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HOPF HYPERSURFACES IN COMPLEX TWO-PLANE
GRASSMANNIANS WITH ©-PARALLEL
SHAPE OPERATOR

HYUNIJIN LEE, EUNMI PAK and YOUNG JIN SUH*

Abstract

In this paper we consider a generalized condition for shape operator of a real hypersurface M in
complex two-plane Grassmannian G, (C""2), namely, ®-parallel shape operator of M. Using such
anotion, we prove that there does not exist a real hypersurface in complex two-plane Grassmannian
G, (C"*?) with ®-parallel shape operator.

Introduction

A real Grassmann manifold is known to be the set of all linear subspaces
in R” with the same dimension. As a kind of complex Grassmann manifold,
we introduce the complex two-plane Grassmannian G,(C"*+2) which consists
of all complex two-dimensional linear subspaces in C”*2. This Riemannian
symmetric space G,(C"*?) is the unique compact irreducible Riemannian
manifold with both a Kihler structure J and a quaternionic Kihler structure
J not containing J. For a real hypersurface M in G,(C"*2) we have the two
natural geometric conditions that the 1-dimensional distribution [§] = Span{&}
and the 3-dimensional distribution ®+ = Span{£,, &, £} are invariant under
the shape operator A of M (see [2] and [3]).

The almost contact structure vector field £ defined by £ = —JN is said
to be the Reeb vector field, where N denotes a local unit normal vector field
of M in G,(C"*?). The almost contact 3-structure vector fields {&,, &, &)
spanning the 3-dimensional distribution ®+ of M in G,(C"*?) are defined
by & = —J,N (v = 1,2, 3), where J, denotes a canonical local basis of a
quaternionic Kihler structure J and T, M = D @ D+, x € M.

By using two invariant conditions mentioned above and the result in Alekse-
evskii [1], Berndt and Suh [2] proved the following:

*This work was supported by grant Proj. No. NRF-2015-R1A2A1A01002459 from National
Research Foundation of Korea. The first author by grant Proj. No. NRF-2012-R1A1A3002031
and the third by NRF-2012-R1A2A2A01043023.

Received 4 January 2013, in final form 4 February 2013.



218 H. LEE, E. PAK AND Y. J. SUH

THEOREM A. Let M be a connected orientable real hypersurface in
G>(C"*2), m > 3. Then both [E] and D are invariant under the shape
operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G,(C"*') in
G(C"*2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HP" in G,(C"2).

Furthermore, the Reeb vector field & is said to be Hopf if it is invariant
under the shape operator A. The one dimensional foliation of M by the integral
manifolds of the Reeb vector field & is said to be the Hopf foliation of M. We
say that M is a Hopf hypersurface in G,(C"*?) if and only if the Hopf foliation
of M is totally geodesic. By the formulas in section 1 it can be easily checked
that M is Hopf if and only if the Reeb vector field & is Hopf.

Using Theorem A, many geometers have given various characterizations of
real hypersurfaces in G,(C”*2) with certain geometric objects, for example,
shape operator, normal (or structure) Jacobi operator, Ricci tensor, and so on
(see [3], [10], [11], [12] and [13]). From such a point of view, Lee and Suh [5]
gave a characterization of Hopf hypersurfaces of Type (B) in G,(C"*?) in
terms of the Reeb vector field & as follows:

THEOREM B. Let M be a connected orientable Hopf hypersurface in com-
plex two-plane Grassmannian G,(C"*?), m > 3. Then the Reeb vector field &
belongs to the distribution D if and only if M is locally congruent to an open
part of a tube around a totally geodesic HP" in Go(C"+?), m = 2n, where the
distribution ® denotes an orthogonal complement of D+ = Span{&,, &, &).

For a real hypersurface M in quaternionic projective space HP", Pérez [8]
considered the notion of ®*-parallel shape operator, that is, Vi, A = 0, i =
1,2, 3, where the three dimensional distribution ®+ is spanned by {&;, &, &3}.
For real hypersurfaces M in complex projective space CP", Pérez, Santos and
Suh [9] studied a notion of Reeb parallel structure Jacobi operator with respect
to the Lie derivatives, that is ¥z R = 0.

