USING EDGE-INDUCED AND VERTEX-INDUCED SUBHYPERGRAPH POLYNOMIALS

YOHANNES TADESSE*

Abstract

For a hypergraph \mathscr{H}, we consider the edge-induced and vertex-induced subhypergraph polynomials and study their relation. We use this relation to prove that both polynomials are reconstructible, and to prove a theorem relating the Hilbert series of the Stanley-Reisner ring of the independent complex of \mathscr{H} and the edge-induced subhypergraph polynomial. We also consider reconstruction of some algebraic invariants of \mathscr{H}.

1. Introduction

To every hypergraph \mathscr{H} one can associate several subhypergraph enumerating polynomials. In this note we consider two of these polynomials: the vertexinduced subhypergraph polynomial $P_{\mathscr{H}}(x, y)$ enumerating vertex-induced subhypergraphs of \mathscr{H}, and the edge-induced subhypergraph polynomial $S_{\mathscr{H}}(x, y)$. Precise definitions will be given in §2. These and several other polynomials were extensively studied for graphs, see [1], [8], [4], [5] and their citations. The notion has been naturally generalized to hypergraphs, see White [14].
L. Borzacchini, et al. [5] studied the relation between these and other subgraph enumerating polynomials. He earlier proved that both are reconstructible, i.e. they can be derived from the subgraph enumerating polynomials of vertex-deleted subgraphs, see [3], [4]. A. Goodarzi [9] used $S_{\mathscr{H}}(x, y)$ to compute the Hilbert series of the Stanley-Resiner ring of the independent complex of \mathscr{H}. More precisely, if R is such a ring, then its Hilbert series $H_{R}(t)$ is given by

$$
\begin{equation*}
H_{R}(t)=\frac{S_{\mathscr{H}}(t,-1)}{(1-t)^{n}} \tag{1}
\end{equation*}
$$

where n is the number of vertices in \mathscr{H}.
In section 2, we define the polynomials, and then prove that

$$
S_{\mathscr{H}}(x, y)=(1-x)^{n} P_{\mathscr{H}}\left(\frac{x}{1-x}, 1+y\right) .
$$

[^0]In section 3, we use this relation to give a short and elementary proof of (1). One may compare our proof with the technical proof in [9]. In section 4, generalizing Borzacchini's results [3], [4], we prove that both polynomials are reconstructible for hypergraphs. We also reformulate the reconstruction problems of some algebraic invariants of the independent complex of \mathscr{H}, where their graph counterpart is proven by Dalili, Faridi and Traves in [6]. That is, we consider reconstructibility of the Hilbert series, the f-vector, the (multi-)graded Betti numbers and some graded Betti tables of the independent complex of \mathscr{H}.

2. Preliminaries

A hypergraph is a pair $\mathscr{H}=(V, E)$ where V is a set of elements called vertices and $E \subseteq 2^{V}$ is a set of distinct subsets of V called edges such that for any two edges $\varepsilon_{1}, \varepsilon_{2} \in E$, we have $\varepsilon_{1} \subseteq \varepsilon_{2} \Rightarrow \varepsilon_{1}=\varepsilon_{2}$. A hypergraph \mathscr{H} is called finite if the vertex set V is finite. We say \mathscr{H} is a d-hypergraph if $|\varepsilon|=d$ for each $\varepsilon \in E$, where $|\varepsilon|$ is the cardinality of ε. A graph is a 2-hypergraph. In this note we always consider finite hypergraphs.

Let $\mathscr{H}=(V, E)$ be hypergraph, $W \subseteq V$ and $L \subset E$. We say that $\mathscr{L}=$ (W, L) an edge-induced subhypergraph of \mathscr{H} if $W=\cup_{\varepsilon \in L} \varepsilon$. We say that $\mathscr{H}_{W}=(W, L)$ is vertex-induced subhypergraph if L is the largest subset of E such that $L \subseteq 2^{W}$.

