
MATH. SCAND. 117 (2015), 170–185

ON THE SINGULAR LOCI AND THE IMAGES OF
PROPER HOLOMORPHIC MAPS FROM

PSEUDOELLIPSOIDS

CRISTINA GIANNOTTI and ANDREA SPIRO∗

Abstract
We prove a generalisation of Rudin’s theorem on proper holomorphic maps from the unit ball to
the case of proper holomorphic maps from pseudoellipsoids.

1. Introduction

In the beginning of the ’80’s, W. Rudin proved a theorem that gives an ex-
haustive description of proper holomorphic maps F : Bn → �, from the unit
ball Bn onto a domain � of Cn, in terms of finite unitary reflection groups.

Such result can be stated as follows. Recall that for any finite group �
of automorphisms of the unit ball there exists some h ∈ Aut(Bn) such that
�o = h� h−1 is a finite subgroup of the unitary group Un, i.e. of the group
of automorphisms of Bn fixing the origin. Let us denote by �o(ref) ⊂ �o the
maximal subgroup of reflections in �o and by (P1, . . . , Pn) a fixed set of
generators for the space of �o(ref)-invariant polynomials in n-variables. One
can check that the holomorphic map

P� = P�o ◦ h−1 : Bn −→ Bn� := P�(B
n),

with P�o := (P1, . . . , Pn), is proper and is uniquely associated with �, up to
composition with an element of a special group of polynomial biholomorph-
isms (see §2). Rudin’s theorem is the following.

Theorem 1.1 ([15]). For any proper holomorphic map F : Bn → � onto a
domain� ⊂ Cn, of multiplicitym > 1 and C 1 up to the boundary, there exists
a finite subgroup � ⊂ Aut(Bn) and a biholomorphism� : � → P�(B

n) such
that � ◦ F = P� .
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This immediately implies that any domain, which is image of a proper
holomorphic map from Bn that is C 1 on Bn, is necessarily biholomorphic to
one of the domains Bn� = P�(B

n), whose classification can be reduced to that
of finite reflection subgroups of Un.

A crucial element of Rudin’s proof is the celebrated Alexander Theorem
on global extendability of local automorphisms of Bn. One can therefore ask
if a result, similar to Rudin’s theorem, can be proved for the pseudoellipsoids
of Cn, on which several analogues of properties of the unit ball have been
obtained by appropriate applications of Alexander Theorem (see e.g. [13], [9],
[5], [10]).

So, let us focus on the pseudoellipsoids of Cn, namely the domains E n
(p),

with p = (p1, . . . , pk) ∈ Nk , pi ≥ 2, defined by

E n
(p) :=

{
z ∈ Cn :

n−k∑
j=1

|zj |2 + |zn−k+1|2p1 + · · · + |zn|2pk < 1

}
.

Let also denote by ϕ(p) : Cn → Cn the holomorphic map

(1.1) ϕ(p)(z) = (
z1, . . . , zn−k, (zn−k+1)

p1 , . . . , (zn)
pk
)
,

whose restriction ϕ(p)|E n
(p)

: E n
(p) → Bn is directly seen to be a proper map.

Some ideas of Rudin’s theorem can be actually implemented to study proper
maps from pseudoellipsoids and they bring to the following theorem.

Theorem 1.2. For any proper holomorphic map F : E n
(p) → � onto a

domain� ⊂ Cn, of multiplicitym > 1 and C 1 up to the boundary, there exists
a finite subgroup � ⊂ Aut(Bn) and a proper holomorphic map � : � →
P�(B

n) such that � ◦ F = P� ◦ ϕ(p).
In other words, if we call factoring off any expression of the formf = g◦h,

where f appears as composition of two factors g, h, our theorem says that
any proper holomorphic map F , defined on a pseudoellipsoid and C 1 up to the
boundary, is always a factor of a map of the form P� ◦ ϕ(p). This reduces the
analysis of the first to that of factorings of the second.

We would like to stress that our result is optimal, in the sense that one cannot
expect that � can be proved to be a biholomorphism, as in Rudin’s theorem:
just consider the case F = IdE n

(p)
: E n

(p) → E n
(p).

It is also clear that there exist several proper maps F that are not equivalent
to the trivial examples IdE n

(p)
, ϕ(p) or P� ◦ ϕ(p). Consider for instance the

pseudoellipsoid

E 4
(2,2) = { |z1|2 + |z2|2 + |z3|4 + |z4|4 < 1 }
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and the map

F : E 4
(2,2) −→ � = F(E 4

(2,2)), F (z) = (z1z2, z1 + z2, (z3)
2, z4),

which is a non trivial factor of the map P� ◦ ϕ(2,2), given by

ϕ(2,2)(z) = (z1, z2, (z3)
2, (z4)

2) and P�(z) = (z1z2, z1 + z2, z3, z4)

(here P� is associated with the group � = {IdB4 , g(z) = (z2, z1, z3, z4)}).
Nonetheless, the fact that F is always a factor of P� ◦ ϕ(p) gives precise

information on the singular locus ZF = {det JF (z) = 0}. Indeed, it is neces-
sarily an analytic subvariety of E n

(p) mapped by ϕ(p) into a subvariety of Bn

contained in the union of the hyperplanes {zi = 0} and the fixed point set of a
finite reflection subgroup of Aut(Bn).

