξ2)

and
g(φAX, ξ3) = −q2(X) + g(φ1AX, ξ3),

respectively. It follows that

q3(X) = 2g(AX, ξ3) and q2(X) = 2g(AX, ξ2).

From these relations, the equation (3.3) can be written as

(3.4) φAX = 2g(AX, ξ3)ξ2 − 2g(AX, ξ2)ξ3 + φ1AX.
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By applying φ to (3.4), we have

(3.5) AX = η(AX)ξ + 2g(AX, ξ2)ξ2 + 2g(AX, ξ3)ξ3 − φφ1AX

for any vector field X on M .
By the way, from (3.2) we know that φ1X = −φX for any X on M . Then

equation (3.5) can be written as

AX = η(AX)ξ + 2g(AX, ξ2)ξ2 + 2g(AX, ξ3)ξ3 + φ2AX,

that is,
AX = η(AX)ξ + g(AX, ξ2)ξ2 + g(AX, ξ3)ξ3

for any tangent vector filed X on M . Therefore we prove that the distribution
�⊥ is invariant under the shape operator A of M , that is, AX ∈ �⊥ for X ∈ �⊥.

From this Lemma and Theorem A, we assert the following:

Proposition 3.2. Let M be a Hopf hypersurface in G2(Cm+2) with �-
parallel shape operator. If the Reeb vector field ξ belongs to the distribution
�⊥, then M is locally congruent to an open part of a tube around a totally
geodesic G2(Cm+1) in G2(Cm+2).

Now, let us check whether the shape operator A for a real hypersurface of
Type (A) satisfies the condition (∗) for all vector fields X ∈ � and Y ∈ TM.

In order to do this, we introduce one proposition due to Berndt and Suh
[2]. They proved that a real hypersurface of Type (A) has three or four distinct
constant principal curvatures as follows:

Proposition A. Let M be a connected real hypersurface of G2(Cm+2).
Suppose that A� ⊂ �, Aξ = αξ , and ξ is tangent to �⊥. Let J1 ∈ � be
the almost Hermitian structure such that JN = J1N . Then M has three (if
r = π/2

√
8) or four (otherwise) distinct constant principal curvatures

α = √
8 cot(

√
8r), β = √

2 cot(
√

2r), λ = −√
2 tan(

√
2r), μ = 0

with some r ∈ (0, π/
√

8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m − 2 = m(μ),

and the corresponding eigenspaces are

Tα = Rξ = RJN = Rξ1 = Span{ξ} = Span{ξ1},
Tβ = C⊥ξ = C⊥N = Rξ2 ⊕ Rξ3 = Span{ξ2, ξ3},
Tλ = {X | X ⊥ Hξ, JX = J1X},
Tμ = {X | X ⊥ Hξ, JX = −J1X}
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where Rξ , Cξ and Hξ respectively denotes real, complex and quaternionic span
of the structure vector field ξ and C⊥ξ denotes the orthogonal complement of
Cξ in Hξ .

From now on, to check our question for a real hypersurface M of Type (A)
in G2(Cm+2), let us assume M has the �-parallel shape operator. In particular,
putting X ∈ Tλ ⊂ � and Y = ξ = ξ1 ∈ Tα in (2.1), it becomes

0 = (∇ξA)X + η(X)φξ − η(ξ)φX − 2g(φX, ξ)ξ

+
3∑

ν=1

{−ην(ξ)φνX − 2g(φνX, ξ)ξν

}

+
3∑

ν=1

{
ην(φX)φνφξ − ην(φξ)φνφX

}

+
3∑

ν=1

{
η(X)ην(φξ) − η(ξ)ην(φX)

}
ξν

= (∇ξA)X − φX − φ1X

= αφAX − AφAX + φX + φ1X − φX − φ1X

= αλφX − λ2φX,

where we have used the equation of Codazzi (1.10) and Aξ = αξ .
Taking the inner product with φX in the above equation, we get

λ2 − αλ = 0.

Since α = √
8 cot(

√
8r) and λ = −√

2 tan(
√

2r), this gives a contradiction.
So we have given a proof of our main Theorem for ξ ∈ �⊥.

Next, let us consider the case ξ ∈ �. From Theorem B, we have the
following:

Proposition 3.3. Let M be a Hopf hypersurface in G2(Cm+2) with �-
parallel shape operator. If the Reeb vector field ξ belongs to the distribution
�, then M is locally congruent to an open part of a tube around a totally
geodesic HP n in G2(Cm+2), m = 2n.

Now, let us check whether the shape operator A of a real hypersurface M of
Type (B) satisfies the condition (∗) for all vector fields X ∈ � and Y ∈ TM. As
it is well known, a real hypersurface M of Type (B) has five distinct constant
principal curvatures as follows [2]:

Proposition B. Let M be a connected real hypersurface of G2(Cm+2).
Suppose that A� ⊂ �, Aξ = αξ , and ξ is tangent to �. Then the quaternionic
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dimension m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant
principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), μ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ ), m(λ) = 4n − 4 = m(μ)

and the corresponding eigenspaces are

Tα = Rξ = Span{ξ},
Tβ = �Jξ = Span{ξν | ν = 1, 2, 3},
Tγ = �ξ = Span{φνξ | ν = 1, 2, 3},
Tλ, Tμ,

where

Tλ ⊕ Tμ = (HCξ)⊥, �Tλ = Tλ, �Tμ = Tμ, JTλ = Tμ.

