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DYNAMICS OF BIHOLOMORPHIC SELF-MAPS ON
BOUNDED SYMMETRIC DOMAINS

P. MELLON

Abstract
Let g be a fixed-point free biholomorphic self-map of a bounded symmetric domain B. It is
known that the sequence of iterates (gn) may not always converge locally uniformly on B even,
for example, if B is an infinite dimensional Hilbert ball. However, g = ga ◦T , for a linear isometry
T , a = g(0) and a transvection ga , and we show that it is possible to determine the dynamics
of ga . We prove that the sequence of iterates (gn

a ) converges locally uniformly on B if, and only
if, a is regular, in which case, the limit is a holomorphic map of B onto a boundary component
(surprisingly though, generally not the boundary component of a

‖a‖ ). We prove (gn
a ) converges to

a constant for all non-zero a if, and only if, B is a complex Hilbert ball. The results are new even
in finite dimensions where every element is regular.

Introduction

In 1926 Wolff [25] and Denjoy [5] proved that if g is a holomorphic fixed-
point free self-map of �, then its iterates (gn) converge locally uniformly on �

to a unimodular constant. This was first generalised to the finite dimensional
Hilbert ball by Hervé [7] in 1963, and then again, by others, two decades
later [18], [20]. Shortly afterwards, the result was shown to fail for the infinite
dimensional Hilbert ball [24] even for biholomorphic fixed-point free self-
maps. It is also easy to see that it fails for other bounded symmetric domains,
as shown for the bidisc � × � in Example 1 of [4]. It may therefore appear
hopeless to consider the iterates of such maps on arbitrary bounded symmetric
domains, which is, nonetheless, the purpose of this paper.

Let Z be a JB∗-triple with open unit ball B. As is long known [11] B is
a bounded symmetric domain and every bounded symmetric domain can be
realised in this way. Let g be a biholomorphic self-map of B which has no
fixed point in B. Then g has a unique decomposition into linear and non-linear
parts, and the non-linear part is tractable, namely, we can trace its iterates.
We recall that the group, G, of biholomorphic automorphisms of B, has the
form [11] G = PK = KP, where K is all linear elements of G (equivalently,
all linear isometries of Z [16]), and P = exp(�), where � is the Lie algebra
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generated by the quadratic vector fields, Xα(z) = (α − {z, α, z}) ∂
∂z

on Z. In
other words, each g ∈ G may be written g = ga ◦T , where a = g(0), T ∈ K ,
and ga ∈ P is called a transvection.

We show that the local uniform convergence properties of the sequence of
iterates (gn

a ), unlike those of (gn), are good, and it is our aim here to establish
exactly the dynamics of (gn

a ). We use results on the boundary properties of
bounded symmetric domains [17] to reduce the local uniform convergence
properties of (gn

a ) to the norm convergence properties of the sequence (gn
a (0))

in Z and we can thereby locate all accumulation points of (gn
a ) (with respect

to the topology of local uniform convergence on B) as holomorphic maps of
B onto certain boundary components. We present our main result, noting that
if Z is finite rank, in particular if it is finite dimensional, then every element is
(what is known as) regular, cf. Section 3 of this paper, giving a much simpler
statement than below.

Theorem 0.1. Let Z be a JB∗-triple with open unit ball B and a ∈ B. The
sequence of iterates (gn

a ) has an accumulation point, with respect to the topo-
logy of local uniform convergence on B if, and only if, a is regular. Moreover,
if a is regular, then the iterates (gn

a ) converge locally uniformly on B to a
holomorphic map ge : B → Ke, where Ke is the (holomorphic) boundary
component of e and e is the support tripotent of a.

We note that the limit point ge is not in general, even in finite dimensions, a
constant map, and more crucially, its image, the boundary component Ke, may
also not contain the point a

‖a‖ , for a �= 0. In fact, the following result shows
that while, as one might expect, the above simplifies greatly in the case of the
Hilbert ball, such simplification actually characterises the Hilbert ball within
the class of all bounded symmetric domains.

Theorem 0.2. Let Z be a JB∗-triple with open unit ball B. The following
are equivalent.

(i) (gn
a ) converges locally uniformly on B to a constant map, for all non-zero

a ∈ B.

