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USING EDGE-INDUCED AND VERTEX-INDUCED
SUBHYPERGRAPH POLYNOMIALS

YOHANNES TADESSE∗

Abstract
For a hypergraph H , we consider the edge-induced and vertex-induced subhypergraph polynomi-
als and study their relation. We use this relation to prove that both polynomials are reconstructible,
and to prove a theorem relating the Hilbert series of the Stanley-Reisner ring of the independent
complex of H and the edge-induced subhypergraph polynomial. We also consider reconstruction
of some algebraic invariants of H .

1. Introduction

To every hypergraph H one can associate several subhypergraph enumerating
polynomials. In this note we consider two of these polynomials: the vertex-
induced subhypergraph polynomial PH (x,y) enumerating vertex-induced sub-
hypergraphs of H , and the edge-induced subhypergraph polynomial SH (x, y).
Precise definitions will be given in §2. These and several other polynomials
were extensively studied for graphs, see [1], [8], [4], [5] and their citations.
The notion has been naturally generalized to hypergraphs, see White [14].

L. Borzacchini, et al. [5] studied the relation between these and other sub-
graph enumerating polynomials. He earlier proved that both are reconstruct-
ible, i.e. they can be derived from the subgraph enumerating polynomials of
vertex-deleted subgraphs, see [3], [4]. A. Goodarzi [9] used SH (x, y) to com-
pute the Hilbert series of the Stanley-Resiner ring of the independent complex
of H . More precisely, if R is such a ring, then its Hilbert series HR(t) is given
by

(1) HR(t) = SH (t, −1)

(1 − t)n

where n is the number of vertices in H .
In section 2, we define the polynomials, and then prove that

SH (x, y) = (1 − x)nPH

(
x

1 − x
, 1 + y

)
.
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In section 3, we use this relation to give a short and elementary proof of (1).
One may compare our proof with the technical proof in [9]. In section 4, gen-
eralizing Borzacchini’s results [3], [4], we prove that both polynomials are
reconstructible for hypergraphs. We also reformulate the reconstruction prob-
lems of some algebraic invariants of the independent complex of H , where their
graph counterpart is proven by Dalili, Faridi and Traves in [6]. That is, we con-
sider reconstructibility of the Hilbert series, the f -vector, the (multi-)graded
Betti numbers and some graded Betti tables of the independent complex of H .

2. Preliminaries

A hypergraph is a pair H = (V , E) where V is a set of elements called vertices
and E ⊆ 2V is a set of distinct subsets of V called edges such that for any
two edges ε1, ε2 ∈ E, we have ε1 ⊆ ε2 ⇒ ε1 = ε2. A hypergraph H is called
finite if the vertex set V is finite. We say H is a d-hypergraph if |ε| = d for
each ε ∈ E, where |ε| is the cardinality of ε. A graph is a 2-hypergraph. In this
note we always consider finite hypergraphs.

Let H = (V , E) be hypergraph, W ⊆ V and L ⊂ E. We say that L =
(W, L) an edge-induced subhypergraph of H if W = ∪ε∈Lε. We say that
HW = (W, L) is vertex-induced subhypergraph if L is the largest subset of E

such that L ⊆ 2W .
Let H be a hypergraph. The edge-induced subhypergraph polynomial

SH (x, y) is defined by

(2) SH (x, y) =
∑
i,j

θij x
iyj ,

where θ00 = 1 and for i, j ≥ 0, θij is the number of edge-induced sub-
hypergraphs of H with i vertices and j edges. Similarly, the vertex-induced
subhypergraph polynomial PH (x, y) of H is defined by

(3) PH (x, y) =
∑
i,j

βij x
iyj ,

where β00 = 1 and for i, j ≥ 0, βij is the number of vertex-induced subhyper-
graphs of H with i vertices and j edges.

We recall some simple properties of these polynomials. In what follows,
FH (x, y) refers to any one of the two polynomials.

(1) If the hypergraph H has connected components H1, . . . , Hm, we have
FH (x, y) = ∏m

i=1 FHi
(x, y). We also have FH (0, y) = 1. If E = ∅,

then FH (x, y) = (1 + x)n.

(2)
∑

j βij = (
n

i

)
and

∑
i θij = (

m

j

)
where m is the number of edges in H .
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(3) SH (x, 0) is a subgraph polynomial of the 0-subhypergraphs, i.e. isolated
vertices. PH (x, 0) the polynomial of the independent subsets, i.e. sets
of vertices having no edges in common.