Let \mathscr{H} be a hypergraph. The edge-induced subhypergraph polynomial $S_{\mathscr{H}}(x, y)$ is defined by

$$
\begin{equation*}
S_{\mathscr{H}}(x, y)=\sum_{i, j} \theta_{i j} x^{i} y^{j} \tag{2}
\end{equation*}
$$

where $\theta_{00}=1$ and for $i, j \geq 0, \theta_{i j}$ is the number of edge-induced subhypergraphs of \mathscr{H} with i vertices and j edges. Similarly, the vertex-induced subhypergraph polynomial $P_{\mathscr{H}}(x, y)$ of \mathscr{H} is defined by

$$
\begin{equation*}
P_{\mathscr{H}}(x, y)=\sum_{i, j} \beta_{i j} x^{i} y^{j} \tag{3}
\end{equation*}
$$

where $\beta_{00}=1$ and for $i, j \geq 0, \beta_{i j}$ is the number of vertex-induced subhypergraphs of \mathscr{H} with i vertices and j edges.

We recall some simple properties of these polynomials. In what follows, $F_{\mathscr{H}}(x, y)$ refers to any one of the two polynomials.
(1) If the hypergraph \mathscr{H} has connected components $\mathscr{H}_{1}, \ldots, \mathscr{H}_{m}$, we have $F_{\mathscr{H}}(x, y)=\prod_{i=1}^{m} F_{\mathscr{H}_{i}}(x, y)$. We also have $F_{\mathscr{H}}(0, y)=1$. If $E=\emptyset$, then $F_{\mathscr{H}}(x, y)=(1+x)^{n}$.
(2) $\sum_{j} \beta_{i j}=\binom{n}{i}$ and $\sum_{i} \theta_{i j}=\binom{m}{j}$ where m is the number of edges in \mathscr{H}.
(3) $S_{\mathscr{H}}(x, 0)$ is a subgraph polynomial of the 0 -subhypergraphs, i.e. isolated vertices. $P_{\mathscr{H}}(x, 0)$ the polynomial of the independent subsets, i.e. sets of vertices having no edges in common.
(4) If \mathscr{H} is a d-complete hypergraph, then $\left.P_{\mathscr{H}}(x, y)=\sum_{i=0}^{n}\binom{n}{i} x^{i} y{ }^{i}{ }_{d}^{i}\right)$.

The following proposition is a generalization of Borzacchini [3]. Even though he considered graphs, the proofs can easily be generalized to hypergraphs.

Proposition 2.1. Let \mathscr{H} be a hypergraph on n vertices. Then

$$
S_{\mathscr{H}}(x, y)=(1-x)^{n} P_{\mathscr{H}}\left(\frac{x}{1-x}, 1+y\right) .
$$

Proof. To every vertex-induced subhypergraph with i vertices and l edges there are $\binom{l}{j}$ hypergraphs with i vertices and j edges. Moreover, those obtained from different vertex-induced subhypergraphs are different since they contain different vertex sets. On the other hand, to every edge-induced subhypergraph with l vertices and j edges we can construct $\binom{n-l}{i-j}$ hypergraphs with i vertices and j edges. So

$$
\begin{equation*}
\sum_{l=0} \beta_{i, j+l}\binom{j+l}{j}=\sum_{l=0}^{i} \theta_{i-l, j}\binom{n-(i-l)}{l} . \tag{4}
\end{equation*}
$$