(ii) Z is (isometrically J ∗-isomorphic to) a complex Hilbert space.

We note that the results are new even in finite dimensions. For a survey of
the classical case B = � we refer to [3].

1. Preliminaries

Throughout � = {z ∈ C : |z| < 1}, H will denote a complex Hilbert space,
L(X, Y ) the space of all continuous linear maps from a complex Banach space
X to a complex Banach space Y , L(X) = L(X, X) and GL(X) is all invertible
elements in L(X).
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1.1. JB∗-triples

Definition 1.1. A JB∗-triple is a complex Banach space Z with real tri-linear
mapping {·, ·, ·} : Z × Z × Z → Z satisfying

(i) {x, y, z} is complex linear and symmetric in x and z, and is complex
anti-linear in y;

(ii) the map z �→ {x, x, z}, denoted x�x, is Hermitian, σ(x�x) ≥ 0 and
‖x�x‖ = ‖x‖2 for all x ∈ Z, where σ denotes the spectrum;

(iii) for all a, b, x, y, x ∈ Z the Jordan triple identity holds, namely,

{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}}.

The triple product is continuous [6], namely, ‖{x, y, z}‖ ≤ ‖x‖‖y‖‖z‖.
JB∗-triples that are also Banach dual spaces are known as JBW∗-triples, and
have been much studied. It is known [11] that every bounded symmetric domain
is biholomorphically equivalent to the open ball of a JB∗-triple and vice versa.

Example 1.2.
(i) H is a JB∗-triple for product

{x, y, z} = 〈x, y〉z + 〈z, y〉x
2

(ii) If X is a locally compact Hausdorff space, then C0(X), the space of all
continuous C-valued functions which vanish at infinity, is a JB∗-triple
for {x, y, z} = xyz.

All C∗-algebras, JB∗-algebras and J ∗-algebras are JB∗-triples, so the class
of triples is large and interesting. Since the triple product encodes the holo-
morphic structure of B (for example, the Kobayashi metric on B [21] and
[22]), it is a key tool in the study of holomorphic maps on all of these spaces.

Let Z be a JB∗-triple with open unit ball B. The most important linear maps
on Z are the Bergman operators B(x, y) = I − 2x�y + Q(x)Q(y) ∈ L(Z)

as they play a central role in the geometry of B. Here x�y ∈ L(Z) is the map
z �→ {x, y, z} and Q(x) maps z �→ {x, z, x} so that Q(x)Q(y) ∈ L(Z). We
note that for all x ∈ B, σ(B(x, x)) > 0 and Bx := B(x, x)

1
2 exists in the sense

of the holomorphic functional calculus on L(Z) [13].

1.2. Tripotents and Peirce decompositions

A concept of orthogonality exists in Z and we say x, y ∈ Z are orthogonal,
x⊥y, if x�y = 0 (or equivalently [19] if y�x = 0). Analogues of idempotents
for an algebra also exist in the form of tripotents, where e ∈ Z is a tripotent
if {e, e, e} = e. Every tripotent e induces a Peirce splitting Z = Z1(e) ⊕
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Z 1
2
(e) ⊕ Z0(e) where Zk(e) is the k eigenspace of e�e. A tripotent e is said

to be maximal if Z0(e) = 0 and said to be minimal if Z1(e) = Ce. It is known
that for JB∗-triples real and complex extreme points of the closed unit ball
coincide and are precisely the set of all maximal tripotents.

Z is said to have rank r if the cardinality of every set of non-zero pairwise
orthogonal tripotents is ≤ r and there is at least one set of cardinality r . We
say Z is finite rank if r < ∞. Of course, if Z is finite dimensional then it
is finite rank. We say a ∈ Z is algebraic if there exists a finite family of
pairwise orthogonal tripotents e1, . . . , er and λ1, λ2, . . . , λr ∈ C such that
a = λ1e1 + · · · + λrer . For a �= 0 algebraic, the decomposition can be chosen
so that each ek is non-zero and λ1 = ‖a‖ > λ2 > · · · > λr > 0. We refer
to e = e1 + · · · + er as the support tripotent of A and write e = supp(a)

(supp(0) = 0). If Z is finite rank then every a ∈ Z is algebraic. We refer to
[1] and [15] for additional details.

