CUNTZ-KRIEGER ALGEBRAS ASSOCIATED WITH HILBERT C^{*}-QUAD MODULES OF COMMUTING MATRICES

KENGO MATSUMOTO*

Abstract

Let $\mathscr{O}_{\mathscr{H}_{K}^{A, B}}$ be the C^{*}-algebra associated with the Hilbert C^{*}-quad module arising from commuting matrices A, B with entries in $\{0,1\}$. We will show that if the associated tiling space $X_{A, B}^{\kappa}$ is transitive, the C^{*}-algebra $\mathscr{O}_{\mathscr{H}_{K}^{A, B}}$ is simple and purely infinite. In particular, for two positive integers N, M, the K-groups of the simple purely infinite C^{*}-algebra $\mathscr{O}_{\mathscr{H}_{\kappa}^{[N],[M]}}$ are computed by using the Euclidean algorithm.

1. Introduction

In [9], the author has introduced a notion of C^{*}-symbolic dynamical system, which is a generalization of a finite labeled graph, a λ-graph system and an automorphism of a unital C^{*}-algebra (cf. [10]). It is denoted by ($\mathscr{A}, \rho, \Sigma$) and consists of a finite family $\left\{\rho_{\alpha}\right\}_{\alpha \in \Sigma}$ of endomorphisms of a unital C^{*} algebra \mathscr{A} such that $\rho_{\alpha}\left(Z_{\mathscr{A}}\right) \subset Z_{\mathscr{A}}, \alpha \in \Sigma$ and $\sum_{\alpha \in \Sigma} \rho_{\alpha}(1) \geq 1$ where $Z_{\mathscr{A}}$ denotes the center of \mathscr{A}, and endomorphisms are not necessarily unital. It provides a subshift Λ_{ρ} over Σ and a Hilbert C^{*}-bimodule $\mathscr{H}_{\mathscr{A}}^{\rho}$ over \mathscr{A} which gives rise to a C^{*}-algebra \mathscr{O}_{ρ} as a Cuntz-Pimsner algebra ([9], cf. [5], [16]). In [11] and [12], the author has extended the notion of C^{*}-symbolic dynamical system to C^{*}-textile dynamical system which is a higher dimensional analogue of C^{*}-symbolic dynamical system. The C^{*}-textile dynamical $\operatorname{system}\left(\mathscr{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa\right)$ consists of two C^{*}-symbolic dynamical systems $\left(\mathscr{A}, \rho, \Sigma^{\rho}\right)$ and $\left(\mathscr{A}, \eta, \Sigma^{\eta}\right)$ with a common unital C^{*}-algebra \mathscr{A} and a commutation relation between the endomorphisms ρ and η through a map κ stated below. Set

$$
\begin{aligned}
& \Sigma^{\rho \eta}=\left\{(\alpha, b) \in \Sigma^{\rho} \times \Sigma^{\eta} \mid \eta_{b} \circ \rho_{\alpha} \neq 0\right\} \\
& \Sigma^{\eta \rho}=\left\{(a, \beta) \in \Sigma^{\eta} \times \Sigma^{\rho} \mid \rho_{\beta} \circ \eta_{a} \neq 0\right\}
\end{aligned}
$$

We assume that there exists a bijection $\kappa: \Sigma^{\rho \eta} \rightarrow \Sigma^{\eta \rho}$, which we fix and call

[^0]a specification. Then the required commutation relations are
\[

$$
\begin{equation*}
\eta_{b} \circ \rho_{\alpha}=\rho_{\beta} \circ \eta_{a} \quad \text { if } \quad \kappa(\alpha, b)=(a, \beta) . \tag{1.1}
\end{equation*}
$$

\]

A C^{*}-textile dynamical system provides a two-dimensional subshift and a multi-structure of Hilbert C^{*}-bimodules that has multi-right actions and multileft actions and multi-inner products. Such a multi-structure of Hilbert C^{*} bimodules is called a Hilbert C^{*}-quad module, denoted by $\mathscr{H}_{\kappa}^{\rho, \eta}$. In [12], the author has introduced a C^{*}-algebra associated with the Hilbert C^{*}-quad module defined by a C^{*}-textile dynamical system. The C^{*}-algebra $\mathscr{O}_{\mathscr{\mathscr { C } _ { k } ^ { \rho , \eta }}}$ has been constructed in a concrete way from the structure of the Hilbert C^{*}-quad module $\mathscr{H}_{\kappa}^{\rho, \eta}$ by a two-dimensional analogue of Pimsner's construction of C^{*} algebras from Hilbert C^{*}-bimodules. It is generated by the quotient images of the creation operators on two-dimensional analogue of Fock Hilbert module by module maps of compact operators. As a result, the C^{*}-algebra has been proved to have a universal property subject to certain operator relations of generators encoded by structure of the Hilbert C^{*}-quad module of C^{*}-textile dynamical system ([12], cf. [13]).