Setting $r=j+l$ and $s=i-l$, substituting this in (4) and multiplying it by $x^{i} y^{j}$, we obtain:

$$
\begin{aligned}
\sum_{i, j} x^{i} y^{j}\left[\sum_{l=0} \beta_{i, j+l}\binom{j+l}{j}\right] & =\sum_{i, j} x^{i} y^{j}\left[\sum_{l=0}^{i} \theta_{i-l, j}\binom{n-(i-l)}{l}\right] \\
\sum_{i, j} x^{i} y^{j}\left[\sum_{r} \beta_{i r}\binom{r}{j}\right] & =\sum_{s, l, j} x^{s+l} y^{j}\left[\sum_{l=0}^{i} \theta_{s j}\binom{n-s}{l}\right] \\
\sum_{i, r} \beta_{i r} x^{i}\left[\sum_{j}\binom{r}{j} y^{j}\right] & =\sum_{s, j} \theta_{s j} x^{s} y^{j}\left[\sum_{l} x^{j}\binom{n-s}{l}\right] \\
\sum_{i, r} \beta_{i r} x^{i}(1+y)^{r} & =\sum_{s, j} \theta_{s j} x^{s} y^{j}(1+x)^{n-s} \\
P_{\mathscr{H}}(x, y+1) & =(1+x)^{n} \sum_{s, j} \theta_{s j}\left(\frac{x}{1+x}\right)^{s} y^{j} \\
P_{\mathscr{H}}(x, y+1) & =(1+x)^{n} S_{\mathscr{H}}\left(\frac{x}{1+x}, y\right)
\end{aligned}
$$

By change of variable, we obtain $S_{\mathscr{H}}(x, y)=(1-x)^{n} P_{\mathscr{H}}\left(\frac{x}{1-x}, 1+y\right)$.
Corollary 2.2. Let \mathscr{H} be a hypergraph on n vertices. Then

$$
P_{\mathscr{H}}(x, y)=(1+x)^{n} S_{\mathscr{H}}\left(\frac{x}{1+x}, y-1\right) .
$$

3. $P_{\mathscr{H}}(\boldsymbol{x}, \boldsymbol{y})$ and $\boldsymbol{S}_{\mathscr{H}}(\boldsymbol{x}, \boldsymbol{y})$ in Algebra

A simplicial complex Δ on a vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of subsets of V, called faces or simplices such that $\left\{v_{i}\right\} \in \Delta$ for each i and every subset of a face is itself a face. If $B \subset V$, the restriction of Δ to B is a simplicial complex defined by $\Delta(B)=\{\delta \in \Delta \mid \delta \subseteq B\}$. The dimension of a face $\delta \in \Delta$ is $|\delta|-1$. Let $f_{i}=f_{i}(\Delta)$ denote the number of faces of Δ of dimension i. Setting $f_{-1}=1$, the sequence $f(\Delta)=\left(f_{-1}, f_{0}, f_{1}, \ldots, f_{d-1}\right)$ is called the f-vector of Δ.

Let $A=\mathrm{K}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field K and Δ be a simplicial complex over n vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$. The Stanley-Reisner ideal of Δ is the ideal $I(\Delta) \subset A$ generated by those square free monomials $x_{i_{1}} \cdots x_{i_{m}}$ where $\left\{v_{i_{1}}, \ldots, v_{i_{m}}\right\} \notin \Delta$.

Let $\mathscr{H}=(V, E)$ be a hypergraph with n vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$. An independent set of \mathscr{H} is a subset $W \subseteq V$ such that $\varepsilon \nsubseteq W$ for all $\varepsilon \in E$. The collection of $\Delta_{\mathscr{H}}$ of independent sets forms a simplicial complex, called the independent complex. Thus the Stanley-Resiner ideal of $\Delta_{\mathscr{H}}$ is the edge ideal of \mathscr{H}. More precisely, $I\left(\Delta_{\mathscr{H}}\right)=I(\mathscr{H}) \subset A$ is the ideal generated by the squarefree monomials $\prod_{x \in \varepsilon} x$ where $\varepsilon \in E$. Conversely, every squarefree monomial ideal $I \subset A$ can be associated with a hypergraph $\mathscr{H}_{I}=(V, E)$ where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\varepsilon \in E$ if $\prod_{x_{i} \in \varepsilon} x_{i}$ is in the minimal generating set of I. So one has $I\left(\Delta_{\mathscr{H}_{I}}\right)=I$. We have the following easy and well known lemma.