It also gives strong restrictions on the class of the images � of the proper
holomorphic maps from pseudoellipsoids, since, in their turn, they are con-
strained to admit a proper holomorphic map onto a domain Bn� . We believe
that such information can bring to the classification of such domains at least
in the most simple cases, as for instance when � is trivial and Bn� = Bn (see
e.g. [3], [7], [8] for the case n = 2).

We finally note that, when E n
(p) = Bn, by Rudin’s theorem the map � :

� → Bn� , given in Theorem 1.2, is necessarily invertible and the holomorphic
correspondence

�−1 = F ◦ ϕ(p)−1 ◦ P−1
� : Bn� −−� �

splits. Therefore a question worth of further investigations could be under
which conditions on � or on ZF one can infer that �−1 necessarily splits or,
equivalently, that � is actually a biholomorphism.

After a section of preliminaries, in §3 we prove a crucial property of the
proper holomorphic maps F : E n

(p) → � that are C 1 up to the boundary,
namely we show that the subsets of Bn of the form ϕ(p)(F−1(w)), w ∈ �,
coincide with the orbits of a finite group � of automorphisms of Bn. With the
help of this fact, we prove Theorem 1.2 in §4.

Acknowledgments. We are grateful to the referee for his/her kind and
helpful remarks.
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2. Preliminaries

2.1. Finite subgroups � ⊂ Aut(Bn) and the proper maps P�
Let us call geodesic hyperplane ofBn any (n−1)-dimensional subvariety ofBn

of the formg({z ∈ Bn : zn = 0}) for someg ∈ Aut(Bn). Note that the geodesic
hyperplanes g({zn = 0}), determined by elements g ∈ Un = Aut0(B

n), are
the usual affine hyperplanes through the origin.

Definition 2.1. An element h ∈ Aut(Bn) is called reflection if it has finite
period and its fixed point set is a geodesic hyperplane.

For a given finite subgroup � ⊂ Aut(Bn), we denote by �(ref) ⊂ � the
subgroup generated by all reflections in �. Note that a non trivial element
g ∈ � is a reflection if and only if its fixed point set is (n − 1)-dimensional
(indeed, up to conjugation in Aut(Bn), any such element is in Un). This implies
that �(ref) is normal in �.

Consider a finite reflection group �o = �o(ref) in Un. By a classical result
of Chevalley ([4], [16], [6]), there are n homogeneous, �o-invariant poly-
nomials P1, . . . , Pn that constitute a basis for the invariants of �o (i.e, the
�o-invariant polynomials f ∈ C[z1, . . . , zn] are exactly those of the form
f = q(P1, . . . , Pn) for some q ∈ C[z1, . . . , zn]). The map

P�o = (P1, . . . , Pn) : Bn −→ Cn

is uniquely determined by �o, up to composition with the polynomial maps
that interchange the bases of homogeneous polynomials for the invariants �o.
The group of such basis changes is the same for all groups �′

o of the conjugacy
class of �o = �o(ref) in Un.

Consider now an arbitrary finite group of automorphisms � ⊂ Aut(Bn),
with reflections subgroup �(ref). It is known that the elements of � have a
common fixed point xo (see e.g. [15], Thm. 3.1), so that for any h ∈ Aut(Bn)
with h(xo) = 0, the conjugate group �o = h�h−1 is in Un and has �o(ref) =
h�(ref)h

−1 as reflection subgroup. We may therefore consider the map

P� : Bn −→ Cn, P� = P�o(ref) ◦ h,
whose components are �(ref)-invariant rational functions. Up to compositions
with the basis changes described above, P� is uniquely determined by �(ref).
By [15], Thm. 2.5, the image Bn� = P�(B

n) is a domain of Cn, which is
uniquely determined by the subgroup �(ref) ⊂ � up to biholomorphisms, and
P� : Bn → Bn� is a proper holomorphic map.

We conclude recalling the statement of Rudin’s generalisation of Alexander
Theorem. Let us call local automorphism ofBn any biholomorphism f : U1 ⊂
Bn → U2 ⊂ Bn between connected open subsets of Bn such that:
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a) each of the intersections ∂Ui ∩ ∂Bn, i = 1, 2, contains a boundary open
set �i ⊂ ∂Bn;

b) there exists a sequence {xk} ⊂ U1 which converges to a point xo ∈ �1,
which is not a limit point of ∂U1 ∩Bn, and so that {f (xk)} converges to
a point x̂o ∈ �2, which is not a limit point of ∂U2 ∩ Bn.

Let also say that f extends to a global automorphism if there exists F ∈
Aut(Bn) such that F |U1 = f .

Theorem 2.2 ([1], [13]). Any local automorphism ofBn extends to a global
one.

2.2. Correspondences

LetD,D′ ⊂ Cn be two bounded domains and denote by π : D×D′ → D and
π ′ : D ×D′ → D′ the two natural projections. We recall that a holomorphic
correspondence between D and D′ is a subvariety V ⊂ D × D′. It is called
proper if the restricted projections π |V : V → D and π ′|V : V → D′ are
proper maps. A holomorphic correspondence is called irreducible if it is an
irreducible subvariety.