The distribution (HCξ)⊥ is the orthogonal complement of HCξ where

HCξ = Rξ ⊕ RJξ ⊕ �ξ ⊕ �Jξ.

Putting X = ξ ∈ � and Y = ξ2 ∈ Tβ in (2.1), we obtain

0 = αβφξ2,

because Aφ2ξ = γφ2ξ and γ = 0. From this, it follows that

αβ = 0.

However, from Proposition B, we see that αβ = −4 for some radius r ∈
(0, π/4). This gives a contradiction. So this case can not occur.

Hence summing up two cases mentioned above, we give a complete proof
of our main theorem in the introduction.

4. Geometric meaning of �-parallel shape operator

Let M̄ be a Kähler manifold with the Riemannian metric G and Riemannian
connection ∇̄. Let M be a real hypersurface in M̄ with the induced metric g

and the induced Riemannian connection ∇. Since M is a real hypersurface in
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M̄ , there only exists one normal vector field N on M in M̄ . Thus we have the
following two formulas:

(4.1)
∇̄XY = ∇XY + g(AX, Y )N

∇̄XN = −AX

(Gauss formula)

(Weingarten formula)

for arbitrary tangent vector fields X, Y on M .
Now, we introduce some notions for parallelism of the shape operator:
A real hypersurface M in M̄ is called cyclic parallel (or cyclic �-parallel,

resp.) if it satisfies

�X,Y,Zg((∇XA)Y, Z) = g((∇XA)Y, Z)

+ g((∇Y A)Z, X) + g((∇ZA)X, Y ) = 0

for any tangent vector fields X, Y, Z on M (or X, Y, Z ∈ �, resp.). Here �
denotes a certain distribution defined on M . In particular, when it holds on
� = � where the distribution � is given by � = {X ∈ TM | X⊥ξ}, the shape
operator A of M is said to be cyclic η-parallel (see [4]).

Under these situations, for arbitrary geodesic γ on M in M̄ , we assert:

Lemma 4.1. The shape operator A of M in M̄ is cyclic parallel if and only
if

(C1) the first curvature function of γ as a curve in the ambient space M̄ is a
constant function.

Proof. Assume that the first curvature function for an arbitrary geodesic
curve γ : I → M̄ is constant. By definition it means that ∇̄γ̇ γ̇ has constant
length in M̄ , that is, G(∇̄γ̇ γ̇ , ∇̄γ̇ γ̇ ) is constant on the interval I . From the Gauss
formula in (4.1), we have G(∇̄γ̇ γ̇ , ∇̄γ̇ γ̇ ) = g(Aγ̇ , γ̇ )2. Hence our assumption
is equivalent to the constancy of g(Aγ̇ , γ̇ ) on I .

By differentiation and using ∇γ̇ γ̇ = 0, we obtain g((∇γ̇ A)γ̇ , γ̇ ) = 0 on I .
Therefore our assumption is equivalent to

(4.2) g((∇XA)X, X) = 0

for any tangent vector X of M .
Using the linearity of the Riemannian connection, it follows that

(4.3) g
(
(∇X+Y+ZA)(X+Y+Z), X+Y+Z

) = 2�X,Y,Zg((∇XA)Y, Z) = 0,

where we have used

g
(
(∇X+Y A)(X + Y ), X + Y

)

= g((∇XA)X, Y ) + g((∇XA)Y, X) + g((∇Y A)Y, X)

+ g((∇Y A)X, X) + g((∇Y A)X, Y ) + g((∇XA)Y, Y )
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for tangent vector fields X, Y, Z on M . Therefore, we can assert M is cyclic
parallel under our assumption.

The converse is trivial if we put X = Y = Z for arbitrary tangent vector
fields X, Y, Z ∈ TpM .

Remark 4.2. The contents in Lemma 4.1 above were remarked by S. Maeda
[7]. But in this section we have proved the statement in detail.

Motivated by Lemma 4.1, we can assert the following

Lemma 4.3. The shape operator A of M in M̄ is cyclic �-parallel if and
only if

(C2) every geodesic curve γ with γ (0) = p ∈ M and γ̇ (0) = X ∈ � ⊂ TpM

has constant first curvature.

Now let us consider our case for M̄ = G2(Cm+2). That is, we want to give
a geometric meaning of �-parallel shape operator for a real hypersurface M

in G2(Cm+2). It means that the shape operator A of M satisfies

(∇XA)Y = 0,

for any tangent vector field X ∈ � and Y ∈ TM where the distribution �
denotes an orthogonal complement of �⊥ = Span{ξν | ν = 1, 2, 3}. From
this, we know that the shape operator A naturally becomes cyclic �-parallel.
Therefore by virtue of Lemma 4.3, we can give a geometric meaning of �-
parallel as follows:

Lemma 4.4. Let M be a real hypersurface in G2(Cm+2) with �-parallel
shape operator, m ≥ 3. Then every geodesic γ with initial conditions γ (0) =
p ∈ M and γ̇ (0) = X ∈ � has constant first curvature.

Remark 4.5. By the Codazzi equation (1.10), we know that any cyclic
�-parallel hypersurface in G2(Cm+2) can not be �-parallel. Therefore, the
converse of Lemma 4.4 does not hold.
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