Lemma 3.1. Let $\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$ be the f-vector of the independent complex of a hypergraph \mathscr{H}. Then $P_{\mathscr{H}}(t, 0)=\sum_{i=0}^{d} f_{i-1} t^{i}$.

Let $R=\oplus_{i \in \mathrm{~N}} R_{n}$ be a finitely generated graded K-algebra, where $R_{0}=$ K is a field. The Hilbert series of R is the generating function defined by $H_{R}(t)=\sum_{i \in \mathrm{~N}} \operatorname{dim}_{\mathrm{K}}\left(R_{i}\right) t^{i}$. If $I \subset A$ is a monomial ideal, the Hilbert series of the monomial ring $R=A / I$ is the rational function $H_{R}(t)=\frac{\mathscr{K}(R, t)}{(1-t)^{n}}$ where $\mathscr{K}(R, t) \in \mathrm{Z}[t]$. P. Renteln [13], and also D. Ferrarello and R. Fröberg [7] used the subgraph induced polynomial $S_{G}(x, y)$ of a graph G to compute the Hilbert series of the Stanley-Reisner ring R of the independent complex of G, namely:

$$
H_{R}(t)=\frac{S_{G}(t,-1)}{(1-t)^{n}}
$$

Recently A. Goodarzi [9] generalized it for any squarefree monomial ideal by using the combinatorial Alexander duality and Hochster's formula. Below is a very short and direct proof of this result.

Theorem 3.2. Let \mathscr{H} be a hypergraph on n vertices, $I_{\mathscr{H}} \subset A=$ $\mathrm{K}\left[x_{1}, \ldots, x_{n}\right]$ be its associated squarefree monomial ideal, and $R=A / I_{\mathscr{H}}$. Then

$$
H_{R}(t)=\frac{S_{\mathscr{H}}(t,-1)}{(1-t)^{n}}
$$

Proof. We know by Lemma 3.1 that $P_{\mathscr{H}}(t, 0)=\sum_{i=0}^{d} f_{i-1} x^{i}$ is the polynomial of the f-vectors of the independent complex of \mathscr{H}. It follows that by [12, Proposition 51.3] that $H_{R}(t)=P_{\mathscr{H}}\left(\frac{t}{1-t}, 0\right)$ and by Theorem 2.1 we have

$$
S_{\mathscr{H}}(t,-1)=(1-t)^{n} P_{\mathscr{H}}\left(\frac{t}{1-t}, 0\right)=H_{R}(t)(1-t)^{n} .
$$

Remark 3.3. Let \mathscr{H} be a hypergraph and $R=A / I_{\mathscr{H}}$. It then follows by Lemma 3.1 and [12, Proposition 51.2] that $P_{\mathscr{H}}(t, 0)$ is the Hilbert polynomial of the algebra $R /\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$.

4. $P_{\mathscr{H}}(x, y)$ and $S_{\mathscr{H}}(x, y)$ in reconstruction conjecture

For a graph $G=(V, E)$ on a vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$, the deck of G is the collection $\mathscr{D}(G)=\left\{G_{1}, \ldots, G_{n}\right\}$ where $G_{l}=G-v_{l}, v_{l} \in V$ is the vertex deleted subgraph of G. An element of $\mathscr{D}(G)$ is called a card. The long standing graph reconstruction conjecture posed by Kelly and Ulam says that every simple graph on $n \geq 3$ vertices is uniquely determined, up to isomorphism, by its deck. Numerous unsuccessful attempts have been made to prove the conjecture, and a significant amount of work has been reported. The reader may see Bondy [2] for a survey on the subject. Reconstruction of hypergraphs is defined similarly to graphs. Kocay [10] and Kocay and Lui [11] have constructed a family of non-reconstructible 3-hypergraphs.

