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THE K-THEORY OF SOME REDUCED INVERSE
SEMIGROUP C∗-ALGEBRAS

MAGNUS DAHLER NORLING

Abstract
We use a recent result by Cuntz, Echterhoff and Li about the K-theory of certain reduced C∗-
crossed products to describe the K-theory of C∗

r (S) when S is an inverse semigroup satisfying
certain requirements. A result of Milan and Steinberg allows us to show that C∗

r (S) is Morita
equivalent to a crossed product of the type handled by Cuntz, Echterhoff and Li. We apply our
result to graph inverse semigroups and the inverse semigroups of one-dimensional tilings.

1. Introduction

A semigroup is a set P with an associative binary operation. It is a monoid if
it has an identity element. An inverse semigroup is a semigroup S where for
every s ∈ S there is a unique element s∗ ∈ S satisfying

ss∗s = s, s∗ss∗ = s∗.

We will assume that every inverse semigroup we are working with has a zero
element 0 = 0S and that S is countable. Let E = E(S) = {ss∗ : s ∈ S} be
the set of idempotents in S. Then E is a commutative idempotent semigroup,
i.e. a semilattice. Let S× = S \ {0}, and if S does not have an identity element
let S1 = S ∪ {1} with the obvious operations. If S has an identity element, let
S1 = S. See [16], [22] for general references on inverse semigroups.

Every inverse semigroup comes equipped with a natural partial order given
by s ≤ t if there is some e ∈ E such that s = et , equivalently, there is some
f ∈ E such that s = tf . This is also equivalent to s = ss∗t and to s = ts∗s.The
inverse semigroup S is said to be 0-F -inverse if every element in S× is beneath
a unique maximal element with respect to the natural partial order. In this case,
let M(S) denote the set of maximal elements in S.

LetG be a group. A morphism [11] from S× toG (sometimes called grading
of S) is a map σ : S× → G satisfying

σ(st) = σ(s)σ (t) whenever st �= 0.
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Note that σ(e) = 1 for every e ∈ E. The morphism σ is said to be idempotent
pure if σ(s) = 1 implies s ∈ E for any s ∈ S. It is easy to see that if S is
0-F -inverse and σ : (S1)× → G is a morphism that is injective on M(S1),
then σ is idempotent pure.

Associated to every inverse semigroup S there is aC∗-algebraC∗(S) that is
universal for all ∗-representations of S by partial isometries. Similarly to the
group case there is a reduced C∗-algebra C∗

r (S) which is the image of the left
regular representation

� : C∗(S) → B(�2(S)).

We use here the convention that all ∗-representations of S are to send the 0-
element of S to 0. This convention coincides with the convention used in [19].
See otherwise [22] for an introduction to C∗-algebras associated with inverse
semigroups.

The main purpose of the paper is to provide a formula describing the K-
theory ofC∗

r (S). The key ingredient will be a recent result from [4] concerning
the K-theory of some crossed products C0(�) �r G where G is a group and
� is a locally compact totally disconnected (i.e. zero-dimensional) Hausdorff
space. We will prove the following main theorem by showing that C∗

r (S) is
strongly Morita equivalent to such a crossed product under suitable conditions.

Theorem 1.1 (Main Theorem). Let S be a 0-F -inverse semigroup, and
suppose there exists a groupG and a morphismσ : (S1)× → G that is injective
on the set of maximal elements in S1. Let ≈ be the equivalence relation on E
given by e ≈ f if there is some s ∈ S such that s∗s = e and ss∗ = f . Let Ẽ be
the set E×/≈. For each e ∈ E, let Ge = {σ(s) : ss∗ = s∗s = e}. If G satisfies
the Baum-Connes conjecture with coefficients, then

K∗(C∗
r (S)) 	

⊕
[e]∈Ẽ

K∗(C∗
r (Ge)).

Remark 1.2. Every a-T-menable group [3] satisfies the Baum-Connes con-
jecture with coefficients [7].

Several important inverse semigroups are 0-F inverse. One example is the
left inverse hull associated to a submonoid of a group satisfying the Toeplitz
condition of [17]. Using this we will show that our main theorem generalizes [4,
Corollary 4.9] which describes theK-theory of the reducedC∗-algebra of such
monoids. Other examples are graph inverse semigroups [21] and some tiling
and point set inverse semigroups [11]. The reduced C∗-algebra of the graph
inverse semigroup is the Toeplitz C∗-algebra of the graph as defined in [23].
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We calculate theK-theory for some of these examples. In general, the reduced
C∗-algebra of S is not the only one of interest, but also its tight C∗-algebra as
defined in [5]. For instance, the Cuntz-Krieger graph C∗-algebras and some of
the tiling C∗-algebras [12] are the tight C∗-algebras of their respective inverse
semigroups. The tight C∗-algebra is a quotient of the reduced C∗-algebra in
the stated examples. We hope that the results of this paper may be useful in
the future when trying to describe the K-theory of these tight C∗-algebras.