(4) If H is a d-complete hypergraph, then PH (x, y) = ∑n
i=0

(
n

i

)
xiy(i

d).

The following proposition is a generalization of Borzacchini [3]. Even though
he considered graphs, the proofs can easily be generalized to hypergraphs.

Proposition 2.1. Let H be a hypergraph on n vertices. Then

SH (x, y) = (1 − x)nPH

(
x

1 − x
, 1 + y

)
.

Proof. To every vertex-induced subhypergraph with i vertices and l edges
there are

(
l

j

)
hypergraphs with i vertices and j edges. Moreover, those obtained

from different vertex-induced subhypergraphs are different since they contain
different vertex sets. On the other hand, to every edge-induced subhypergraph
with l vertices and j edges we can construct

(
n−l

i−j

)
hypergraphs with i vertices

and j edges. So

(4)
∑
l=0

βi,j+l

(
j + l

j

)
=

i∑
l=0

θi−l,j

(
n − (i − l)

l

)
.

Setting r = j + l and s = i − l, substituting this in (4) and multiplying it by
xiyj , we obtain:

∑
i,j

xiyj

[∑
l=0

βi,j+l

(
j + l

j

)]
=

∑
i,j

xiyj

[ i∑
l=0

θi−l,j

(
n − (i − l)

l

)]
,

∑
i,j

xiyj

[∑
r

βir

(
r

j

)]
=

∑
s,l,j

xs+lyj

[ i∑
l=0

θsj

(
n − s

l

)]
,

∑
i,r

βirx
i

[∑
j

(
r

j

)
yj

]
=

∑
s,j

θsj x
syj

[∑
l

xj

(
n − s

l

)]
,

∑
i,r

βirx
i(1 + y)r =

∑
s,j

θsj x
syj (1 + x)n−s ,

PH (x, y + 1) = (1 + x)n
∑
s,j

θsj

(
x

1 + x

)s

yj ,

PH (x, y + 1) = (1 + x)nSH

(
x

1 + x
, y

)
.
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By change of variable, we obtain SH (x, y) = (1 − x)nPH

(
x

1−x
, 1 + y

)
.

Corollary 2.2. Let H be a hypergraph on n vertices. Then

PH (x, y) = (1 + x)nSH

(
x

1 + x
, y − 1

)
.

3. PH (x, y) and SH (x, y) in Algebra

A simplicial complex � on a vertex set V = {v1, . . . , vn} is a set of subsets
of V , called faces or simplices such that {vi} ∈ � for each i and every subset
of a face is itself a face. If B ⊂ V , the restriction of � to B is a simplicial
complex defined by �(B) = {δ ∈ � | δ ⊆ B}. The dimension of a face δ ∈ �

is |δ| − 1. Let fi = fi(�) denote the number of faces of � of dimension i.
Setting f−1 = 1, the sequence f (�) = (f−1, f0, f1, . . . , fd−1) is called the
f -vector of �.

Let A = K[x1, . . . , xn] be a polynomial ring over a field K and � be a
simplicial complex over n vertices V = {v1, . . . , vn}. The Stanley-Reisner
ideal of � is the ideal I (�) ⊂ A generated by those square free monomials
xi1 · · · xim where {vi1 , . . . , vim} /∈ �.

Let H = (V , E) be a hypergraph with n vertices V = {v1, . . . , vn}. An
independent set of H is a subset W ⊆ V such that ε � W for all ε ∈ E.
The collection of �H of independent sets forms a simplicial complex, called
the independent complex. Thus the Stanley-Resiner ideal of �H is the edge
ideal of H . More precisely, I (�H ) = I (H ) ⊂ A is the ideal generated by
the squarefree monomials

∏
x∈ε x where ε ∈ E. Conversely, every squarefree

monomial ideal I ⊂ A can be associated with a hypergraph HI = (V , E)

where V = {v1, . . . , vn} and ε ∈ E if
∏

xi∈ε xi is in the minimal generating
set of I . So one has I (�HI

) = I . We have the following easy and well known
lemma.

Lemma 3.1. Let (f−1, f0, . . . , fd−1) be the f -vector of the independent
complex of a hypergraph H . Then PH (t, 0) = ∑d

i=0 fi−1t
i .