In [12], Suh proved a non-existence property for all hypersurfaces in
G,(C"™*2) with parallel shape operator, that is, (VxA)Y = 0 for any tan-
gent vector fields X and Y on M. As a generalization of this result, Suh [13]
considered a new condition weaker than usual parallelism. When we restrict
the shape operator to the distribution § = [£] U D+, the shape operator A is
said to be §-parallel. In such a case, Suh [13] could prove a non-existence
theorem for a Hopf hypersurface in G,(C"*?) with F-parallel shape operator.

Motivated by these results, we consider a new notion weaker than parallel
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shape operator, that is, ©-parallel shape operator which is defined by
(*) (VxA)Y =0

for all vector fields X € © and ¥ € TM. This means that eigenspaces of the
shape operator A are parallel along the geodesic curve y with initial conditions
y(0) =x € Mand y(0) = X € D C T, M. Here, the eigenspaces of the
shape operator A are said to be parallel along y if they are invariant with
respect to any parallel displacement along y . Related to the curvature function
of a curve, we will give a more detailed geometric meaning of this notion
in section 4. Using such a notion, we give a complete classification of Hopf
hypersurfaces in G,(C"*?) with D-parallel shape operator as follows:

MAIN THEOREM. There does not exist any Hopf hypersurface in complex
two-plane Grassmannian G,(C"+?), m > 3, with D-parallel shape operator.

1. Preliminaries

In this section we summarize basic material about G,(C"*?), for details we
refer to [2], [3] and [11]. The complex two-plane Grassmannian becomes a
Riemannian homogeneous space, even a Riemannian symmetric space. Using
Lie algebra, we normalize g such that the maximal sectional curvature of
(G2(C™*?), g) is eight. A canonical local basis {J;, J», J3} of  consists of
three local almost Hermitian structures J, in § such that J,J,11 = J,4o =
—Jy11Jy, where the index v is taken modulo three. Since ¥ is parallel with
respect to the Riemannian connection V of (G,(C™*2), g), there exist for any
canonical local basis {J;, J>, J3} of J three local one-forms ¢, g2, g3 such that

(11) 6XJv :LIV+2(X)JV+1 _QV+1(X)JV+2

for all vector fields X on G,(C"?). y
Furthermore, the Riemannian curvature tensor R of G,(C"*?) is locally
given by

R(X,Y)Z
=g(Y,2)X —g(X,2)Y + g(JY, 2)JX
—gUX, Z2)JY —2g(JX,Y)JZ

3
(12 + Y (LY. 2) X — g(J,X, Z2)],Y —28(J,X. )], Z}

v=I
3
+ > (Y, 2)J,JX — g(J,JX. Z)J,JY ),

v=1
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where {J;, J», J3} denotes a canonical local basis of 3.

Now, let M be a real hypersurface of G,(C"*?), that is, a hypersurface of
G, (C™*2) with real codimension one. The induced Riemannian metric on M
will also be denoted by g, and V denotes the Riemannian connection of (M, g).
Let N be a local unit normal vector field of M and A the shape operator of M
with respect to N. Let us put

(1.3) JX=¢X+n(X)N, LX=¢dX+nX)N

for any tangent vector field X on M in G,(C"*?), where N denotes a unit nor-
mal vector field of M in G,(C"*2). From the Kihler structure J of G,(C"*?)
there exists an almost contact metric structure (¢, £, n, g) on M in such a way
that

(14) ¢*X=-X+nX)§ nE =1, ¢&=0, nX)=gX,¥§)

for any vector field X on M. Furthermore, let {J;, J», J3} be a canonical local
basis of J. Then the quaternionic Kéhler structure J, of G, (C"2), together
with the condition J,J,+; = J,12 = —J,41J,, induces an almost contact
metric 3-structure (¢, &,, 7, g) on M as follows:

X =X +n.(X6, mE)=1 ¢& =0,
Gvr16y = —6vp2,  Pubor1 = Sy,

Gvdv1X = v X + o1 (XD,

G119 X = =2 X + 0o (X)év s

for any vector field X tangent to M. Moreover, from the commuting property
of J,J = JJ,, v = 1, 2,3, the relation between these two contact metric
structures (¢, &, n, g) and (¢,, &, v, g), v = 1, 2, 3, can be given by

PP X = dd X + 1, (X)§ — n(X)§,,
m(@X) =n(d,X), @& =¢.¢.