2. Preliminaries on the construction of the Morita enveloping action

In this and the following section we will fix a 0-F -inverse semigroup S, and we
will suppose that there exists a groupG and a morphism σ : (S1)× → G that is
injective onM(S1). Note that ifS is any inverse semigroup andσ : (S1)× → G

is a morphism such that σ−1(g) has a unique maximal element for each g ∈ G,
then S1 is 0-F -inverse.

Our exposition in the first part of this section follows [22], [5]. Let E be
the semilattice of idempotents in S. A character on E is a homomorphism
φ : E → {0, 1} that satisfies φ(0) = 0 and φ(e) = 1 for at least one e ∈ E.
Here {0, 1} is considered a semilattice in the obvious way. Let Ê ⊂ {0, 1}E
be the set of all characters on E with the relative topology inherited from
the product topology on {0, 1}E . The locally compact space Ê is called the
spectrum of E. For each e ∈ E, let

De = {φ ∈ Ê : φ(e) = 1}.
ThenDe is a compact open subset of Ê. For each e ∈ E, let φe be the character
given by

(2.1) φe(f ) =
{

1 if e ≤ f ,

0 otherwise.

For any e, f ∈ E× it is easy to show that φe = φf if and only if e = f . Recall
that there is an action θ of S by partial homeomorphisms on Ê given by

θs : Ds∗s → Dss∗ ,

θs(φ)(e) = φ(s∗es), φ ∈ Ds∗s , e ∈ E.
One can show that θs is a homeomorphism for each s ∈ S, and θ−1

s = θs∗ . In
[19] the partial action β of G on Ê is defined as follows

βg =
⋃

σ(s)=g
θs .
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Since we are working with a 0-F -inverse semigroup and since σ is injective on
M(S1), this expression can be simplified. For g ∈ σ(S×), let sg be the uniqe
element in M(S1) satisfying σ(sg) = g. Then

βg =
{
θsg if g ∈ σ(S×),
0 otherwise.

We now recall from [1] the construction of the Morita enveloping action
(�,G, τ) of a partial action (X,G, β). Define an equivalence relation ∼ on
G × X by (g, x) ∼ (h, y) if x ∈ dom(βh−1g) and βh−1g(x) = y. Define
� = �X = (G× X)/∼ with the quotient topology, and let [g, x] denote the
equivalence class of (g, x) ∈ G×X. Let G act on � by

τg([h, x]) = [gh, x].

By [1, Theorem 1.1], the map ι : x �→ [1, x] defines a homeomorphism
X → ι(X), with ι(X) open in �. Moreover, for all g ∈ G and x ∈ d(θg),
(2.2) ι(θg(x)) = τg(ι(x)).

It also follows that the orbit of ι(X) in � is all of �. We will from here on
omit writing ι, and viewX as a subset of�. We will apply this construction to
get an enveloping space � for the partial action of G on Ê described earlier.
We will then apply the K-theoretic results from [4] to C0(�) �r G in order
to prove our main theorem. To do this we need to show that C∗

r (S) is strongly
Morita equivalent to C0(�)�r G.

Note in that [19] Milan and Steinberg assume thatG is the universal group
of S, but we want a more general result and do not want to demand that G is
the universal group. Because of this we have to redo their proof that C∗

r (S) is
strongly Morita equivalent to C0(�)�r G using a result from [13].

The universal groupoid Gu ofS is the groupoid of germs for θ [5], and can be
defined as follows. For s, t ∈ S× and φ ∈ Ds∗s , ψ ∈ Dt∗t , let (s, φ) ∼ (t, ψ)

if and only if φ = ψ and there exists u ≤ s, t such that φ ∈ Du∗u. Let [s, φ]
denote the equivalence class of (s, φ). Then define

Gu = {[s, φ] : s ∈ S×, φ ∈ Ds∗s},
G (2)
u = {([s, φ], [t, ψ]) ∈ Gu × Gu : φ = θt (ψ)}.

For ([s, φ], [t, ψ]) ∈ G (2)
u , let

[s, φ][t, ψ] = [st, ψ],

[s, φ]−1 = [s∗, θs(φ)].



190 magnus dahler norling

By [5, Proposition 4.11], the unit space G (0)
u can be identified with Ê by sending

[e, φ] to φ, where e ∈ E and φ ∈ De. The d and r maps from Gu to G (0)
u = Ê

are given by
d([s, φ]) = φ,

r([s, φ]) = θs(φ).

For each s ∈ S and open U ⊂ Ds∗s , let

�(s,U) = {[s, φ] : φ ∈ U}.
The collection {�(s,U) : s ∈ S,U ⊂ Ds∗s is open}
is a basis for the topology on Gu. Then for each s ∈ S, the restrictions

d : �(s,Ds∗s) → Ds∗s , r : �(s,Ds∗s) → Dss∗

are homeomorphisms. The reduced C∗-algebra of S is isomorphic to the re-
duced C∗-algebra of Gu [22].