In recent years questions has been asked if a graph invariant is reconstructible, that is, if it can be obtained from its deck. Borzacchini in [3], [4] proved that both $S_{G}(x, y)$ and $P_{G}(x, y)$ are reconstructible. In fact, he proved that if $F_{G}(x, y)$ is any one of the subgraph polynomials and $F_{G_{l}}(x, y)$ is a subgraph polynomial of the card G_{l}, then

$$
\begin{equation*}
n F_{G}(x, y)=x \frac{\partial F_{G}(x, y)}{\partial x}+\sum_{l=1}^{n} F_{G_{l}}(x, y) \tag{5}
\end{equation*}
$$

It is natural to extend this reconstructibility question to hypergraphs. Below we obtain a similar result.

Proposition 4.1. Let \mathscr{H} be a hypergraph on $n \geq 3$ vertices. Then both $S_{\mathscr{H}}(x, y)$ and $P_{\mathscr{H}}(x, y)$ are reconstructible.

Proof. We prove the proposition for $S_{\mathscr{H}}(x, y)$ since the other will follow by Proposition 2.1. Let $S_{\mathscr{H}}(x, y)=\sum_{i j} \theta_{i j} x^{i} y^{j}$ and $S_{\mathscr{C}_{l}}(x, y)=\sum_{i j} \theta_{i j}^{(l)} x^{i} y^{j}$ for $l=1, \ldots, n$. By direct calculation we have

$$
n S_{\mathscr{H}}(x, y)-x \frac{\partial\left(S_{\mathscr{H}}(x, y)\right)}{\partial x}=n+\sum_{l=1}^{n} \sum_{i j}(n-j) \theta_{i j} x^{i} y^{j}
$$

Now if $j<n$, then any edge-induced subhypergraph with i vertices and j edges is an edge-induced subhypergraph for $n-j$ cards. It follows that $\sum_{l=1}^{n} \theta_{i j}^{(l)}=(n-j) \theta_{i j}$. Putting this in the equation and recalling that $n=$ $\sum_{l=1}^{n} \theta_{00}^{(l)}$ we obtain

$$
\begin{equation*}
n S_{\mathscr{H}}(x, y)=x \frac{\partial S_{\mathscr{H}}(x, y)}{\partial x}+\sum_{i=1}^{n} S_{\mathscr{\not} \mathscr{C}_{i}}(x, y) \tag{6}
\end{equation*}
$$

4.1. Hilbert series and graded Betti numbers

The authors in [6] studied reconstructibility of some algebraic invariants of the edge ideal of a graph G such as the Krull dimension, the Hilbert series, and the graded Betti numbers $b_{i, j}$, where $j<n$. All their results can be extended to hypergraphs.

Proposition 4.2. Let \mathscr{H} be a hypergraph on $n \geq 3$ vertices. The Hilbert function of $R=A / I_{\mathscr{H}}$ is reconstructible. In particular the Krull dimension, the dimension, and the multiplicity of R are reconstructible, as is the f-vector of $\Delta_{\mathscr{H}}$.

Proof. We only prove that the Hilbert series is reconstructible since the other invariants are obtained from that. By Proposition 3.2 and (6) we have

$$
\begin{aligned}
n H_{R}(t) & =\frac{n S_{\mathscr{H}}(t,-1)}{(1-t)^{n}}=\frac{t \frac{d S_{\mathscr{H}}(t,-1)}{d t}}{(1-t)^{n}}+\sum_{i-1}^{n} \frac{S_{\mathscr{\mathscr { i }}}(t,-1)}{(1-t)^{n}} \\
& =\frac{t}{(1-t)^{n}} \frac{d S_{\mathscr{H}}(t,-1)}{d t}+\sum_{i=1}^{n} \frac{H_{R_{i}}(t)}{1-t}
\end{aligned}
$$