1.3. Spectral Theory

A well developed spectral theory exists for JB∗-triples, as follows. Given a ∈
Z, let Za denote the smallest closed subtriple of Z containing a. Then there
is a unique compact subset S = −S of R such that (i) 0 is not isolated in S

and (ii) there is a unique triple isomorphism from Za onto C−(S) := {f ∈
C(S) : f (−s) = −f (s) ∀s ∈ S} such that a becomes the function a(s) ≡ s

on S. Letting S+ = {s ∈ S : s > 0}, the following are triple isomorphisms
Za

∼= C−(S) ∼= C0(S
+), where we identify a with the map a(s) = s ∀s ∈ S

and elements of C0(S
+) are identified with maps in C−(S) by extension in

the obvious way. Proposition 3.5 of [15] gives all necessary details. The set S,
denoted Sp(a), is called the (triple) spectrum of a (Sp(0) = ∅) and we write
rank(a) := dim(Za). Using this an odd functional calculus exists on Z [15].
We note that a⊥b gives Za⊥Zb (this follows from the Jordan triple identity and
double induction on odd powers of a and b). Moreover, as the direct product
Za × Zb with component-wise triple product and maximum norm is a JB∗-
triple, then a⊥b implies that the map Za × Zb → Z : (x, y) �→ x + y is an
injective triple homomorphism and is hence an isometry [16] giving ‖a+b‖ =
max{‖a‖, ‖b‖}. In particular, a⊥b for a, b ∈ B also means a + b ∈ B.

1.4. Automorphism Group

The structure of the group, G, of all biholomorphic automorphisms of B is
long known. We refer to Section 3 of [14] for details. G is a (Banach) Lie group
whose Lie algebra � = �⊕� consists of all complete holomorphic vector fields
on B, with � = Aut(Z) being all triple derivations of Z and

� = {Xα : α ∈ Z}, where Xα(z) = (α − {z, α, z}) ∂

∂z
.
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In particular, for each X ∈ �, the map t �→ exp(tX) is a 1-parameter subgroup
of G. At the group level we have the decomposition G = KP = PK , where
K = Aut(Z) is the subgroup of all surjective linear isometries (or equivalently,
all triple isomorphisms) of Z and P = exp(�) is a real submanifold, though not
a subgroup, of G. Each g ∈ G therefore has a unique representation g = ga◦T ,
where T ∈ K , a = g(0), and ga ∈ P , called a transvection, is given by

ga(z) = a + Ba(I + z�a)−1z, z ∈ B

where Ba := B(a, a)
1
2 ∈ GL(Z). Clearly g0 = I .

Moreover, ga = exp(Xα), where α = tanh−1(a) is defined in terms of the
odd functional calculus on Z (and α and a generate the same subtriple of Z).

Example.
(i) If B = � and a ∈ � then ga(z) = z+a

1+az
, z ∈ �, is the classical Möbius

map. To distinguish the case of � throughout, we will write ta for ga

whenever a ∈ �. It is well known, cf. [3], that for a ∈ � \ {0}, tna
converges locally uniformly on � to the constant map a

|a| and hence,
in particular, limn tna (0) = a

|a| . We make repeated use of the fact that
limn tna (0) = 1 for all a ∈ (0, 1).

(ii) If B = BH is a complex Hilbert ball then for a �= 0 in B

ga(z) = (
Pa +

√
1 − ‖a‖2Qa

)( z + a

1 + 〈z, a〉
)

, z ∈ B

where Pa is the orthogonal projection onto the subspace Ca and Qa =
I − Pa .

1.5. Boundary Components

The boundary components of a bounded symmetric domain B are classified
[17] in terms of holomorphic maps called boundary transvections.

We recall that A ⊂ B, A �= ∅ is a (holomorphic) boundary component of
B if A is minimal with respect to the fact that either f (�) ⊂ A or f (�) ⊂
B \ A, ∀f : � → Z holomorphic with f (�) ⊂ B. We denote the boundary
component of B containing a as Ka .