In [13], a continuous cocycle on a groupoid G is defined to be a continuous
groupoid homomorphism ρ : G → G, where G is a group. The cocycle ρ is
said to be

(i) faithful if the map G �→ G (0) × G × G (0) given by γ �→ (r(γ ), ρ(γ ),

d(γ )) is injective.

(ii) closed if the map γ �→ (r(γ ), ρ(γ ), d(γ )) is closed.

(iii) transverse if the mapG×G → G×G given by (γ, g) �→ (gρ(γ ), d(γ ))

is open.

If ρ is faithful, closed and transverse, one defines the enveloping action of ρ as
follows. Let ∼ be the equivalence relation onG×G (0) given by (g, x) ∼ (h, y)

if there exists a γ ∈ G with d(γ ) = x, r(γ ) = y and ρ(γ ) = h−1g. Let � be
the space (G× G (0))/∼ with the quotient topology, and let τ be the action of
G on � given by τg([h, x]) = [gh, x]. By [13, Lemma 1.7 and Theorem 1.8],
G is Morita equivalent to the transformation groupoid G � �, and so C∗

r (G)

is strongly Morita equivalent to C0(�)�τ,r G.
Let Gu be the universal groupoid of S and let σ : (S1)× → G be the

morphism specified earlier. Define a map ρ : Gu → G by

ρ([s, φ]) = σ(s).

To see that this is well defined, note that if 0 �= u ≤ s, t , then σ(u) = σ(s) =
σ(t). It is straightforward to check that ρ is a continuous cocycle. We need
to prove that ρ is faithful, closed and transverse. We will then show that the
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enveloping space for ρ is the same as the enveloping space for β. The proof
of the next proposition closely follows the proof of [13, Propositions 3.6 and
3.9].

Proposition 2.1. The cocycle ρ : Gu → G is faithful, closed and trans-
verse.

Proof. We prove faithfulness first. Let γ = [s, φ] ∈ Gu. Then

(r(γ )ρ(γ ), d(γ )) = (θs(φ), σ (s), φ).

Suppose (θs(φ), σ (s), φ) = (θt (ψ), σ (t), ψ). Then φ = ψ and σ(s) = σ(t).
Since φ ∈ Dt∗t ∩Ds∗s = Dt∗ts∗s , t∗ts∗s �= 0. So ts∗ �= 0, and

σ(ts∗) = σ(t)σ (s)−1 = σ(t)σ (t)−1 = 1.

Thus ts∗ is idempotent. Let u = ts∗s. Then 0 �= u ≤ s, t and u∗u = s∗st∗t , so
φ ∈ Du∗u. It follows that [s, φ] = [t, ψ].

Next we prove closedness. Let X ⊂ Gu be closed. Then

(ρ, r, d)(X) =
⋃

g∈σ(S×)

{g} × {(r(γ ), d(γ )) : γ ∈ X, ρ(γ ) = g}.

Since G is discrete, we only have to show that

{(d(γ ), r(γ )) : γ ∈ X, ρ(γ ) = g}
is closed for each g ∈ σ(S×). If g = 1, then this set is just (X ∩ Ê)2. Since Ê
is a closed subset of Gu, this is closed. If g �= 1, then σ−1(g) has a maximal
element sg , and [s, φ] = [sg, φ] for each [s, φ] ∈ Gu with σ(s) = g, so

{(d(γ ), r(γ )) : γ ∈ X, ρ(γ ) = g} = {(d(γ ), r(γ )) : γ ∈ X ∩�(s,Ds∗g sg )}.

Since d and r are homeomorphisms of�(sg,Ds∗g sg ) onto closed subsets of Ê,
the assertion follows.

Finally, we prove transversity. Since G is discrete it is sufficient to show
that the set

{d(γ ) : γ ∈ Gu, ρ(γ ) = g} =
⋃

s∈σ−1(g)

Ds∗s

is open for each g ∈ σ(S×), but this is obviously true.

Proposition 2.2. The enveloping space for ρ is the same as the enveloping
space for β.
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Proof. Recall that we can identify the unit space of Gu with Ê. Since
both enveloping spaces are constructed as quotients of G× Ê by equivalence
relations, we only need to prove that these equivalence relations are the same.
Let ∼β be the equivalence relation coming from the partial action β, and let
∼ρ be the equivalence relation coming from the cocycle ρ. Suppose (g, φ) ∼ρ

(h, ψ). Then there is some γ ∈ Gu with d(γ ) = φ, r(γ ) = ψ , and ρ(γ ) =
h−1g. So there is some s ∈ S such that γ = [s, ψ], θs(ψ) = φ and σ(s) =
h−1g. Then βh−1g(φ) = ψ , so (g, φ) ∼β (h, ψ). The converse proof is similar.