A holomorphic correspondence V is uniquely determined by the associated
multivalued map

f : D −−� D′, f (z) = π ′(π |−1
V (z)

)
,

which is a (single-valued) holomorphic map if and only if π |V is injective. We
often denote a holomorphic correspondence V by the corresponding multival-
ued map f , so that the subvariety V coincides with the graph

V = �f := {(z, w) ∈ D ×D′ : w ∈ f (z)}.
Iff : D −−� D′ is a holomorphic correspondence, we denote byf −1 : D′ −−�
D the holomorphic correspondence with

�f −1 = {(w, z) ∈ D′ ×D : (z, w) ∈ �f }.
If f : D −−� D′ and f ′ : D′ −−� D′′ are two (proper) holomorphic corres-
pondences, it is known that the multivalued map f ′ ◦ f : D −−� D′′ with

�f ′◦f = {(z, v) ∈ D ×D′′ : (z, w) ∈ �f , (w, v) ∈ �f ′ for some w ∈ D′}
is a (proper) holomorphic correspondence as well ([17]).

Finally, given two (proper) holomorphic correspondences f1, f2 : D −−�
D′, we denote by f = f1 ∪ f2 the (proper) holomorphic correspondence with
�f = �f1 ∪ �f2 ⊂ D ×D′.
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If f : D −−� D′ is a proper holomorphic correspondence, there exist a
positive integer p and a subvariety W ⊂ D such that, for every zo ∈ D \W ,
there are an open neighbourhood U ⊂ D \W of zo and p holomorphic maps
fi : U → D′ such that the sets f (z), z ∈ U, have cardinality p and are equal
to

f (z) = {f1(z), . . . , fp(z)}.
We shortly say that “f is a p-valued map” . For a given zo ∈ D, we say that
f splits at zo if there exists a neighbourhood U ⊂ Cn of zo such that

�f |U = �f ∩ π−1(U ∩D) = �f1 ∪ . . . ∪ �fq
for some single-valued holomorphic maps fi : D∩U → D′. If f is p-valued,
the number of such single-valued maps has to coincide with p.

We say that f splits if it splits at all points. If D is simply connected, f
splits if and only if there are p holomorphic maps fi : D → D′ such that
f = f1 ∪ . . . ∪ fp. The fi’s are called single-valued components of f . The
following is a direct consequence of [3], Lemma 3.1.

Lemma 2.3. If f : D −−� D′ is a holomorphic correspondence, either it
splits or there exists an analytic subvariety Sf ⊂ D of dimension n − 1 such
that f does not split at z for any z ∈ Sf .

2.3. A technical fact concerning proper holomorphic maps

Let F : D → D′ be a proper holomorphic map with multiplicitym and denote
ZF = {x ∈ D : det JF = 0}. If F extends to a C 1-map F : U → Cn = R2n on
a neighbourhood U of D, we denote by JF (x), x ∈ U, the (real) Jacobian of
F at x, where F is considered as a map between open subsets of R2n. If such
(real) map is expressed in terms of the complex coordinates (zi, zi) and F is
holomorphic at x, then

(2.1) JF (x) =
( ∂Fi

∂zj
0

0 ∂Fi
∂zj

)
and hence rank JF (x) = 2 rank

(
∂Fi

∂zj

)
.

By continuity, (2.1) holds in D, so that rank(JF (x)) is even for all x ∈ D.

Lemma 2.4. Let D ⊂ Cn be a bounded domain with smooth boundary and
F : D → D′ a proper holomorphic map admitting a C 1 extension to D. Let
us also use the notation ZF ∩ ∂D := {x ∈ ∂D : det JF = 0}.

Then, the (2n− 1)-dimensional Hausdorff measure of F(ZF ∩ ∂D) is 0.

Proof. Let x ∈ ∂D and consider a system of real coordinates ξ = (x1, . . . ,

x2n) on a neighbourhood V of x such that ∂D ∩ V = {x2n = 0}. In such
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coordinates, the restriction F̃ = F |∂D is of the form F̃ (x1, . . . , x2n−1) =
F(x1, . . . , x2n−1, 0) and the Jacobian JF (x) of F is of the form

JF (x) =
⎛⎜⎝JF̃ (x)

∣∣∣∣∣∣∣
∂F1
∂x2n

(x)

...
∂F2n
∂x2n

(x)

⎞⎟⎠ .
This means that rank F̃ |x ≤ rank F |x ≤ rank F̃ |x + 1. If x ∈ ZF ∩ ∂D,
previous remarks imply that rank F̃ |x ≤ rank F |x ≤ 2n−2 and, conversely, if
rank F̃ |x ≤ 2n− 2, one has that rank F |x ≤ 2n− 1 and hence x ∈ ZF ∩ ∂D.
This means that ZF ∩ ∂D = {x ∈ ∂D : rank F̃ |x ≤ 2n − 2} and the claim
follows from generalised Morse-Sard Theorem (see e.g. [11]).