Let R = ⊕i∈NRn be a finitely generated graded K-algebra, where R0 =
K is a field. The Hilbert series of R is the generating function defined by
HR(t) = ∑

i∈N dimK(Ri)t
i . If I ⊂ A is a monomial ideal, the Hilbert series

of the monomial ring R = A/I is the rational function HR(t) = K (R,t)

(1−t)n
where

K (R, t) ∈ Z[t]. P. Renteln [13], and also D. Ferrarello and R. Fröberg [7]
used the subgraph induced polynomial SG(x, y) of a graph G to compute the
Hilbert series of the Stanley-Reisner ring R of the independent complex of G,
namely:

HR(t) = SG(t, −1)

(1 − t)n
.
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Recently A. Goodarzi [9] generalized it for any squarefree monomial ideal by
using the combinatorial Alexander duality and Hochster’s formula. Below is a
very short and direct proof of this result.

Theorem 3.2. Let H be a hypergraph on n vertices, IH ⊂ A =
K[x1, . . . , xn] be its associated squarefree monomial ideal, and R = A/IH .
Then

HR(t) = SH (t, −1)

(1 − t)n
.

Proof. We know by Lemma 3.1 that PH (t, 0) = ∑d
i=0 fi−1x

i is the poly-
nomial of the f -vectors of the independent complex of H . It follows that by
[12, Proposition 51.3] that HR(t) = PH ( t

1−t
, 0) and by Theorem 2.1 we have

SH (t, −1) = (1 − t)nPH

(
t

1 − t
, 0

)
= HR(t)(1 − t)n.

Remark 3.3. Let H be a hypergraph and R = A/IH . It then follows by
Lemma 3.1 and [12, Proposition 51.2] that PH (t, 0) is the Hilbert polynomial
of the algebra R/(x2

1 , . . . , x2
n).

4. PH (x, y) and SH (x, y) in reconstruction conjecture

For a graph G = (V , E) on a vertex set V = {v1, . . . , vn}, the deck of
G is the collection D(G) = {G1, . . . , Gn} where Gl = G − vl , vl ∈ V

is the vertex deleted subgraph of G. An element of D(G) is called a card.
The long standing graph reconstruction conjecture posed by Kelly and Ulam
says that every simple graph on n ≥ 3 vertices is uniquely determined, up to
isomorphism, by its deck. Numerous unsuccessful attempts have been made
to prove the conjecture, and a significant amount of work has been reported.
The reader may see Bondy [2] for a survey on the subject. Reconstruction of
hypergraphs is defined similarly to graphs. Kocay [10] and Kocay and Lui [11]
have constructed a family of non-reconstructible 3-hypergraphs.

In recent years questions has been asked if a graph invariant is reconstruct-
ible, that is, if it can be obtained from its deck. Borzacchini in [3], [4] proved
that both SG(x, y) and PG(x, y) are reconstructible. In fact, he proved that if
FG(x, y) is any one of the subgraph polynomials and FGl

(x, y) is a subgraph
polynomial of the card Gl , then

(5) nFG(x, y) = x
∂FG(x, y)

∂x
+

n∑
l=1

FGl
(x, y).
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It is natural to extend this reconstructibility question to hypergraphs. Below
we obtain a similar result.

Proposition 4.1. Let H be a hypergraph on n ≥ 3 vertices. Then both
SH (x, y) and PH (x, y) are reconstructible.

Proof. We prove the proposition for SH (x, y) since the other will follow
by Proposition 2.1. Let SH (x, y) = ∑

ij θij x
iyj and SHl

(x, y) = ∑
ij θ

(l)
ij xiyj

for l = 1, . . . , n. By direct calculation we have

nSH (x, y) − x
∂(SH (x, y))

∂x
= n +

n∑
l=1

∑
ij

(n − j)θij x
iyj .

Now if j < n, then any edge-induced subhypergraph with i vertices and
j edges is an edge-induced subhypergraph for n − j cards. It follows that∑n

l=1 θ
(l)
ij = (n − j)θij . Putting this in the equation and recalling that n =∑n

l=1 θ
(l)
00 we obtain

(6) nSH (x, y) = x
∂SH (x, y)

∂x
+

n∑
i=1

SHi
(x, y).