Theorem 2.3. There is a strong Morita equivalence between C∗
r (S) and

C0(�)�r G, where� is the enveloping space of the partial action ofG on Ê.

Proof. This now follows from [13, Lemma 1.7 and Theorem 1.8] as well
as Propositions 2.1 and 2.2.

Remark 2.4. So far it may not be clear why we chose to describe� as the
enveloping space for the partial action β. After all we only needed to describe
it as the enveloping space for ρ in order to prove Morita equivalence. The
description of� as the enveloping space of a partial action will however make
some of the proofs in the next section more tidy.

Remark 2.5. It is shown in [19] that Morita equivalence with the enveloping
action holds for a slightly larger class of inverse semigroups than the one we
have considered here, but the restriction we use is needed in some of the proofs
of the next section.

3. Proof of the main theorem

Recall that a locally compact Hausdorff space is totally disconnected if and
only if it has a basis of compact open subsets. For a totally disconnected space
X, let Uc(X) be the family (actually a Boolean algebra) of compact open
subsets of X. In [4], a subfamily V ⊂ Uc(X) is said to be a generating family
for Uc(X) if Uc(X) is the smallest family of compact open sets that contains
V and is closed under finite intersections, finite unions and taking difference
sets (i.e. V generates Uc(X) as a Boolean algebra). The family V is said to
be independent if for any U,U1, . . . , Un ∈ V , U = ⋃n

i=1 Un implies that
U = Uj for some 1 ≤ j ≤ n. If V is an independent generating family for
Uc(X) and V ∪ {∅} is closed under finite intersections, then V is said to be a
regular basis for X. For notational convenience we will require that ∅ /∈ V .
The following theorem is a part of the statement of [4, Corollary 3.14].

Theorem 3.1 ([4]). LetX be a separable totally disconnected locally com-
pact Hausdorff space with an action α of a groupG and suppose thatX has a
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G-invariant regular basis V . Suppose also that G satisfies the Baum-Connes
conjecture with coefficients in C0(X) and C0(V ). Then

K∗(C0(X)�α,r G) 	
⊕

[v]∈V \G
K∗(C∗

r (Gv)),

where V \G is the set of orbit classes in V and Gv is the stabilizer group of
v ∈ V .

From now on, let � denote the enveloping space of the partial action β of
G on Ê. We will use Theorem 3.1 to prove Theorem 1.1. The way we will do
it is to apply Theorem 3.1 to (�,G, τ). We will show that

(3.1) V = {τg(De) : e ∈ E×, g ∈ G}
is aG-invariant regular basis for�. The next proposition will allow us to trans-
late statements about the partial action into statements about the enveloping
action.

Proposition 3.2. Let X ⊂ Y be locally compact Hausdorff spaces such
that X is totally disconnected and open in Y . Let α be an action of a discrete
group G on Y such that

⋃
g∈G αg(X) = Y . Let J be a collection of compact

open subsets ofX. Suppose αg(p)∩X ∈ J ∪{∅} for every p ∈ J and g ∈ G.
Let W = {αg(p) : g ∈ G,p ∈ J }. Then

(i) If J ∪ {∅} is closed under finite intersections, so is W ∪ {∅}.
(ii) If J is independent, so is W .

(iii) If J is a generating family for Uc(X), then W is a generating family
for Uc(Y ) and Y is totally disconnected.

So if J is a regular basis for X, then W is a G-invariant regular basis for Y .

Proof. (i) It is sufficient to show that the intersection of two elements in
W is in W ∪ {∅}. Let p, q ∈ J ∪ {∅} and g, h ∈ G. Let r = αg−1h(q)∩X ∈
J ∪ {∅}. Then

αg(p) ∩ αh(q) = αg(p ∩ αg−1h(q)) = αg(p ∩ (αg−1h(q) ∩X)) = αg(p ∩ r).
Since J ∪ {∅} is closed under finite intersections, p ∩ r ∈ J ∪ {∅}, so
αg(p ∩ r) ∈ W ∪ {∅}.

(ii) Let p, p1, . . . , pn ∈ J and let g, g1, . . . , gn ∈ G. Suppose

n⋃
i=1

αgi (pi) = αg(p).
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Then n⋃
i=1

αg−1gi (pi) = p.

For each i,αg−1gi (pi) ⊂ p ⊂ X, soαg−1gi (pi)∩X = αg−1gi (pi) ∈ J . It follows
by the independence of J that p = αg−1gj (pj ) for at least one 1 ≤ j ≤ n, so
αgj (pj ) = αg(p).

(iii) First, any element in W is compact open in Y since X is open in Y .
Let U ⊂ Y be compact open. We have

U = U ∩
⋃
g∈G

αg(X) =
⋃
g∈G

αg(αg−1(U) ∩X)

and αg−1(U)∩X is open in Y for each g ∈ G. By the compactness of U , there
is some finite subset F ⊂ G such that

U =
⋃
g∈F

αg(αg−1(U) ∩X).