(1.5)

(1.6)

On the other hand, from the Kéhler structure J, that is, VJ = 0and the qua-
ternionic Kéhler structure J, (see (1.1)), together with Gauss and Weingarten
formulas it follows that

(L.7) (Vx@)Y = n(Y)AX — g(AX,Y)§, Vx§ = ¢AX,
(18) VXSV = QV+2(X)SU+1 - QV+1(X)§!)+2 + ¢uAX,
(1.9) (Vxd)Y = —=qu1(X)Pvi2Y + o2 (X)py1 Y

+ m(Y)AX — g(AX, Y)§,.
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Using the above expression for the curvature tensor R of G,(C"2), the
equation of Codazzi is given by

(VxA)Y — (VyA)X
= n(X)$Y — (V)X — 22(dX, V)&
3
+ ) {mX$Y — 1, (N$,X — 22($,X, V)&, }
(1.10) 7
+ ) {m@X)pudY — nu(¢Y)Pop X}

v=1

3
+ ) {(n(X)m,(¢Y) — n(¥)n,($X) 4,

v=1

2. Key lemmas

From now on, we assume that M is a Hopf hypersurface in G,(C"*?) with
D-parallel shape operator, that is, the shape operator A of M is given by

() (VxA)Y =0

for all vector fields X € D and Y € TM.
Then from the equation of Codazzi (1.10), it implies that

0= (VyA)X + ()@Y = ()X = 25($X, V)&
+ 3= mmex —2s0.x. Vg

2.1) s
+- {n@x0.0Y —n.91)0.0X}

+3 [ncomen —nmmexls

for all vector fields X € ® and Y € TM.
In particular, since (VxA)§ = (Xa)§ + apAX — ApAX, the condition ()
implies

2.2) 0 = (Xa)€ + aAX — ApAX

for any vector field X € D.
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Taking the inner product of (2.2) with &, we have X« = 0 for any vector
field X € ©. From this, we obtain the following result:

LeEmMA 2.1. Let M be a Hopf hypersurface in complex two-plane Grass-
mannian G>(C"*?), m > 3, with D-parallel shape operator. Then Xo = 0 for
any vector field X € D. Moreover, the vector pAX becomes a principal vector
of A with the corresponding principal curvature «, that is, ApAX = apAX
for any vector X € © C T, M for any point x € M.

In this section, we want to show that the Reeb vector field £ belongs to either
the distribution ® or its orthogonal complement ©+, where T,M = D @ D+,
x € M, in G2(C"*?). In order to do this, without loss of generality, we may
put the Reeb vector field £ as follows:

(sk) & = n(Xo)Xo + n(1)é

for some unit vector fields Xy € ® and & € D*.
On the other hand, using the notion of the geodesic Reeb flow, Berndt and
Suh ([2]) proved the following:

LEMMA A. If M is a connected orientable real hypersurface in G,(C"+?)
with geodesic Reeb flow, then we have the following equation

3
2.3) Ya = (Ean(¥) — 4> n(E)n(¢Y)

v=1
for any tangent vector field Y on M.
Now, using these facts, we prove the following:

LeEmMA 2.2. Let M be a Hopf hypersurface in complex two-plane Grass-
mannian G,(C"*?), m > 3, with D-parallel shape operator. Then the Reeb
vector field & belongs to either the distribution ® or the distribution D=.

ProOF. Actually, when the smooth function @ = g(A£, &) identically van-
ishes, this lemma can be verified directly from Pérez and Suh ([10, pp. 220-
221]).

Thus, in this proof we consider only the case that the function « is non-
vanishing. Moreover, under our assumptions, we have already proved that the
principal curvature « is constant on ® in Lemma 2.1. So, if Y is restricted to D

in (2.3), then we get (§a)n(Y) —4n1(§)n1(¢Y) = 0. Since p&; = n(Xo)¢1 Xo,
it follows

2.4) (Ea)n(Xo)g(Xo, Y) +4n(Xo)n1(§)g(¢1Xo,Y) =0,

forany ¥ € D.
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Substituting Y into X, the equation (2.4) becomes
n(Xo)(Ea) =0,

because the structure tensor ¢ is skew-symmetric.