For c ∈ ∂B, the local uniform limit of ga as a ∈ B approaches c, namely
lima→c ga , exists as a holomorphic map : B → Z, is denoted gc and called
a boundary transvection. Such maps classify the boundary components of B

containing tripotents, namely, if e ∈ Z is a tripotent then

Ke = ge(B) = e + B0(e), where B0(e) = B ∩ Z0(e)
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and also Ke = ga(B), for all a ∈ Ke. Of course, if e = 0 then K0 = B and
this is the unique open boundary component of B. We note that for c ∈ ∂B,
the boundary transvection gc, unlike ga for a ∈ B, is neither biholomorphic
nor injective in general. The map (z, a) �→ ga(z) is, however, a continuous
map on B × B \ (∂B × ∂B). We refer to [17], in particular Theorem 2.1 and
Proposition 4.3, for proofs and details of all results in this subsection.

2. Results: Algebraic Elements

Let Z be an arbitrary JB∗-triple with open unit ball B. For holomorphic func-
tions on B, convergence is understood throughout to mean local uniform con-
vergence on B. We note that on G, the automorphism group of B, this topology
coincides with uniform convergence on subsets lying strictly inside B, cf. The-
orem 3.1 of [10].

Let a ∈ B. We begin by examining the iterates, gn
a , of ga . Fix n ∈ N .

As ga = exp(Xα), where α = tanh−1(a) and since the map t �→ exp(tXα)

is a 1-parameter subgroup of G then (recall that P is not a subgroup of G)

gn
a = (exp(Xα))n = exp(nXα) = exp(Xnα) ∈ P

so that gn
a = gcn

, for cn ∈ B, and evaluating at 0 gives gn
a (0) = cn.

In other words, for all a ∈ B and n ∈ N

(2.1) gn
a = ggn

a (0).

This simple identity is crucial, since in light of Section 1.5 above, it im-
mediately simplifies the process of finding accumulation points of (gn

a ) with
respect to the topology of local uniform convergence on B, by allowing us
instead to focus on finding accumulation points of the sequence (gn

a (0)) in Z

with respect to the norm topology. To this end, it is important to notice that
the sequence (gn

a (0)) lies entirely in the JB∗-subtriple, Za , generated by a. If
now Za is just Ca, then we are already almost done. Although this is generally
not the case, it is true for Hilbert spaces, where Za = Ca, for all a in H . For
Hilbert space enthusiasts therefore, who may wish to forgo Jordan theory, we
present this separately.

Theorem 2.1. Let H be a complex Hilbert space with open unit ball B,
a ∈ B \ {0}. The sequence of iterates (gn

a ) converges locally uniformly on B

to the constant map a
‖a‖ .

Proof. For e ∈ ∂B and λ, μ ∈ � then gλe(μe) = (
λ+μ

1+λμ

)
e = tλ(μ)e,

where tλ is the Möbius transformation on the disc. By induction gn
λe(0) =

tnλ (0)e, for n ∈ N. Fix a ∈ B \ {0}. Then gn
a (0) = gn

‖a‖e(0) = tn‖a‖(0)e, for
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e = a
‖a‖ ∈ ∂B. Since (tn‖a‖(0)) converges to 1, (gn

a (0)) converges in norm to
a

‖a‖ and hence, as in Section 1.5, (ggn
a (0)) converges locally uniformly on B to

the boundary transvection g a
‖a‖ . As g a

‖a‖ (B) = K a
‖a‖ and, since every point in

∂B is complex extreme, K a
‖a‖ = { a

‖a‖ }, so g a
‖a‖ is the constant map a

‖a‖ . The
result follows from (2.1).

Comment. The following properties of Hilbert spaces are key to the above
proof.

1. gn
a (0) ∈ Ca, for all n ∈ N (this ensures that for a �= 0 a limit, g a

‖a‖ ,
exists).

2. Every point on ∂B is extreme, namely, B is strictly convex (this ensures
that the limit, g a

‖a‖ , is constant).

While property 2 does not hold for triples of rank > 1, we can ask if property
1 generalises to some such triples. The answer is negative, as the following
shows that properties 1 and 2 are equivalent.

Proposition 2.2. Let Z be a JB∗-triple with open unit ball B. The following
are equivalent.

(i) Z is (isometrically J ∗-isomorphic to) a complex Hilbert space.

(ii) B is strictly convex.