Let A, B be two $N \times N$ matrices with entries in nonnegative integers. We assume that both A and B are essential, which means that they have no rows or columns identically to zero vector. They yield directed graphs $G_{A}=\left(V, E_{A}\right)$ and $G_{B}=\left(V, E_{B}\right)$ with a common vertex set $V=\left\{v_{1}, \ldots, v_{N}\right\}$ and edge sets E_{A} and E_{B} respectively, where the edge set E_{A} consists of $A(i, j)$-edges from the vertex v_{i} to the vertex v_{j} and E_{B} consists of $B(i, j)$-edges from the vertex v_{i} to the vertex v_{j}. Denote by $s(e), r(e)$ the source vertex and the range vertex of an edge e. We set $\mathscr{A}_{N}=\mathrm{C}^{N}$. Denote by E_{1}, \ldots, E_{N} the set of minimal projections of \mathscr{A}_{N} defined by the standard basis of C^{N} which correspond to the vertex set v_{1}, \ldots, v_{N} respectively, so that $\sum_{i=1}^{N} E_{i}=1$. For $\alpha \in E_{A}$, define ρ_{α}^{A} an endomorphism of \mathscr{A}_{N} by $\rho_{\alpha}^{A}\left(E_{i}\right)=E_{j}$ if $s(\alpha)=v_{i}, r(\alpha)=v_{j}$, otherwise $\rho_{\alpha}^{A}\left(E_{i}\right)=0$. Similarly we have an endomorphism ρ_{a}^{B} of \mathscr{A}_{N} for $a \in E_{B}$. We then have two C^{*}-symbolic dynamical systems $\left(\mathscr{A}_{N}, \rho^{A}, E_{A}\right)$ and $\left(\mathscr{A}_{N}, \rho^{B}, E_{B}\right)$ with $\mathscr{A}_{N}=\mathrm{C}^{N}$. Put

$$
\begin{aligned}
\Sigma^{A B} & =\left\{(\alpha, b) \in E_{A} \times E_{B} \mid r(\alpha)=s(b)\right\}, \\
\Sigma^{B A} & =\left\{(a, \beta) \in E_{B} \times E_{A} \mid r(a)=s(\beta)\right\} .
\end{aligned}
$$

Assume that the commutation relation

$$
\begin{equation*}
A B=B A \tag{1.2}
\end{equation*}
$$

holds. We may take a bijection $\kappa: \Sigma^{A B} \rightarrow \Sigma^{B A}$ such that $s(\alpha)=s(a), r(b)=$ $r(\beta)$ for $\kappa(\alpha, b)=(a, \beta)$, which we fix and call a specification by following

Nasu's terminology in [14]. This situation is called an LR-textile system introduced by Nasu ([14]). We then have a C^{*}-textile dynamical system (see [12])

$$
\left(\mathscr{A}_{N}, \rho^{A}, \rho^{B}, E_{A}, E_{B}, \kappa\right) .
$$

Let us denote by $\mathscr{H}_{\kappa}^{A, B}$ the associated Hilbert C^{*}-quad module defined in [12]. We set

$$
\begin{equation*}
E_{\kappa}=\left\{(\alpha, b, a, \beta) \in E_{A} \times E_{B} \times E_{B} \times E_{A} \mid \kappa(\alpha, b)=(a, \beta)\right\} \tag{1.3}
\end{equation*}
$$

Each element of E_{κ} is called a tile. Let $X_{A, B}^{\kappa} \subset\left(E_{\kappa}\right)^{)^{2}}$ be the two-dimensional subshift of the Wang tilings of E_{κ} (cf. [19]). It consists of the two-dimensional configurations $x: \mathrm{Z}^{2} \rightarrow E_{\kappa}$ compatible to their boundary edges on each tile, and is called the subshift of the tiling space for the specification $\kappa: \Sigma^{A B} \rightarrow$ $\Sigma^{B A}$. We say that $X_{A, B}^{\kappa}$ is transitive if for two tiles $\omega, \omega^{\prime} \in E_{\kappa}$, there exists $\left(\omega_{i, j}\right)_{(i, j) \in \mathrm{Z}^{2}} \in X_{A, B}^{\kappa}$ such that $\omega_{0,0}=\omega, \omega_{i, j}=\omega^{\prime}$ for some $(i, j) \in \mathrm{Z}^{2}$ with $j<0<i$. We set