Since $\frac{d H_{R}(t)}{d t}=\frac{d}{d t}\left(\frac{S_{\mathscr{F}}(t,-1)}{(1-t)^{n}}\right)=\frac{1}{t} \frac{t}{(1-t)^{n}} \frac{d S_{\mathscr{E}}(t,-1)}{d t}+\frac{n}{1-x} H_{R}(t)$, substituting this into the above, we obtain a first order ordinary linear differential equation

$$
\frac{n}{1-t} H_{R}(t)=t \frac{d H_{R}(t)}{d t}-\frac{1}{1-t} \sum_{i=1}^{n} H_{R_{i}}(t)
$$

For a monomial ideal $I \subset A$ the Z^{n}-graded minimal free resolution of the A-module $R=A / I$ is :

$$
\begin{aligned}
\cdots \rightarrow \oplus_{j} A(-\mathbf{b})^{b_{i, \mathbf{b}}} \rightarrow \cdots \rightarrow \oplus_{j} A & (-\mathbf{b})^{b_{2, \mathbf{b}}} \\
& \rightarrow \oplus_{j} A(-\mathbf{b})^{b_{1, \mathbf{b}}} \rightarrow A \rightarrow A / I \rightarrow 0
\end{aligned}
$$

where $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in Z^{n}$ and the modules $A(-\mathbf{b})$ are the graded shifts of A. The numbers $b_{i, \mathbf{b}}$ are multi-graded Betti numbers and $b_{i j}=\sum_{|\mathbf{b}|=j} b_{i, \mathbf{b}}$, where $|\mathbf{b}|=b_{1}+\cdots+b_{n}$, are the graded Betti numbers of R. In particular, the $b_{\text {in }}$'s are the super extremal graded Betti numbers and they are useful in giving us the regularity and projective dimension of $I_{\mathscr{H}}$. It is well known that the graded Betti numbers are characterstic dependant, so we assume $\operatorname{char}(\mathrm{K})=0$.

By Hochester's formula, we can prove that the multi-graded Betti numbers $b_{i, \mathrm{~b}}$ are reconstructible for $|\mathrm{b}|<j$, and so will the graded Betti numbers $b_{i j}$ for $j<n$. Reconstruction of the super extremal graded Betti numbers, however, seems a bit hard to determine. Since by Theorem 3.2, we have

$$
\begin{equation*}
S_{\mathscr{H}}(t,-1)=\sum_{i=0}^{n} \sum_{j}(-1)^{i} b_{i j} t^{j} \tag{7}
\end{equation*}
$$

It follows that the coefficient of t^{n} in $S_{\mathscr{H}}(t,-1)$ is the alternating sum $\sum_{i}(-1)^{i} b_{i n}$. So $b_{i n}$ is reconstructible if there is only one i such that $b_{i n} \neq 0$. Cohen-macauley ideals or ideals with linear resolutions are examples of such ideals. There are also edge ideals with more than one non-zero super extremal graded Betti numbers, see [6, Example 5.3]. Summerizing, the following extends results in $[6, \S 5]$ to a hypergraph. The proof is also similar, and hence ommited.

Proposition 4.3. Let \mathscr{H} be a hypergraph on with a vertex set $V=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ and $n \geq 3$. Then the (multi-)graded Betti numbers $b_{i j}$ of the Stanley-Reisner ring $R=A / I_{\mathscr{H}}$ are reconstructible for all $j<n$. Moreover, if the super extremal graded Betti numbers $b_{\text {in }}$ of $I_{\mathscr{H}}$ are reconstructible, then the depth, projective dimension and regularity of $I_{\mathscr{H}}$ are reconstructible.

We investigate if the Betti table of $I_{\mathscr{H}}$ is reconstructible. Let $\mathscr{B}=\left(b_{i j}\right)$ be the Betti table of $I_{\mathscr{H}}$ and $\mathscr{B}_{l}=\left(b_{i j}^{(l)}\right)$ be the Betti table of $I_{\mathscr{H}_{l}}$. Then combining
(6) and (7) and comparing the coefficients of t^{j} we obtain

$$
(n-j) \sum_{i}(-1)^{i} b_{i j}=\sum_{i}(-1)^{i} \sum_{l=1}^{n} b_{i j}^{(l)} \quad \text { for } \quad j<n
$$

This equation shows it is difficult to determine each $b_{i j}$ only from the data $\left\{\mathscr{B}_{l}\right\}_{l=1}^{n}$ since anti-diagonals of \mathscr{B} might contain more than one non-zero entry. We thus have the following which gives a partial answer to [6, Question 5.6].