(iii) Every e ∈ ∂B is a tripotent (and is then automatically minimal and
maximal at the same time).

(iv) For all a ∈ B, Za
∼= Ca.

(v) For all a ∈ B, gn
a (0) ∈ Ca. (Note that for a = 0, ga = I .)

Proof. Implications (i) ⇔ (ii) ⇔ (iii) ⇔ (iv)⇒ (v) are straightforward.
(v) ⇒ (iii): Let e ∈ ∂B. It suffices to prove that e is a tripotent. Let a = e

2 ∈
B. By assumption g2

a(0) = ga(a) ∈ Ca. We may assume that a ∈ C0(S
+) is

the map a(s) ≡ s and ga(z) = z+a
1+az

, z ∈ C0(S
+). Then g2

a(0) = 2a
1+a2 = λa,

for some real constant λ > 0. This implies S+ must be a singleton and therefore
e = a

‖a‖ is a tripotent and we are done.

We return to arbitrary JB∗-triples. For the space of holomorphic functions
on B, we note that nets, rather than sequences, are required to determine the
topology. In particular, the set of all accumulation points of (gn

a ) with repect
to the topology of local uniform convergence on B is precisely the set of limit
points of all its locally uniformly convergent subnets. The following result
shows that for (gn

a ) this is conveniently the same as the set of all its (locally
uniform) subsequential limits.
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Theorem 2.3. Let Z be a JB∗-triple with open unit ball B and a ∈ B. The
set of accumulation points of (gn

a ) with respect to the toplogy of local uniform
convergence on B is

{gc : c ∈ �a},
where �a is the set of all subsequential limits of (gn

a (0)) in Z with respect to the
norm topology. In particular, for (gn

a ) the set of accumulation points is exactly
the set of its subsequential limits.

Proof. Let h be an accumulation point of (gn
a ), namely, there is a subnet

(nα)α of N such that gnα
a −→

α
h locally uniformly on B. In particular then,

gnα
a (0) −→

α
h(0) in Z. From (2.1) gnα

a = gg
nα
a (0) and therefore (Section 1.5)

gnα
a = gg

nα
a (0) −→

α
gh(0) locally uniformly on B. Uniqueness of limits gives

h = gh(0). Since the topology on Z is determined by sequences, the set of
limits points of all (convergent) subnets of (gn

a (0)) is the same as the set of
all its subsequential limits. In other words, h(0) ∈ �a and h = gh(0) ∈ {gc :
c ∈ �a}. On the other hand, let c ∈ �a , that is, c = limk gnk

a (0). As above
gnk

a = gg
nk
a (0) −→

k
gc locally uniformly on B, completing the proof.

Since for a tripotent e, direct calculation gives gλe(μe) = tλ(μ)e, λ, μ ∈ �,
the next result follows exactly as in Theorem 2.1.

Lemma 2.4. Let e be a tripotent and λ ∈ �. Then gn
λe = gtnλ (0)e for n ∈ N

and (gn
λe) converges locally uniformly on B to the boundary transvection g λ

|λ| e
,

if λ �= 0.

Our next motivation comes from the fact that if a⊥b then ga is orthogonal
to gb in the sense that

ga ◦ gb = gb ◦ ga so that ga+b = ga ◦ gb,

which will allow us to extend Lemma 2.4 above to finite linear combinations of
tripotents, namely, to algebraic elements of Z. While this orthogonality result
may be part of the folklore we supply a proof for completeness. (The following
result for n = 1, a tripotent e and v⊥e is used in the proof of Proposition 4.3
of [17], though a proof is not given there.)

Lemma 2.5. Let a, b ∈ B be orthogonal. Then ga+b = ga ◦gb. In particular,
ga and gb commute.