For each g ∈ G, αg−1(U)∩X is compact open inX. So since J is a generating
family for Uc(X), it follows that W is a generating family for Uc(Y ). As X
is totally disconnected, any open set in X is a union of elements in Uc(X). It
follows by a similar argument that any open set in Y is a union of elements in
Uc(Y ), so Y is totally disconnected.

Lemma 3.3. For any e ∈ E and g ∈ σ(S×) we have τg(De) ∩ Ê = Dsges∗g .

Moreover τg(De) ⊂ Ê if and only if e ≤ s∗gsg .

Proof. For any g ∈ σ(S×) and φ ∈ Ê, we have that [g, φ] ∈ Ê if and only
if [g, φ] = [1, ψ] for some ψ ∈ Ê if and only if φ ∈ Ds∗g sg and θsg (φ) = ψ .

Then τg(De)∩ Ê = θsg (De ∩Ds∗g sg ). By [5, Equation (10.3.1)] this set is equal

to Dsges∗g . If e ≤ s∗gsg , then De ⊂ Ds∗g sg , so τg(De) = θsg (De) ⊂ Ê. Suppose

τg(De) ⊂ Ê. Then φ ∈ Ds∗g sg for each φ ∈ De, so De ⊂ Ds∗g sg and e ≤ s∗gsg .

Given any e ∈ E× and finite subset Z ⊂ eE = {f ∈ E : f ≤ e}, let

D(e,Z) = De \
(⋃
z∈Z

Dz

)
.

Note that since Dx is compact open for each x ∈ E, so is D(e,Z). Recall from
[22, Section 4.3] that the family

T = {D(e,Z) : e ∈ E×, Z ⊂ eE is a finite subset}
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is a basis for the topology on Ê. We now see that any compact open subset
of Ê can be written as a finite union of elements in T : Indeed, since T is a
basis for the topology on Ê, any open set U in in Ê can be written as a union
of elements in T . These elements form a cover for U , so if U is compact, one
can rewrite U as a finite union of such elements.

Proposition 3.4. The family V defined in equation (3.1) is a G-invariant
regular basis for �.

Proof. If we can show that the family J = {De : e ∈ E×} is a regular
basis for Ê, the result will follow from Proposition 3.2 and Lemma 3.3.

We know that J ∪ {∅} is closed under finite intersections, since for any
e, f ∈ E, De ∩ Df = Def (and D0 = ∅). To show that J is independent,
suppose that e, e1, . . . , en ∈ E× satisfy

⋃n
i=1Dei = De. For each i,Dei ⊂ De,

so ei ≤ e. Moreover, φe ∈ Dej for at least one 1 ≤ j ≤ n. Then φe(ej ) = 1,
so e ≤ ej by the definition of φe. Thus e = ej and De = Dej . Finally, we
need that J is a generating set for Uc(Ê). This follows from the fact that any
compact open subset of Ê is a finite union of elements in T .

Recall from Theorem 1.1 that we defined a relation ≈ on E× by e ≈ f if
there is some s ∈ S× such that s∗s = e and ss∗ = f .

Lemma 3.5. Let e, f ∈ E×. Then De and Df are in the same G-orbit in V

if and only if e ≈ f .

Proof. Suppose g ∈ G satisfies τg(De) = Df . Then by Lemma 3.3 e ≤
s∗gsg and sges∗g = f . Let s = sge. Then s∗s = es∗gsge = e since e ≤ s∗gsg , and
ss∗ = sgees

∗
g = sges

∗
g = f .

Suppose conversely that there is some s ∈ S such that s∗s = e and ss∗ = f .
Let g = σ(s). Then s ≤ sg . It follows that sge = sgs

∗s = s, so e ≤ s∗gsg , and
f = ss∗ = sges

∗
g . So τg(De) = Df .

Given e ∈ E×, let

Ge = {g ∈ σ(S×) : e ≤ s∗gsg, sges
∗
g = e}

= {σ(s) : s ∈ M(S1), e ≤ s∗s, ses∗ = e}
= {σ(s) : s ∈ S×, e ≤ s∗s, ses∗ = e}
= {σ(s) : s ∈ S×, ss∗ = s∗s = e}.

We leave to the reader to prove that these definitions are equivalent.

Lemma 3.6. Let e ∈ E×. Then Ge is the stabilizer group of De ∈ V .

Proof. Assume τg(De) = De. Then τg(De) ⊂ Ê, so by Lemma 3.3 e ≤
s∗gsg , De = Dsges∗g and e = sges

∗
g . The converse implication follows from the

same lemma.
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We can now complete the proof of the main theorem. Since G satisfies
the Baum-Connes conjecture with coefficients, Theorems 2.3 and 3.1 together
with Proposition 3.4 give us that

K∗(C∗
r (S)) 	 K∗(C0(�)�r G) 	

⊕
[v]∈V \G

K∗(C∗
r (Gv))

For any v ∈ V we have that v = τg(De) for some e ∈ E×, so [v] = [De].
Thus it is sufficient to take a direct sum over {[De] : e ∈ E×}, which can be
identified with Ẽ by Lemma 3.5. That Ge = Gv follows from Lemma 3.6.