3. F -related points in E n
(p) and Bn

In all the following, F : E n
(p) → � ⊂ Cn is a proper holomorphic map of

multiplicity m and ϕ(p) : E n
(p) → Bn is the proper holomorphic map defined

in (1.1). We also set

(3.1) π = {z ∈ Cn : zn−k+1 · zn−k+2 · . . . · zn = 0}.

Definition 3.1. A subset J ⊂ E n
(p) is called complete F -set in E n

(p) if
J = F−1(wo) for some wo ∈ �. It is called good if it is the pre-image of a
point

wo ∈ � \ F(ZF ∪ π).
Similarly, a subset J̃ ⊂ Bn is called complete F -set in Bn if it is of the form
J̃ = ϕ(p)(J ) for a complete F -set in E n

(p). If J is good, also J̃ is called good.
Two points of a complete F -set in E n

(p) (resp. in Bn) are called F -related.
Similarly, two sequences {xk}, {x ′

k} in E n
(p) (resp. in Bn) are called F -related

if xk and x ′
k are F -related for all k’s.

Lemma 3.2. Let F : E n
(p) → � ⊂ Cn be a proper holomorphic map of mul-

tiplicity m > 1, admitting a C 1 extension to E n
(p). Then there exist m pairwise

F -related sequences {x(1)k }, . . . , {x(m)k } in E n
(p) with the following properties:

i) they converge to m distinct points x(1)o , . . . , x
(m)
o ∈ ∂E n

(p);

ii) there are disjoint connected open sets U(i) ⊂ Cn, 1 ≤ i ≤ m, such that:
– x(i)o ∈ U(i);
– the restrictions F |U(i)∩E n

(p)
: U(i) ∩ E n

(p) → F(U(i) ∩ E n
(p)) are biholo-

morphisms onto the same open set W = F(U(i) ∩ E n
(p)) ⊂ �;
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– the restrictions ϕ(p)|U(i)∩E n
(p)

: U(i)∩E n
(p) → V (i) = ϕ(p)(U(i)∩E n

(p))

are biholomorphisms.

Proof. Let Z̃F = ZF ∩ ∂E n
(p) and π̃ = π ∩ ∂E n

(p). Since F is Lipschitz in

E n
(p) and the (2n − 1)-dimensional Hausdorff measure H2n−1(π̃) is zero, we

have H2n−1(F (π̃)) = 0. Hence, by Lemma 2.4,

H2n−1(F (Z̃F ∪ π̃)) ≤ H2n−1(F (Z̃F ))+H2n−1(F (π̃)) = 0.

Since ∂� surely includes pieces of smooth hypersurfaces, H2n−1(∂�) > 0
and consequently

∂� \ F(Z̃F ∪ π̃) �= ∅.
Pick a pointwo ∈ ∂�\F(Z̃F ∪π̃), a pre-image x(1)o ∈ F−1(wo) and a small arc
γ
(1)
t ⊂ E n

(p) \ F−1(F (ZF )), t ∈ [0, 1), ending at x(1)o = limt→1 γ
(1)
t . Since the

restriction of F to E n
(p) \ F−1(F (ZF )) is a proper, unbranched cover (see e.g.

[2]), there are exactlym−1 disjoint arcs γ (2)t , . . . , γ
(m)
t , t ∈ [0, 1), determined

by the points that are F -related to the points γ (1)t .
By construction, x(i)o = limt→1 γ

(i)
t ∈ F−1(wo) for all 2 ≤ i ≤ m. Since

det JF (x(i)o ) �= 0, any such point admits a connected neighbourhood, on which
F is an homeomorphism, implying that x(1)o , . . . , x

(m)
o are all distinct.

We may consider disjoint connected neighbourhoods Û(i) of the x(i)o that
do not intersect ZF ∪ π , so that F |Û(i) and ϕ(p)|Û(i) are homeomorphisms
onto their images in Cn and the restrictions F |Û(i)∩E n

(p)
and ϕ(p)|Û(i)∩E n

(p)
are

biholomorphisms onto their images in � and Bn, respectively. Setting Ŵ =⋂m
i=1 F(Û

(i)) and U(i) = F−1(Ŵ )∩ Û(i), any choice of F -related sequences
{x(i)k = γ

(i)
tk } with limk→∞ tk = 1 satisfies the claim.

From now on, we consider a fixed choice ofm sequences {x(j)k }, 1 ≤ j ≤ m,
converging to x(j)o ∈ ∂E n

(p), and open sets

(3.2) U(i) and V (i) = ϕ(p)(U(i) ∩ E n
(p)) ⊂ Bn

satisfying the statement of Lemma 3.2. We also denote by g(i,j) : V (i) → V (j)

the biholomorphisms

(3.3) g(i,j) = (
ϕ(p)|U(j)∩E n

(p)

)◦(F |U(j)∩E n
(p)

)−1◦(F |U(i)∩E n
(p)

)◦(ϕ(p)|U(i)∩E n
(p)

)−1
.