Proof. Let a, b ∈ B be orthogonal. As in Section 1, ga = exp(Xα),
gb = exp(Xβ), for α = tanh−1(a), β = tanh−1(b) and Xα is the vector
field, Xα(z) = (α − {z, α, z}) ∂

∂z
. Since tanh−1(t) = ∑∞

n=0
t2n+1

2n+1 is odd, a⊥b

implies tanh−1(a + b) = tanh−1(a) + tanh−1(b) = α + β and α⊥β. As



dynamics on bounded symmetric domains 211

[Xα, Xβ] = Xα�β−β�α , α⊥β implies [Xα, Xβ] = 0, which gives exp(Xα +
Xβ) = (exp Xα)◦(exp Xβ). Therefore ga+b = exp(Xtanh−1(a+b)) = exp(Xα+β)

= exp(Xα + Xβ) = (exp Xα) ◦ (exp Xβ) = ga ◦ gb. In particular ga ◦ gb =
gb ◦ ga .

The above lemmata combine to show that for algebraic elements a the
dynamics of ga on B are determined entirely by its support tripotent e.

Theorem 2.6. Let Z be a JB∗-triple, a ∈ B be algebraic and e = supp(a).
Then (gn

a ) converges locally uniformly on B to the holomorphic map ge, where
ge(B) is the boundary component, Ke, of e.

Proof. The case a = 0 is trivial, as ga = ge = I . Let a ∈ B \ {0} be
algebraic, with a = λ1e1 + · · · + λrer , where ‖a‖ = λ1 > · · · > λr > 0, and
e1, · · · , er are mutually orthogonal tripotents. Fix n ∈ N. Then

gn
a = gn

λ1e1
◦ · · · ◦ gn

λrer
by Lemma 2.5

= gtnλ1
(0)e1 ◦ · · · ◦ gtnλr

(0)er
by Lemma 2.4

= gtnλ1
(0)e1+···+tnλr

(0)er
by Lemma 2.5 again.

Since tnλi
(0) →

n
1, 1 ≤ i ≤ r , limn tnλ1

(0)e1 + · · · + tnλr
(0)er = e so that, as

before, gn
a converges locally uniformly on B to ge and we are done.

Comments.
1. If Z is finite rank then all elements in Z are algebraic and, of course,

every finite dimensional JB∗-triple is finite rank.

2. If Z is a JBW∗-triple then the algebraic elements are dense, cf. [15]
Section 2.

3. Every element a ∈ Z is algebraic if, and only if, Z has the Radon-
Nikodym property, [2].

Theorem 2.6 however merits a much closer look, even in finite dimensions.
The transvection ge maps B onto the holomorphic boundary component, Ke,
of e. This yields our first major surprise for, as the following examples show,
the boundary components of e and a

‖a‖ are generally different, so that The-
orem 2.6 (and a later Theorem 3.1) diverges from the Hilbert space result in
both expected (see (i) below) and unexpected (see (ii) and (iii) below) ways.

(i) (gn
a ) does not necessarily converge to a constant map. See Example 2.7

below.

(ii) Even if (gn
a ) does converge to a constant, that constant is not generally

a
‖a‖ . In fact, that constant is not necessarily in K a

‖a‖ . See Example 2.8
below.
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(iii) Where it exists, the limit of (gn
a ) does not generally map into the boundary

component K a
‖a‖ . See Example 2.7 below.

Example 2.7. Let Z be C3 with 	∞ norm, ‖(z1, z2, z3)‖ = max1≤i≤3 |zi |,
so B = �3. Consider the rank 2 element a = (

1
2 , 1

4 , 0
) ∈ B. Then

a = 1

2
e1 + 1

4
e2, e1 = (1, 0, 0), e2 = (0, 1, 0)

and
e = supp(a) = e1 + e2 = (1, 1, 0)

so that ge(B) = Ke = 1 × 1 × �. On the other hand,

a

‖a‖ = e1 + 1

2
e2 and K a

‖a‖ = Ke1 = 1 × � × �.

Clearly Ke ∩ K a
‖a‖ = ∅. Note that gn

a (z) = (tn1
2
(z1), t

n
1
4
(z2), z3) with z =

(z1, z2, z3), where tn1
2
, tn1

4
are Möbius maps on � that converge locally uniformly

on � to 1. So (gn
a ) converges locally uniformly on B to ge where ge(z) =

(1, 1, z3).

Example 2.8. Let Z be C2 with 	∞ norm, so B = �2. Take

a =
(

1

2
,

1

4

)
= 1

2
e1 + 1

4
e2, where e1 = (1, 0), e2 = (0, 1)

and
e = supp(a) = e1 + e2 = (1, 1).