Remark 3.7. It is straightforward to show that Ge is isomorphic to

{s ∈ S : ss∗ = s∗s = e},
which is a subgroup of S with unit e. This gives a description of K∗(C∗

r (S))

where σ andG don’t appear explicitly. A natural question is then if one could
prove the main theorem without assuming the existence of σ , but one would
need a proof that is very different to the one we have used in this paper.

4. Connections to submonoids of groups

Given a set X, let I (X) be the inverse monoid of all partial bijections on X.
Here a partial bijection is a bijection f : d(f ) → r(f ) with d(f ), r(f ) ⊂ X,
f ∗ = f −1 and the product is given by composition wherever it makes sense.
This product may result in the empty function, which is the 0-element of I (X).

We will now explain how the “0-F -inverse” condition for inverse semig-
roups is related to the Toeplitz condition for subsemigroups of groups as defined
in [17], [4]. Let P be a submonoid of the (discrete) groupG. For each p ∈ P ,
let λp : P → pP be the map given by λp(q) = pq. Then λp ∈ IP since
P is left cancellative. Let I λP be the inverse subsemigroup of IP generated by
{λp : p ∈ P } ∪ {0}. Since P is a monoid, I λP is also a monoid. I λP is called the
left inverse hull of P [18]. Each idempotent e ∈ E(IλP ) is the identity function
on some subset X ⊂ P . Let J = {d(e) : e ∈ E(IλP )}. Then it is easy to show
that E(IλP ) and (J ,∩) are isomorphic as semilattices.

Let {εp : p ∈ P } be the canonical basis for �2(P ). For each p ∈ P ,
let Vp ∈ B(�2(P )) be given by Vpεq = εpq . Define C∗

r (P ) to be the C∗-
algebra generated by {Vp : p ∈ P }. It was shown in [20, Theorem 3.2.14]
that if J is independent, there is an isomorphism C∗

r (I
λ
P ) → C∗

r (P ) given by
�(λp) �→ Vp.

As shown in [20, Proposition 3.2.11], one can define an idempotent pure
morphism σ : (I λP )

× → G by σ(λp) = p. Moreover, any group H and
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idempotent pure morphism σ : I λP → H gives rise to an embedding P → H

given by p �→ σ(λp). Note that for any f ∈ I λP and p ∈ d(f ),

(4.1) f (p) = σ(f )p.

Let {εg : g ∈ G} be the canonical basis for �2(G). Let Ug ∈ B(�2(G))

be given by Ugεh = εgh (i.e. g �→ Ug is the left regular representation of
G). Let EP be the orthogonal projection of �2(G) onto the subspace �2(P ).
By [17, Definition 4.1], P ⊂ G satisfies the Toeplitz condition if for any
g ∈ G with EPUgEP �= 0 there exist p1, . . . , pn, q1, . . . , qn ∈ P such that
EPUgEP = V ∗

q1
Vp1 · · ·V ∗

qn
Vpn .

Proposition 4.1. Let P be a submonoid of the group G. Then P ⊂ G

satisfies the Toeplitz condition if and only if I λP is 0-F -inverse and σ is injective
on the set of maximal elements in I λP .

Proof. Forg ∈ G, letαg : (g−1)P∩P → gP∩P be given byαg(p) = gp.
Then αg ∈ IP . We claim that P ⊂ G satisfies the Toeplitz condition if and
only if αg ∈ I λP for each g ∈ G. To verify this, let ω : IP → B(�2(P )) be
given by

ω(f )εp =
{
εf (p) if p ∈ d(f ),
0 otherwise.

Note that ω is injective and that ω(λp) = Vp for each p ∈ P . Moreover, for
any g ∈ G, it is easy to verify that ω(αg) = EPUgEP .

Fix g ∈ G and assume without loss of generality that αg �= 0. Suppose
αg ∈ I λP . Clearly σ(αg) = g. Suppose f ∈ I λP satisfies σ(f ) = g. By equation
(4.1) it follows thatf ≤ αg . This implies thatαg is the unique maximal element
of σ−1(g).

Conversely, suppose I λP is 0-F -inverse and that σ is injective onM(IλP ). Let
f ∈ σ−1(g) be the maximal element. If we can show that d(f ) = d(αg) =
(g−1)P ∩ P , then equation (4.1) gives us that f = αg . We already noted that
equation (4.1) implies that d(f ) ⊂ d(αg), so let p ∈ (g−1)P ∩ P . Then there
is some q ∈ P such that p = g−1q, so g = qp−1. Then σ(λqλ∗

p) = g and
p ∈ pP = d(λqλ

∗
p). Since f is maximal in σ−1(g), p ∈ d(λqλ∗

p) ⊂ d(f ), so
we are done.