If £a # 0, it gives n(Xp) = 0. From this, the Reeb vector field £ becomes
£ = n(£1)&,. So, we conclude that £ belongs to the distribution D+,

Next, it remains to consider that £ = 0. Since ¢; Xy € D, substituting ¥
into ¢; X in (2.4), we get

n(Xo)m @) =0,

that is, n(Xo) = 0 or n,(§) = n(&;) = 0. Accordingly, we get a complete
proof of our Lemma 2.2.

3. Proofs of the Main Theorem

Let M be a Hopf hypersurface in G,(C"*?) with D-parallel shape operator,
that is, the shape operator A satisfies the following condition:

€)) (VxA)Y =0

for all vector fields X € ® and Y € TM. Then by virtue of Lemma 2.2 we
have the following two cases:
Case I: the Reeb vector field £ belongs to the distribution D+,
Case II: the Reeb vector field & belongs to the distribution D.
Now, let us consider the first case, £ € D1, For convenience’s sake, we may
puté =é&;.

LeEmMA 3.1. Let M be a Hopf hypersurface in complex two-plane Grass-
mannian Go(C"*?), m > 3, with D-parallel shape operator. If the Reeb vector
field & belongs to the distribution D, then the distribution D+ is invariant
under the shape operator A of M.

PRrROOF. Since we assume that the shape operator A of M is parallel on ©®,
the equation of Codazzi (1.10) can be written as

3
22X, V) +2) (¢ X, Y)n(E) =0

v=1

for all vector fields X and Y € D.
From this, together with & € DL, it follows that

3.1 g@X+¢X,Y)=0
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for any tangent vector fields X and ¥ on ®.
Let{e;, es, ..., e4,—1} be anorthonormal basis of T, M, where x is any point
of M. Without loss of generality, we may put e4gn—1)+v = &y, v = 1,2, 3.
Then the tangent vector field ¢ X + ¢ X on M is given by

4m—1

PX+ X =) g@X+¢1X, e)e

i=1
4m—4 3

=) s@X+piX.eei+ Y g(dX + ¢ X, £)E,
i=1 v=1

=0

for any X € ®. The third equality holds from the equation (3.1) and the facts
@&, 1£, € DL. Moreover, from our assumption £ = £;, we have naturally

¢€v +¢1§U:Oa v=1,2,3.
Summing up these two facts, we assert
(32) X + G X =0

for any tangent vector field X on M.
On the other hand, differentiating £ = &; along any vector field X € TM,
we have

(3.3) PAX = q3(X)&2 — ¢2(X)&3 + 1AX,

where we have used (1.7) and (1.8).
Moreover, by taking the inner product with &; and &3, we obtain

8(PAX, &) = q3(X) + g($1AX, &)

and
g8(PAX, &) = —qa(X) + g(91AX, &3),

respectively. It follows that
q3(X) =2g(AX, &) and q2(X) =2g(AX, &).
From these relations, the equation (3.3) can be written as

(3.4) PAX = 2g(AX, §3)5; — 28(AX, £)&3 + p1AX.
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By applying ¢ to (3.4), we have
(3.5) AX = n(AX)§ + 28(AX, §)6> + 28(AX, &§3)&3 — ¢pp1AX

for any vector field X on M.
By the way, from (3.2) we know that ¢; X = —¢ X for any X on M. Then
equation (3.5) can be written as

AX = n(AX)§ +28(AX, £)& + 28(AX, £)& + ¢°AX,

that is,
AX = n(AX)§ + g(AX, £)& + g(AX, &3)&3

for any tangent vector filed X on M. Therefore we prove that the distribution
®+1 isinvariant under the shape operator A of M, thatis, AX € DL forX € D,

From this Lemma and Theorem A, we assert the following:

PROPOSITION 3.2. Let M be a Hopf hypersurface in Go(C"*?) with D-
parallel shape operator. If the Reeb vector field & belongs to the distribution

D+, then M is locally congruent to an open part of a tube around a totally
geodesic G, (C" 1Y) in G,(C"+2).