Notice that the g(i,j)’s are local automorphisms of Bn and, by Theorem 2.2,
they all extend to global automorphisms of Bn. We finally set

(3.4) � = {g(i,j), 1 ≤ i, j ≤ m} ⊂ Aut(Bn).
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Proposition 3.3. Two points y, y ′ ∈ Bn are F -related in Bn if and only if
y ′ = g(y) for some g ∈ �. In particular, � is a finite subgroup of Aut(Bn).

Proof. We first prove the necessity. Let y, y ′ ∈ Bn be F -related points,
i.e. y = ϕ(p)(x), y ′ = ϕ(p)(x ′) for two points x, x ′ of a complete F -set
J = {x1, . . . , xm} = F−1(w) in E n

(p). Let alsoZF,ϕ(p) be the analytic subvariety
of E n

(p) defined by
ZF,ϕ(p) = F−1(F (ZF ∪ π))

where, as usual, π = {zn−k+1 · . . . · zn = 0}. We consider two cases.

Case 1: J is good, i.e. J ∩ ZF,ϕ(p) = ∅.
SinceZF,ϕ(p) is analytic subvariety of E n

(p), the set E n
(p) \ZF,ϕ(p) is connected

(see e.g. [12], Ch. 4, Prop. 1). We may therefore consider a C 0 curve η :
[0, 1] → E n

(p) such that

– η0 = x and η1 = x(1)o ;

– ηt ∈ E n
(p) \ ZF,ϕ(p) for any 0 ≤ t < 1.

The corresponding curve γ = ϕ(p) ◦ η : [0, 1] → Bn is such that

– γ0 = y and γ1 = y(1)o = ϕ(p)(x(1)o );

– γt ∈ Bn \ ϕ(p)(ZF,ϕ(p) ) for any 0 ≤ t < 1.

Consider now a C 0-curve η′ : [0, 1] → E n
(p) such that η′

0 = x ′ and η′
t is

F -related to ηt for any 0 ≤ t < 1. By the properties of proper holomorphic
maps and the fact that ηt /∈ F−1(F (ZF )), such curve exists and it is unique.
In particular, η′

t ∈ E n
(p) \ ZF,ϕ(p) for any t < 1 and η′

1 ∈ ∂E n
(p).

Finally, let γ ′ : [0, 1] → Bn be the curve γ ′ = ϕ(p) ◦ η′. By construction,

γ ′
0 = y ′, γ ′

t ∈ Bn \ ϕ(p)(ZF,ϕ(p) ) if t < 1, γ ′
1 = ϕ(p)(η′

1) ∈ ∂Bn.
Notice that, being ηt and η′

t distinct and F -related, the end-point η′
1 must

be one of the points x(2)o , x
(3)
o , . . . , x

(m)
o . For simplicity, we assume η′

1 = x(2)o .
Now, we observe that, for any t ∈ [0, 1), there exist neighbourhoods Ut ,

U ′
t ⊂ E n

(p) of ηt and η′
t , respectively, and neighbourhoods Vt , V ′

t ⊂ Bn of γt
and γ ′

t , such that the restrictions

F |Ut
: Ut −→ F(Ut ), ϕ(p)|Ut

: Ut −→ Vt ,

F |U ′
t

: U ′
t −→ F(U ′

t ) = F(Ut ), ϕ(p)|U ′
t

: U ′
t → V ′

t

are biholomorphisms, so that also

(3.5) ht = ϕ(p)|U ′
t
◦ (F |U ′

t
)−1 ◦ F |Ut

◦ (ϕ(p)|Ut
)−1 : Vt → V ′

t
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is a biholomorphism. For t = 1, we set V1 = V (1), V ′
1 = V (2) and

(3.6) h1 = g(1,2)|V1 : V1 → V ′
1 .

We claim that, for any t, s ∈ [0, 1], with Vt ∩ Vs �= ∅,

(3.7) ht |Vt∩Vs = hs |Vt∩Vs .

Indeed, if Vt ∩ Vs �= ∅ (hence, it contains a subarc of γ ), then Ut ∩ Us �= ∅ (it
contains a subarc of η) and ϕ(p)|Ut∩Us

is a biholomorphism onto ϕ(p)(Ut ∩Us)

with inverse(
ϕ(p)|Ut∩Us

)−1 = (
ϕ(p)|Ut

)−1∣∣
ϕ(p)(Ut∩Us )

= (
ϕ(p)|Us

)−1∣∣
ϕ(p)(Ut∩Us )

.

By a similar argument(
F |U ′

t∩U ′
s

)−1 = (
F |U ′

t

)−1∣∣
F(U ′

t∩U ′
s )

= (
F |U ′

s

)−1∣∣
F(U ′

t∩U ′
s )

and (3.7) follows directly from the definitions of the ht ’s.
By compactness, there are t1, . . . ,tN−1, tN = 1 ∈ [0,1] such that γ ([0,1]) ⊂⋃N
k=1 Vtk and, by (3.7), the maps hti can be glued together to determine a

holomorphic map

h : V =
N⋃
k=1

Vtk −→ V ′ =
N⋃
k=1

V ′
tk
.

Since h|V1 = h1 = g(1,2)|V1 , by the Identity Principle, h = g(1,2)|V and
y ′ = h(y) = g(1,2)(y), proving the claim.