The computation of the K-theory for C∗
r (P ) in the case when J is in-

dependent and P ⊂ G satisfies the Toeplitz condition is done in details in
[4]. The same computation could now be obtained using Theorem 1.1 and
Proposition 4.1.
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5. Graph inverse semigroups

We will use [23] as our main source on graphs and graph C∗-algebras. A
(discrete) directed graph E = (E 0, E 1, s, r) consists of countable sets E 0, E 1

and functions s, r : E 1 → E 0. The elements of E 0 are called the vertices of E ,
while the elements of E 1 are called the edges of E . A finite path in E is either
a single vertex or a finite string μn . . . μ1 of edges such that r(μk) = s(μk+1)

for any 0 ≤ k ≤ n − 1. Let E ∗ be the set of all finite paths in E . For a
path μ = μn · · ·μ1 ∈ E ∗, define s(μ) = s(μ1) and r(μ) = r(μn). If μ is a
single vertex, then define s(μ) = r(μ) = μ. One can define a partial product
on E ∗ as follows. If μ and ν are strings of edges, then their product μν is
given by concatenation if the resulting string is a path, otherwise the product is
undefined. If μ is a string of edges and v is a vertex, then μv = μ if s(μ) = v

and vμ = μ if r(μ) = v. If v,w are vertices, then vw = v if v = w.
In [21] (see also [14]) the graph inverse semigroup SE is defined to be the

set
SE = {(μ, ν) ∈ E ∗ × E ∗ : s(μ) = s(ν)} ∪ {0}

with all products not involving 0 given by

(μ, ν)(α, β) =
⎧⎨
⎩
(μ, βν ′) if ν = αν ′,
(μα′, β) if α = να′,
0 otherwise.

The ∗-operation is given by (μ, ν)∗ = (ν, μ). For (μ, ν) ∈ SE , we have

(μ, ν)∗(μ, ν) = (ν, μ)(μ, ν) = (ν, ν).

This shows that E(SE )
× = {(ν, ν) : ν ∈ E ∗}. We have (μ, ν) ≤ (α, β) if and

only if there is some ρ ∈ E ∗ such that μ = αρ and ν = βρ. In particular we
get that for v ∈ E 0 we have (μ,μ) ≤ (v, v) if and only if μ = vμ if and only
if r(μ) = v. The maximal elements of S1

E are

M(S1
E ) = {1} ∪ {(μ, ν) : μ and ν have no common initial segment}.

Every element is beneath such a maximal element, so S1
E is 0-F -inverse [15].

Let F be the free group on the alphabet E 1. Define h : E ∗ → F by

h(μ) =
{

1 if μ is a vertex,

μ otherwise.

Define σ : (S1
E )

× → F by σ((μ, ν)) = h(μ)h(μ)−1. It is easy to check that σ
is a morphism and that it is injective on the maximal elements of S1

E . The next
lemma lets us identify Ẽ(SE ) = E(SE )/≈ with E 0.
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Lemma 5.1. Letμ, ν ∈ E ∗. Then (μ,μ) ≈ (ν, ν) if and only if s(μ) = s(ν).

Proof. Fix μ, ν ∈ E ∗. Suppose s(μ) = s(ν). Then (ν, ν) = (μ, ν)∗(μ, ν)
and (μ,μ) = (μ, ν)(μ, ν)∗.

Conversely, suppose (ν, ν) ≈ (μ,μ). Then there exists (α, β) ∈ SE such
that (ν, ν) = (α, β)∗(α, β) = (β, β). and (μ,μ) = (α, β)(α, β)∗ = (α, α). It
follows that ν = β and μ = α, so s(μ) = s(α) = s(β) = s(ν).

Lemma 5.2. For each μ ∈ E ∗, G(μ,μ) is the trivial group.

Proof. Suppose (α, β) ∈ SE satisfies (μ,μ) = (β, α)(α, β) = (α, β)(β,

α). Then clearly α = β = μ, so σ((α, β)) = h(μ)h(μ)−1 = 1.

It is possible to show that C∗
r (SE ) is canonically isomorphic to the Toeplitz

C∗-algebra of E as defined in [23]. Thus the next proposition also follows from
[2, Theorem 1.1].

Proposition 5.3. We have K0(C
∗
r (SE )) = ⊕

E 0 Z and K1(C
∗
r (SE )) = 0.

Proof. By Lemma 5.2,Ge = {1} for each e ∈ E(SE ). ThenK0(C
∗
r (Ge)) =

K0(C) = Z and K1(C
∗
r ({1})) = K1(C) = 0. Since F is free, it is a-T-menable

[3]. The result now follows from Lemma 5.1 and Theorem 1.1.