Now, let us check whether the shape operator A for a real hypersurface of
Type (A) satisfies the condition (x) for all vector fields X € D and Y € TM.

In order to do this, we introduce one proposition due to Berndt and Suh
[2]. They proved that a real hypersurface of Type (A) has three or four distinct
constant principal curvatures as follows:

PROPOSITION A. Let M be a connected real hypersurface of G,(C"+?).
Suppose that AD C D, Af = «af, and & is tangent to D+. Let J, €  be
the almost Hermitian structure such that JIN = JyN. Then M has three (if
r=m/ 2V8) or four (otherwise) distinct constant principal curvatures

o= «/gcot(«/gr), B = \/Ecot(«/zr), A= —«/Etan(«/ir), u=0

with some r € (0, 7t /~/8). The corresponding multiplicities are
m() =1, m(B)=2, m@)=2m—2=mu),
and the corresponding eigenspaces are

T, = RE = RIN = R§ = Span{£} = Span{§},
Ty = C'& = C'N = R& @ RE; = Spaniéy, &},
T, ={X| X LHE JX = 1 X},

T,={X|X LHEIX =—J X}
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where RE, CE and HE respectively denotes real, complex and quaternionic span
of the structure vector field & and C+£ denotes the orthogonal complement of
C¢ in HE.

From now on, to check our question for a real hypersurface M of Type (A)
in G,(C"*?), let us assume M has the D-parallel shape operator. In particular,
putting X e ), C Dand Y =& =& € T, in (2.1), it becomes

0= (V:A)X +n(X)ps —n(E)pX — 2g(pX, §)E

3
+ D {=nEd X — 22X, £}

v=1

3
+ > (@ X)pu0E — 1, ($E)pr9X |

v=1

3
+ Y {(n(X)m,(¢8) — nEnu(@X) )£,

v=1
= (V:A)X —pX — 1 X
= apAX — APAX + X + P X — pX — 1 X
=arpX — AP X,

where we have used the equation of Codazzi (1.10) and A§ = «€.
Taking the inner product with ¢ X in the above equation, we get

22 —ar=0.

Since & = +/8cot(+/8r) and & = —+/2 tan(+/2r), this gives a contradiction.
So we have given a proof of our main Theorem for £ € D+,

Next, let us consider the case £ € ©. From Theorem B, we have the
following:

PROPOSITION 3.3. Let M be a Hopf hypersurface in Go(C"*?) with ®-
parallel shape operator. If the Reeb vector field & belongs to the distribution

D, then M is locally congruent to an open part of a tube around a totally
geodesic HP" in G,(C"*?), m = 2n.

Now, let us check whether the shape operator A of a real hypersurface M of
Type (B) satisfies the condition (x) for all vector fields X € D and Y € TM. As
it is well known, a real hypersurface M of Type (B) has five distinct constant
principal curvatures as follows [2]:

PROPOSITION B. Let M be a connected real hypersurface of G,(C"*?).
Supposethat AD C D, A& = a&, and & istangent to D. Then the quaternionic
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dimension m of Go(C"*2) is even, saym = 2n, and M has five distinct constant
principal curvatures

o =—2tan(2r), B =2cot(2r), y =0, A=cot(r), u=—tan(r)
with some r € (0, w/4). The corresponding multiplicities are
m() =1, m(B)=3=m(y), m@})=4n—4=m(u)
and the corresponding eigenspaces are

T, = R§ = Span{§},

Tg = JJ& = Span{é, | v =1, 2,3},
T, = 3§ = Span{¢,§ | v = 1,2, 3},
T, T,

where
T,&T,=HE)", ILhi=T, JI=T, JT,=T,
The distribution (HCE)* is the orthogonal complement of HCE where

HCE =RE D RJE @ I @ JJE.

Putting X =& € Dand Y =&, € Ty in (2.1), we obtain
0=apps,
because A¢r& = y¢,& and y = 0. From this, it follows that
aff =0.

However, from Proposition B, we see that «f = —4 for some radius r €
(0, /4). This gives a contradiction. So this case can not occur.