Proposition 4.4. Let \mathscr{H} be a hypergraph on $n \geq 3$ vertices. If each antidiagonal of the Betti table of $I_{\mathscr{H}}$ contains at most one non-zero entry, then the Betti table of $I_{\mathscr{H}}$ is reconstructible.

Proof. Let $S_{\mathscr{H}}(t,-1)=\sum_{i j}(-1)^{j} \theta_{i j} t^{i}$. If $b_{i j}$ is the non-zero entry on the j 'th anti-diagonal of the Betti table, using (7) we have $b_{i j}=\sum_{k}(-1)^{i+k} \theta_{j k}$. The result follows from Proposition 4.1.

Acknowledgments. I would like to thank Afshin Goodarzi for the helpful discussions and for his comments on the preliminary version of this work.

REFERENCES

1. Averbouch, I., Godlin, B., and Makowsky, J. A., An extension of the bivariate chromatic polynomial, European J. Combin. 31 (2010), no. 1, 1-17.
2. Bondy, J. A., A graph reconstructor's manual, Surveys in combinatorics, 1991, (Guildford, 1991), London Math. Soc. Lecture Note Ser., 166, Cambridge Univ. Press, Cambridge, 1991, pp. 221-252,
3. Borzacchini, L., Reconstruction theorems for graph enumerating polynomials, Calcolo 18 (1981), no. 1, 97-101.
4. Borzacchini, L., Subgraph enumerating polynomial and reconstruction conjecture, Rend. Accad. Sci. Fis. Mat. Napoli (4) 43 (1976), 411-416 (English, with Italian summary).
5. Borzacchini, L., and Pulito, C., On subgraph enumerating polynomials and Tutte polynomials, Boll. Un. Mat. Ital. B (6) 1 (1982), no. 2, 589-597 (English with Italian summary).
6. Dalili, K., Faridi, S., and Traves, W., The reconstruction conjecture and edge ideals, Discrete Math. 308 (2008), no. 10, 2002-2010.
7. Ferrarello, D., and Fröberg, R., The Hilbert series of the clique complex, Graphs Combin. 21 (2005), no. 4, 401-405.
8. Godsil, C., and Royle, G., Algebraic graph theory, Graduate Texts in Mathematics 207, Springer-Verlag, New York, 2001.
9. Goodarzi, A., On the Hilbert series of monomial ideals, J. Combin. Theory Ser. A 120(2013), no. 2, 315-317.
10. Kocay, W. L., A family of nonreconstructible hypergraphs, J. Combin. Theory Ser. B 42 (1987), no. 1, 46-63.
11. Kocay, W. L., and Lui, Z. M., More nonreconstructible hypergraphs, in: Proceedings of the First Japan Conference on Graph Theory and Applications (Hakone, 1986), 1988, pp. 213224.
12. Peeva, I., Graded syzygies, Algebra and Applications 14, Springer-Verlag London Ltd., London, 2011.
13. Renteln, P., The Hilbert series of the face ring of a flag complex, Graphs Combin. 18 (2002), no. 3, 605-619.
14. White, J. A., On multivariate chromatic polynomials of hypergraphs and hyperedge elimination, Electron. J. Combin. 18 (2011), no. 1.

SCHOOL OF ENGINEERING SCIENCE UNIVERSITY OF SKÖVDE
BOX 408
54128 SKÖVDE
SWEDEN
E-mail: yohannes.tadesse.aklilu@his.com

[^0]: * This article was partially written while the author was at Uppsala University, Sweden.

 Received 18 March 2013, in final form 11 July 2013.