6. Tiling inverse semigroups

The tiling inverse semigroups were first introduced in [9], [10]. A tile in Rn

is a subset of Rn homeomorphic to the closed unit ball. A partial tiling is a
collection of tiles that have pairwise disjoint interiors. The support of a partial
tiling is the union of its elements. A tiling is a partial tiling with support equal
to Rn. A patch is a finite partial tiling.

For any tile t and x ∈ Rn, let t + x be the translation of t by x. For any
partial tiling P , let P + x = {t + x : t ∈ P }. Let T be a tiling. Let M be the
set of subpatches P of T such that P has connected support. For P,Q ∈ M

and t1, t2 ∈ P , r1, r2 ∈ Q, we say that (t1, P , t2) ∼ (r1,Q, r2) if there is some
x ∈ Rn such that t1 + x = r1, t2 + x = r2 and P + x = Q. The equivalence
class of (t1, P , t2) is denoted [t1, P , t2], and is called a doubly pointed pattern
class. Let

ST = {[t1, P , t2] : P ∈ M, t1, t2 ∈ P } ∪ {0}
We define an inverse semigroup structure on ST . Let [t1, P , t2], [r1,Q, r2] ∈
ST . Whenever there are x, y ∈ Rn such that P + x and Q + y are patches in
T and t2 + x = r1 + y, define

[t1, P , t2][r1,Q, r2] = [t1 + x, (P + x) ∪ (Q+ y), r2 + y].
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All other products are defined to be 0. The ∗-operation is given by

[t1, P , t2]∗ = [t2, P , t1]

ST is called the connected tiling semigroup of T . If one drops the requirement
that the elements of M have connected support, one gets the tiling semigroup
�T .

It was shown in [6] that when T is so-called strongly aperiodic, repetitive
and has finite local complexity (see the original paper for definitions), the tiling
C∗-algebra AT from [8], [12] is the tight C∗-algebra of ST . We do not know if
the reduced C∗-algebra of ST or �T has been previously studied.

Clearly, E(ST ) = {[t, P , t] : P ∈ M, t ∈ P }. It is easy to see that
[t, P , t] ≤ [r,Q, r] if and only if there is an x ∈ Rn such that r = t + x

and Q ⊂ P + x. Say that two partial tilings are congruent if one is a transla-
tion of the other. Let L be the set of congruence classes of elements in M. The

next lemma lets us identify Ẽ(ST ) (respectively Ẽ(�T )) with L.

Lemma 6.1. Let P,Q ∈ M and t ∈ P , r ∈ Q. Then [t, P , t] ≈ [r,Q, r] if
and only if P and Q are congruent.

Proof. Suppose P and Q are congruent. Then there is some x ∈ Rn such
that Q = P + x. So t + x ∈ Q. Moreover, it is easy to check that [r,Q, r] =
[t + x,Q, r]∗[t + x,Q, r] and

[t + x,Q, r][t + x,Q, r]∗ = [t + x,Q, t + x] = [t,Q− x, t] = [t, P , t].

So [t, P , t] ≈ [r,Q, r].
Conversely, suppose [t, P , t] ≈ [r,Q, r]. Then there is some R ∈ M and

a, b ∈ R such that

[t, P , t] = [a,R, b]∗[a,R, b] = [b,R, b],

[r,Q, r] = [a,R, b][a,R, b]∗ = [a,R, a].

It follows that P and Q are both congruent to R and thus to each other.

ST is not 0-F -inverse in general. It is 0-F -inverse when n = 1 [11, Propos-
ition 4.2.1]. In this case, the universal grading of ST is well understood.

Lemma 6.2. For each e ∈ E(ST )×, Ge is the trivial group.

Proof. Let P ∈ M and t ∈ P . Suppose that R ∈ M and a, b ∈ R satisfy

[t, P , t] = [a,R, b]∗[a,R, b] = [b,R, b],

[t, P , t] = [a,R, b][a,R, b]∗ = [a,R, a].
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This shows that a = b, so [a,R, b] is idempotent, and σ([a,R, b]) = 1 for
any grading σ .

Proposition 6.3. Let T be a one-dimensional tiling. Then K0(C
∗
r (ST )) =⊕

L Z and K1(C
∗
r (ST )) = 0.

Proof. By [11, Corollary 4.2.4], the universal group of ST is free, so it
is a-T-menable.To show that ST is 0-F -inverse it remains to check that the
universal grading σ is injective on the set of nonidempotent maximal elements
in ST . One has then to go through the actual construction of σ in [11]. This
requires some work, but is not hard. We leave this verification to the reader.
The rest now follows from Lemmas 6.1, 6.2 and Theorem 1.1.

Note also that for any n-dimensional tiling T , the tiling semigroup �T
has the property that any element is beneath a maximal element [11]. If one
can find a good group morphism for �T , one will get similar results for the
K-theory of C∗

r (�T ). In [11] Kellendonk and Lawson also showcase other
0-F -inverse semigroups, such as inverse semigroups of point sets in Rn and
point set semigroups of model sets, where such morphisms exist.
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