4.1. Hilbert series and graded Betti numbers

The authors in [6] studied reconstructibility of some algebraic invariants of the
edge ideal of a graph G such as the Krull dimension, the Hilbert series, and
the graded Betti numbers bi,j , where j < n. All their results can be extended
to hypergraphs.

Proposition 4.2. Let H be a hypergraph on n ≥ 3 vertices. The Hilbert
function of R = A/IH is reconstructible. In particular the Krull dimension,
the dimension, and the multiplicity of R are reconstructible, as is the f -vector
of �H .

Proof. We only prove that the Hilbert series is reconstructible since the
other invariants are obtained from that. By Proposition 3.2 and (6) we have

nHR(t) = nSH (t, −1)

(1 − t)n
= t dSH (t,−1)

dt

(1 − t)n
+

n∑
i−1

SHi
(t, −1)

(1 − t)n

= t

(1 − t)n

dSH (t, −1)

dt
+

n∑
i=1

HRi
(t)

1 − t
.
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Since dHR(t)

dt
= d

dt

(
SH (t,−1)

(1−t)n

) = 1
t

t
(1−t)n

dSH (t,−1)

dt
+ n

1−x
HR(t), substituting

this into the above, we obtain a first order ordinary linear differential equation

n

1 − t
HR(t) = t

dHR(t)

dt
− 1

1 − t

n∑
i=1

HRi
(t).

For a monomial ideal I ⊂ A the Zn-graded minimal free resolution of the
A-module R = A/I is :

· · · → ⊕jA(−b)bi,b → · · · → ⊕jA(−b)b2,b

→ ⊕jA(−b)b1,b → A → A/I → 0

where b = (b1, . . . , bn) ∈ Zn and the modules A(−b) are the graded shifts
of A. The numbers bi,b are multi-graded Betti numbers and bij = ∑

|b|=j bi,b,
where |b| = b1 +· · ·+bn, are the graded Betti numbers of R. In particular, the
bin’s are the super extremal graded Betti numbers and they are useful in giving
us the regularity and projective dimension of IH . It is well known that the
graded Betti numbers are characterstic dependant, so we assume char(K) = 0.

By Hochester’s formula, we can prove that the multi-graded Betti numbers
bi,b are reconstructible for |b| < j , and so will the graded Betti numbers bij for
j < n. Reconstruction of the super extremal graded Betti numbers, however,
seems a bit hard to determine. Since by Theorem 3.2, we have

(7) SH (t, −1) =
n∑

i=0

∑
j

(−1)ibij t
j .

It follows that the coefficient of tn in SH (t, −1) is the alternating sum∑
i (−1)ibin. So bin is reconstructible if there is only one i such that bin �= 0.

Cohen-macauley ideals or ideals with linear resolutions are examples of such
ideals. There are also edge ideals with more than one non-zero super extremal
graded Betti numbers, see [6, Example 5.3]. Summerizing, the following ex-
tends results in [6, §5] to a hypergraph. The proof is also similar, and hence
ommited.

Proposition 4.3. Let H be a hypergraph on with a vertex set V =
{v1, . . . , vn} and n ≥ 3. Then the (multi-)graded Betti numbers bij of the
Stanley-Reisner ring R = A/IH are reconstructible for all j < n. Moreover,
if the super extremal graded Betti numbers bin of IH are reconstructible, then
the depth, projective dimension and regularity of IH are reconstructible.

We investigate if the Betti table of IH is reconstructible. Let B = (bij ) be
the Betti table of IH and Bl = (b

(l)
ij ) be the Betti table of IHl

. Then combining
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(6) and (7) and comparing the coefficients of t j we obtain

(n − j)
∑

i

(−1)ibij =
∑

i

(−1)i
n∑

l=1

b
(l)
ij for j < n.

This equation shows it is difficult to determine each bij only from the data
{Bl}nl=1 since anti-diagonals of B might contain more than one non-zero entry.
We thus have the following which gives a partial answer to [6, Question 5.6].

Proposition 4.4. Let H be a hypergraph on n ≥ 3 vertices. If each anti-
diagonal of the Betti table of IH contains at most one non-zero entry, then the
Betti table of IH is reconstructible.

Proof. Let SH (t, −1) = ∑
ij (−1)j θij t

i . If bij is the non-zero entry on the
j ’th anti-diagonal of the Betti table, using (7) we have bij = ∑

k(−1)i+kθjk .
The result follows from Proposition 4.1.
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