Case 2: J is not good, i.e. J ∩ ZF,ϕ(p) �= ∅.
In this case J = F−1(w) for somew ∈ F(ZF ∪π). Let {wk} ⊂ �\F(ZF ∪

π) be a sequence with limk→∞wk = w and denote by J̃k = ϕ(p)(F−1(wk)) =
{yk,1, . . . , yk,rk } the corresponding sequence of good complete F -sets in Bn.
Taking a suitable subsequence, we may assume that y, y ′ are limits of two
sequences {yk}, {y ′

k} with yk, y ′
k ∈ J̃k for any k. By the previous part of the

proof, there are gk ∈ � such that gk(yk) = y ′
k . Since � is a finite set, we may

consider a subsequence {ykn} and g ∈ � such that g(ykn) = y ′
kn

for any n.
Therefore g(y) = limn→∞ g(ynk ) = limn→∞ y ′

nk
= y ′ and the claim follows.

Let us now prove the sufficiency. Let y, y ′ ∈ Bn be such that y ′ = g(y)

for some g ∈ �. If y = y ′, there is nothing to prove. Therefore, we assume
y �= y ′ and g �= IdBn . For simplicity, we assume that g = g(1,2). Consider the
analytic subvariety of Bn

(3.8) Z′ =
⋃
h∈�

h
(
ϕ(p)(ZF,ϕ(p) )

)
.
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We prove the claim in the mutually exclusive cases y, y ′ /∈ Z′ and y, y ′ ∈ Z′,
respectively.

Case 1: y, y ′ ∈ Bn \ Z′.
Pick a point yo ∈ V (1) \ Z′ ⊂ Bn and observe that, being Bn \ Z′ com-

plementary to an analytic subvariety, there exists a C 0 curve γ : [0, 1] → Bn

such that

– γ0 = y and γ1 = yo;

– γt ∈ Bn \ Z′ for any t ∈ [0, 1];

Secondly, consider the C 0 curve γ ′ = g(1,2) ◦ γ : [0, 1] → Bn. By construc-
tion, γ ′

0 = y ′ and γ ′
1 is equal to a point y ′

o ∈ V (2) = g(1,2)(V (1)).
Since yo ∈ V (1) and y ′

o ∈ V (2), there are exactly two points xo ∈ U(1)∩E n
(p)

and x ′
o ∈ U(2) ∩ E n

(p) such that ϕ(p)(xo) = yo and ϕ(p)(x ′
o) = y ′

o. We may
therefore consider the unique C 0 curves η, η′ : [0, 1] → E n

(p) \ ZF,ϕ(p) such
that

– ϕ(p) ◦ η = γ and ϕ(p) ◦ η′ = γ ′,
– η1 = xo and η′

1 = x ′
o.

For any t ∈ [0, 1], consider the F -complete set {η(1)t = ηt , η
(2)
t , . . . , η

(m)
t }

which contains ηt . Then there exist m neighbourhoods U
(j)
t ⊂ E n

(p), 1 ≤ j ≤
m, of the points η(j)t such that the restrictions

ϕ|
U
(j)
t

: U
(j)
t −→ V

(j)
t = ϕ(p)(U

(j)
t ),

F |
U
(j)
t

: U
(j)
t −→ Wt ,Wt = F(U

(1)
t ),

are biholomorphisms. Hence, also the maps

(3.9) k
(1,j)
t = ϕ(p) ◦ (F |

U
(j)
t

)−1 ◦ F |U(1)
t

◦ (ϕ(p)|U(1)
t

)−1
: V

(1)
t −→ V

(j)
t ,

2 ≤ j ≤ m, are biholomorphisms. Reordering the elements in the F -complete
sets, we may always assume that

U
(1)
t=1 = U(1) ∩ E n

(p), V
(1)
t=1 = V (1), k

(1,2)
t=1 = g(1,2)|V (1) .

By compactness and reorderings, there exist t1, . . . , tN = 1 ∈ [0, 1] such that
γ ([0, 1]) ⊂ ⋃N

k=1 V
(1)
tk and V

(1)
tj ∩ V

(1)
tj−1

�= ∅ for all 2 ≤ j ≤ N . By the

same arguments for (3.7), we have that k(1,2)tj |V (1)
tj

∩V
(1)
tj−1

= k
(1,2)
tj−1

|V (1)
tj

∩V
(1)
tj−1

for all

2 ≤ j ≤ N , so that the map k(1,2)1 extends to a holomorphic map

k(1,2) : V =
N⋃
j=1

V
(1)
tj −→ V ′ =

N⋃
j=1

V
(2)
tj
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between a neighbourhood V of γ ([0, 1]) and a neighbourhood V ′ of
k(1,2)(γ ([0, 1])). Notice that, by construction, if ỹ, ỹ ′ are such that ỹ ′ =
k(1,2)(ỹ), they are F -related. Since k(1,2)|V (1)

1
= g(1,2)|V (1)

1
, by the Identity

Principle, k(1,2) = g(1,2)|V and y ′ = g(1,2)(y) = k(1,2)(y). Therefore y, y ′ are
F -related, as we needed to prove.