Hence summing up two cases mentioned above, we give a complete proof
of our main theorem in the introduction.

4. Geometric meaning of ®-parallel shape operator

Let M be a Kihler manifold with the Riemannian metric G and Riemannian
connection V. Let M be a real hypersurface in M with the induced metric g
and the induced Riemannian connection V. Since M is a real hypersurface in
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M, there only exists one normal vector field N on M in M. Thus we have the
following two formulas:

VxY = VyY + g(AX,Y)N (Gauss formula)

4.1 _
“-1) VxN = —AX (Weingarten formula)

for arbitrary tangent vector fields X, Y on M.

Now, we introduce some notions for parallelism of the shape operator:

A real hypersurface M in M is called cyclic parallel (or cyclic -parallel,
resp.) if it satisfies

Sx.r.z8((VxA)Y, Z) = g((VxA)Y, Z)
+g((VyA)Z, X) + g((VZA)X,Y) =0

for any tangent vector fields X, Y, Z on M (or X, Y, Z € E, resp.). Here &
denotes a certain distribution defined on M. In particular, when it holds on
¥ = [) where the distribution ) is given by ) = {X € TM | X L&}, the shape
operator A of M is said to be cyclic n-parallel (see [4]).

Under these situations, for arbitrary geodesic y on M in M, we assert:

LEMMA 4.1. The shape operator A of M in M is cyclic parallel if and only
if
(C1) the first curvature function of y as a curve in the ambient space M is a
constant function.

PrOOF. Assume that the first curvature function for an arbitrary geodesic
curve y : I — M is constant. By definition it means that @);J} has constant
lengthin M, thatis, G (?,; V, ?,; y) is constant on the interval /. From the Gauss
formula in (4.1), we have G(@y}), @); ¥) = g(Ay, y)?. Hence our assumption
is equivalent to the constancy of g(Ay, y) on I.

By differentiation and using V; ¥ = 0, we obtain g((V;A)y,y) =0on I.
Therefore our assumption is equivalent to

(4.2) g((VxA)X, X) =0

for any tangent vector X of M.
Using the linearity of the Riemannian connection, it follows that

4.3) g((VxyrizA)X+Y+Z), X+Y+Z) = 28xy.28((VxA)Y, Z) =0,

where we have used
g((VxiyA)(X +Y), X +7)
=g((VxA)X,Y) +g((VxA)Y, X) + g((VyA)Y, X)
+8((VyA)X, X) + g((VyA)X,Y) + g((VxA)Y, Y)
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for tangent vector fields X, Y, Z on M. Therefore, we can assert M is cyclic
parallel under our assumption.

The converse is trivial if we put X = Y = Z for arbitrary tangent vector
fields X, Y, Z € T,M.

REMARK 4.2. The contentsin Lemma4.1 above were remarked by S. Maeda
[7]. But in this section we have proved the statement in detail.

Motivated by Lemma 4.1, we can assert the following

LEMMA 4.3. The shape operator A of M in M is cyclic T-parallel if and
only if
(Cy) every geodesic curvey withy(0) = pe Mandy(0) =X € T C T,M
has constant first curvature.

Now let us consider our case for M = G,(C"*2). That is, we want to give
a geometric meaning of ®-parallel shape operator for a real hypersurface M
in G,(C™*?). It means that the shape operator A of M satisfies

(VxA)Y =0,

for any tangent vector field X € ® and ¥ € TM where the distribution ®
denotes an orthogonal complement of ®+ = Span{&,|v = 1,2, 3}. From
this, we know that the shape operator A naturally becomes cyclic ©-parallel.
Therefore by virtue of Lemma 4.3, we can give a geometric meaning of ®-
parallel as follows:

LEMMA 4.4. Let M be a real hypersurface in Go(C"+?) with D-parallel
shape operator, m > 3. Then every geodesic y with initial conditions y (0) =
p € M and y(0) = X € D has constant first curvature.

REMARK 4.5. By the Codazzi equation (1.10), we know that any cyclic
D-parallel hypersurface in G,(C"*?) can not be ®-parallel. Therefore, the
converse of Lemma 4.4 does not hold.
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