Here e is a complex extreme point, so Ke = {e} and ge is the constant map e.
On the other hand

a

‖a‖ =
(

1,
1

2

)
= e1 + 1

2
e2 and K a

‖a‖ = K(1,0) = 1 × �.

Of course, (gn
a ) converges locally uniformly on �2 to the constant map e.

The following proposition clarifies the situation.

Proposition 2.9. Let a ∈ B be algebraic and e = supp(a). If a �= 0 then

K a
‖a‖ = Ke if, and only if,

a

‖a‖ is a tripotent.

Proof. Let a ∈ B \ {0} be algebraic and e = supp(a). From Section 1.5,
K a

‖a‖ = Ke if, and only if, a
‖a‖ ∈ Ke = ge(B) = e+B0(e), B0(e) = Z0(e)∩B.

In other words, K a
‖a‖ = Ke if, and only if, v := e − a

‖a‖ ∈ B0(e).
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For some r ≥ 1, write a = λ1e1 + · · · + λrer , ‖a‖ = λ1 > λ2 > · · · >

λr > 0 and e = e1 + · · · + er = supp(a). Then v = (
1 − λ2

λ1

)
e2 + · · · +(

1 − λr

λ1

)
er . Clearly v ∈ B, so v ∈ B0(e) if, and only if, v�e = 0. Since

v�e = (
1 − λ2

λ1

)
e2�e2 + · · · + (

1 − λr

λ1

)
er�er , we have v ∈ B0(e) ⇔ r = 1,

namely a = ‖a‖e, and we are done.

From Proposition 2.2 every element of Z is a scalar multiple of a tripotent
if, and only if, Z is a complex Hilbert space. Theorem 2.6 and Proposition 2.9
therefore yield the following (a precursor to a later result (Theorem 3.4) for
arbitrary triples).

Corollary 2.10. Let Z be a JB∗-triple such that every element is algebraic.
Then (gn

a ) converges locally uniformly on B to a constant, for all non-zero a

in B, if, and only if, Z is a complex Hilbert space.

3. Results: Regular Elements

We now use spectral theory to extend Theorem 2.6 above to those elements a

of B, for which the spectrum, Sp(a), does not contain 0. In [15, Lemma 4.1]
0 /∈ Sp(a) is shown to be equivalent to several previously studied concepts of
regularity, namely, 0 /∈ Sp(a) ⇔ a is regular ⇔ a is strongly regular ⇔ a

has a generalized inverse. For this reason, if 0 /∈ Sp(a) we simply refer to a as
being regular. Since 0 is never an isolated point of the spectrum, it follows that
every algebraic element is regular. In particular, 0 is regular as Sp(0) = ∅. As
noted in Section 1, we have, for S = Sp(a) and S+ = {s ∈ S : s > 0}, triple
isomorphisms Za

∼= C−(S) ∼= C0(S
+), where a is identified with the the map

a(s) = s, ∀s ∈ S+.
The concept of support tripotent also exists for regular elements of Z. Let

a ∈ Z be regular and S = Sp(a). Since 0 /∈ S the map e(s) = 1, ∀s ∈ S+
defines a tripotent e in Za

∼= C0(S
+), which we refer to as the support tripotent

of a, written e = supp(a). Note that since 0 /∈ S, S+ is, in this case, compact
and C0(S

+) ∼= C(S+). We refer to Lemma 3.2 of [12] for properties of regular
elements and to [1], [9] and [23] for complementary details. We also note that
every element of Z is regular if, and only if, Z is finite rank [12]. Theorem 2.6
can now be generalised.

Theorem 3.1. Let Z be a JB∗-triple and a ∈ B be regular. Then (gn
a )

converges locally uniformly on B to the holomorphic map ge, where e =
supp(a) and ge(B) = Ke.

Proof. The case a = 0 is trivial. Let a ∈ B \ {0} be regular and e =
supp(a). Let S = Sp(a), so that S+ ⊂ (0, ‖a‖) ⊂ (0, 1). For z ∈ Za

∼=
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C(S+), ga(z) = z+a
1+az

hence

ga(z)(s) = z(s) + a(s)

1 + a(s)z(s)
= ta(s)(z(s)) = ts(z(s)) for s ∈ S+.