Case 2: y, y ′ ∈ Z′.
Let {yk} ⊂ Bn \ Z′ be a sequence with limk→∞ yk = y. By continuity, the

sequence y ′
k = g(yk) converges to y ′ = g(y). By the result in the previous case,

yk and y ′
k areF -related for any k and there exists a sequence {wk} ⊂ � such that

yk, y
′
k ∈ ϕ(p)(F−1(wk)). Since ϕ(p) and F are proper, up to a subsequence, we

may assume that {wk} converges to a point wo ∈ �. Using continuity, one can
check that this implies that y, y ′ ∈ ϕ(p)(F−1(wo)) and are therefore F -related.

Finally, the property that � is a subgroup follows from the fact that the
composition of two elements g(i,j), g(k,�) ∈ �maps the connected open set V (1)

into one of the F -related sets V (r). This can occur only if g(i,j) ◦ g(k,�)|V (1) =
g(1,r)|V (1) for some r , meaning that g(i,j) ◦ g(k,�) = g(1,r) ∈ �.

4. The Main Theorem

Consider now the proper holomorphic correspondence

(4.1) � = P� ◦ ϕ(p) ◦ F−1 : � −−� Bn�,

where P� and Bn� are as defined in §2.1. Theorem 1.2 is direct consequence of
the following:

Proposition 4.1. The correspondence (4.1) splits and each of its single-
valued components �i : � → Bn� , 1 ≤ i ≤ k, is a proper holomorphic map
such that

(4.2) �i ◦ F = P� ◦ ϕ(p).

Proof. By Lemma 2.3, it suffices to show that the subset S� ⊂ � of the
points z, at which � does not split, is included in an analytic subvariety of
dimension less than or equal to n− 2. Let �(ref) ⊂ � be the normal subgroup
generated by the reflections in � and fix some elements h1, . . . , hk in � \�(ref)

such that � can be expressed as a disjoint union

� = �(ref) ∪ �(ref)h1 ∪ . . . ∪ �(ref)hk.

For convenience of notation, we set h0 = IdBn so that � = ⋃k
i=0 �(ref)hi .
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We first observe that for any g, g′ ∈ �(ref) and 0 ≤ i �= j ≤ k, the element
(g′hj )−1(ghi) is not in �(ref). Indeed, since �(ref) is normal, if g̃ = h−1

j g′−1ghi
is in �(ref), then

g′−1ghi = hj g̃ = g̃′hj for some g̃′ ∈ �(ref) �⇒ �(ref)hi ∩ �(ref)hj �= ∅,
contradicting the choice of the hm’s. Due to this, any fixed point set
Fix((g′hj )−1(ghi)) is an analytic variety of dimension less than or equal to
n− 2.

Let X be the union of such fixed point sets, that is

X =
⋃

g,g′∈�(ref)
0≤i �=j≤k

Fix((g′hj )−1(ghi))

and note that W = F(ϕ(p)−1(X)) is an analytic subvariety of � of dimen-
sion dimW ≤ n − 2. Indeed, X̃ = ϕ(p)−1(X) ⊂ E n

(p) is an analytic variety,
which is mapped onto X and W by the proper holomorphic maps ϕ(p) and F ,
respectively. By the Proper Mapping Theorem,

dimW = dim X̃ = dimX ≤ n− 2.

Let wo ∈ � \ W and zo ∈ ϕ(p)(F−1(wo)). By construction, zo /∈ X. We
claim that there exists a ball Bε(zo) ⊂ Bn, centred at zo and of radius ε, such
that

(4.3) ghi(Bε(zo)) ∩ g′hj (Bε(zo)) = ∅
for any g, g′ ∈ �(ref) and 0 ≤ i �= j ≤ k. Suppose not. Since � is finite, there
exist i �= j , g, g′ ∈ �(ref) and two sequences zn, z′n such that

zo = lim
n→∞ zn = lim

n→∞ z
′
n and (ghi)(zn) = (g′hj )(z′n) for any n.

By continuity, zo = ((ghi)
−1(g′hj ))(zo), i.e. zo ∈ X: contradiction.

In the following, we denote Vj = ⋃
g∈�(ref)

ghj (Bε(zo)). By (4.3), we have
that Vi ∩ Vj = ∅ for any 0 ≤ i �= j ≤ k.

We now consider an open ball Bδ(wo) ⊂ � with the following property:
for any w ∈ Bδ(wo) there exists z ∈ ϕ(p)(F−1(w)) such that z ∈ Bε(zo).
The existence of such a ball can be checked as follows. Consider the F -
complete set F−1(wo) = {x1

o , . . . , x
N
o } in E n

(p) and the corresponding F -

complete set ϕ(p)(F−1(wo)) = {z1
o, . . . , z

N ′
o } in Bn. Let r sufficiently small

so that F−1(Br(wo)) has exactly N connected components U1, . . . , UN . Let
Vi = ϕ(p)(Ui) and assume that zo = z1

o ∈ V1. If there is no Bδ(wo) with the
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required property, there exists a sequence {w�} ⊂ �, converging to wo such
that

ϕ(p)(F−1(w�)) ∩ Bε(zo) = ∅ for any �.

Taking a suitable subsequence, we may assume that there exists a sequence
x� ∈ U1 with F(x�) = w� and x� converging to x1

o . By construction, the
sequence {ϕ(p)(x�) = z�} is in V1 and tends to ϕ(p)(x1

o ) = zo. But this means
that z� ∈ Bε(zo)∩ϕ(p)(F−1(w�)) for all �’s sufficiently large and it contradicts
our hypothesis.

We now consider the maps

ψj : Bδ(wo) → Bn�,ψj (w) = P�(hj (z)) for some z ∈ ϕ(p)(F−1(w)) ∩ V0

with 0 ≤ j ≤ k. We claim that such maps are well defined and single valued.
Indeed, if z, z′ ∈ ϕ(p)(F−1(w)) ∩ V0, then, by definition of V0,

z = g(̃z), z′ = g′(̃z′) for some z̃, z̃′ ∈ Bε(zo), g, g′ ∈ �(ref)

and, by Proposition 3.3, z′ = h(z) for some h ∈ � and hence of the form

h = g′′hio ∈ �(ref)hio for some 0 ≤ io ≤ k.

These two facts and the normality of �(ref) imply that

g′(̃z′) = (g′′hiog)(̃z) = (g′′′hio )(̃z) for some g′′′ ∈ �(ref)

and hence that

z̃′ = (ĝhio )(̃z) ∈ Vio with ĝ = g′−1g′′′ ∈ �(ref).

Since V0 ∩ Vio = ∅ for io �= 0, we conclude that hio = h0 = IdBn and that
z′ = g′′(z). By normality of �(ref) and the properties of P� , it follows that

P�(hj (z
′)) = P�(hj (g

′′(z))) = P�(g
′′′(hj (z)))

g′′′∈�(ref)= P�(hj (z)),

proving that ψj is well defined and single valued. Moreover, we have that

Lemma 4.2. Each map ψj is holomorphic.

Proof. Let us first show that the ψj ’s are continuous, i.e., that if w� ∈
Bδ(wo) is a sequence converging to w ∈ Bδ(wo), then lim�→∞ ψj(w�) =
ψj(w). Consider the J -complete set F−1(w) = {x1, . . . , xN } ⊂ E n

(p). By
construction of Bδ(wo), we may assume that z = ϕ(p)(x1) belongs to Bε(zo),
so that ψj(w) = P�(hj (z)).
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Let Bri (xi) ⊂ E n
(p) be N disjoint closed balls such that

(4.4) F−1(w) ∩ Bri (xi) = {xi}
and denote by S ⊂ � the compact set S = ⋃N

i=1 F(∂Bri (x
(i))). Since w /∈ S,

there exists Bδ′(w) ⊂ Bδ(wo) such that Bδ′(w) ∩ S = ∅. If we set

(4.5) Ri = F−1 (Bδ′(w)) ∩ Bri (xi)
the arguments of Prop. 15.1.6 in [13] imply that the maps F |Ri : Ri → Bδ′(w)

are proper and hence surjective. With no loss of generality, we may assume
that {w�} ⊂ Bδ′(w) and we may consider a sequence {x�} ⊂ R1 such that
F(x�) = w�. Up to a subsequence, {x�} converges to some x̃ ∈ R1. By (4.4),
(4.5) and continuity, F (̃x) = w and x̃ = x1.

Since {z� = ϕ(p)(x�)} ⊂ Bn converges to z = ϕ(p)(x1), for all �’s suffi-
ciently large z� is in Bε(zo), so that lim�→∞ ψj(w�) = lim�→∞ P�(hj (z�)) =
P�(hj (z)) = ψj(w), as claimed.

We now prove that ψj ’s are holomorphic. Indeed, for any w ∈ Bδ(wo) \
F(ZF ), there exist a neighbourhood W ofw and neighbourhoods U1, . . . ,Um

of the pre-images x1, . . . , xm of w, such that F |Ui : Ui → F(Ui ) = W are
biholomorphisms. For any z ∈ ϕ(p)(F−1(w))∩Bε(zo), there exists 1 ≤ jo ≤ m

such that
z = ϕ(p)(F |−1

Ujo
(w)).

Taking W sufficiently small, we may suppose that for any w′ ∈ W

z′ = ϕ(p)(F |−1
Ujo
(w′)) ∈ Bε(zo) �⇒ ψj(w

′) = P� ◦ hj ◦ ϕ(p) ◦ F |−1
Ujo
(w′),

proving that ψj |W is holomorphic. This implies that ψj is holomorphic in
Bδ(wo)\F(ZF ) and, by continuity and known facts on holomorphic extensions
([13], Cor. of Thm. 4.4.7), it is holomorphic on Bδ(wo).

By construction, for any w ∈ Bδ(wo) we have that �(w) = (ψ0(w),

ψ1(w), . . . , ψk(w)). By Lemma 4.2, the ψj ’s are holomorphic, meaning that
� splits atwo. Sincewo is an arbitrary point of� \W and dimW ≤ n− 2, by
Lemma 2.3 we have that � splits. The equality (4.2) is a direct consequence
of the definition of �.
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