By induction therefore

(3.1) gn
a (0)(s) = tns (0) for s ∈ S+, n ∈ N.

Now (tns (0))n converges to 1 for all s ∈ S+ and this is equivalent to saying that
(gn

a (0))n converges pointwise to e on S+. On the other hand, it is easy to see by
induction and (3.1) that (gn

a (0))n is monotone increasing on S+ and therefore,
by Dini’s theorem, (gn

a (0))n converges uniformly on S+ to e. In other words,
e = limn gn

a (0) in C(S+) and hence in Z. As before gn
a = ggn

a (0) then converges
locally uniformly on B to the holomorphic map ge and we are done.

A further look at the above proof revealsge as the only possible accumulation
point of (gn

a ).

Theorem 3.2. Let Z be a JB∗-triple and a ∈ B. The set of (local uniform)
accumulation points of the sequence of iterates (gn

a ) is non-empty if, and only
if, a is regular. In particular, (gn

a ) converges locally uniformly on B if, and
only if, a is regular.

Proof. Theorem 3.1 gives one direction. In the opposite direction, suppose
that an accumulation point, h = limα gnα

a , exists for the topology of local
uniform convergence on B. In particular then h(0) = limα gnα

a (0) ∈ Za
∼=

C0(S
+), where S = Sp(a) and S+ = {s ∈ S : s > 0}. From (3.1) h(0)(s) =

limα gnα
a (0)(s) = limα tnα

s (0) = 1 for all s ∈ S+. Since h(0) ∈ C0(S
+) this

means 0 is not an accumulation point of S and, as 0 is never isolated in S, cf.
Section 1.3, it follows that 0 /∈ S. Hence a is regular and, by Theorem 3.1,
h = ge for e = supp(a).

Theorems 3.1 and 3.2 therefore tell us that the only possible (local uniform)
accumulation point of (gn

a ) is the holomorphic map ge, where e = supp(a),
and if a is not regular then such a support tripotent does not exist in Z. So our
results above are somehow best possible.

The proofs of Theorems 3.1 and 3.2 also contain the proof of the following
alternative characterisation of regularity.

Corollary 3.3. Let Z be a JB∗-triple with open unit ball B and a ∈ B.
Then a is regular if, and only if, limn gn

a (0) exists in Z. In particular, a has a
support tripotent in Z if, and only if, limn gn

a (0) exists in Z.
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Since Z∗∗ is a Banach dual space (a JBW∗-triple) its closed unit ball is
weak∗-compact. This suggests a way to generalise the concept of support
tripotent to arbitrary (non-regular) elements of Z by considering limn gn

a (0) in
Z∗∗, rather than in Z, and looking for weak∗-accumulation points there. This
has already been done in [1]. (We note that the maps ga are not, in general,
weak∗-weak∗ continuous [8].)

Our final result extends Corollary 2.10 and is further evidence, if any is still
required, that the study of the dynamics of a holomorphic map on the Hilbert
ball does not generalise in an insightful way to the other bounded symmetric
domains, as the strict convexity of the Hilbert ball makes it a natural outlier in
this class.

Theorem 3.4. Let Z be a JB∗-triple. The following are equivalent.

(i) (gn
a ) converges locally uniformly on B to a constant map, for all non-zero

a ∈ B.

(ii) Z is (triple isomorphic to) a complex Hilbert space.

Proof. (ii) ⇒ (i) is Theorem 2.1.
(i) ⇒ (ii): Assume (i) and let a ∈ B\{0}. By Theorem 3.2, a is regular and

by Theorem 3.1, (gn
a ) then converges to ge, e = supp(a). Since (i) holds, ge

must be a constant map, c say. Then Ke = ge(B) = {c} which happens if, and
only if, e = c is complex extreme, that is, e is a maximal tripotent. Therefore
every non-zero tripotent is maximal. On the other hand, it is easy to see that
every non-zero tripotent in Z is maximal only if every non-zero tripotent is also
minimal and hence all non-zero tripotents are rank 1. In particular e = supp(a)

is rank 1, so a = ‖a‖e. Proposition 2.2 now gives the result.

The author wishes to thank the referee for helpful comments and sugges-
tions.
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