$$
\begin{align*}
\Omega_{\kappa}=\left\{(\alpha, a) \in E_{A} \times\right. & E_{B} \mid \tag{1.4}\\
& s(\alpha)=s(a) \\
& \left.\kappa(\alpha, b)=(a, \beta) \text { for some } \beta \in E_{A}, b \in E_{B}\right\}
\end{align*}
$$

and define two $\left|\Omega_{\kappa}\right| \times\left|\Omega_{\kappa}\right|$-matrices A_{κ} and B_{κ} with entries in $\{0,1\}$ by

$$
A_{\kappa}((\alpha, a),(\delta, b))= \begin{cases}1 & \kappa(\alpha, b)=(a, \beta) \text { for some } \beta \in E_{A} \tag{1.5}\\ 0 & \text { otherwise }\end{cases}
$$

for $(\alpha, a),(\delta, b) \in \Omega_{\kappa}$,

$$
B_{\kappa}((\alpha, a),(\beta, d))= \begin{cases}1 & \kappa(\alpha, b)=(a, \beta) \text { for some } b \in E_{B} \tag{1.6}\\ 0 & \text { otherwise }\end{cases}
$$

for $(\alpha, a),(\beta, d) \in \Omega_{\kappa}$ respectively. Put the block matrix

$$
H_{\kappa}=\left[\begin{array}{ll}
A_{\kappa} & A_{\kappa} \tag{1.7}\\
B_{\kappa} & B_{\kappa}
\end{array}\right]
$$

It has been proved in [12] that the C^{*}-algebra $\mathscr{O}_{\mathscr{H}_{\kappa}^{A, B}}$ associated with the Hilbert C^{*}-quad module $\mathscr{H}_{\kappa}^{A, B}$ is isomorphic to the Cuntz-Krieger algebra $\mathscr{O}_{H_{\kappa}}$ for the matrix H_{κ} (cf. [2]). In this paper, we first show the following theorem.

Theorem 1.1 (Theorem 2.10). The subshift $X_{A, B}^{\kappa}$ of the tiling space is transitive if and only if the matrix H_{κ} is irreducible. In this case, H_{κ} satisfies condition (I) in the sense of [2]. Hence if the subshift $X_{A, B}^{\kappa}$ of the tiling space is transitive, the C^{*}-algebra $\mathscr{O}_{\mathscr{H}_{k}^{A, B}}$ is simple and purely infinite.

We then see the following theorem.
Theorem 1.2 (Theorem 2.11). If the matrix A or B is irreducible, the matrix H_{κ} is irreducible and satisfies condition (I), so that the C^{*}-algebra $\mathcal{O}_{\mathscr{O}_{K}^{A, B}}$ is simple and purely infinite.

Let N, M be positive integers with $N, M>1$. They give 1×1 commuting matrices $A=[N], B=[M]$. The directed graph G_{A} associated to the matrix $A=[N]$ is a graph consists of N-self directed loops denoted by E_{A} with a vertex denoted by v. Similarly the directed graph G_{B} consists of M-self directed loops denoted by E_{B} with the vertex v. We fix a specification $\kappa: E_{A} \times$ $E_{B} \rightarrow E_{B} \times E_{A}$ defined by exchanging $\kappa(\alpha, a)=(a, \alpha)$ for $(\alpha, a) \in E_{A} \times E_{B}$. The specification is called the exchanging specification between E_{A} and E_{B}. We present the following K-theory formulae for the C^{*}-algebra $\mathscr{O}_{\mathscr{H}_{k}^{[N],[M]]}}$. In its computation, the Euclidean algorithm is used. For integers $1<N \leq M \in \mathbf{N}$, let $d=(N-1, M-1)$ be the greatest common divisor of $N-1$ and $M-1$. Let $k_{0}, k_{1}, \ldots, k_{j+1}$ be the successive integral quotients of $M-1$ by $N-1$ by the Euclidean algorithm such as

$$
\begin{aligned}
M-1 & =(N-1) k_{0}+r_{0} & \text { for some } & k_{0} \in \mathbf{Z}_{+}, \quad 0<r_{0}<N-1 \\
N-1 & =r_{0} k_{1}+r_{1} & \text { for some } & k_{1} \in \mathbf{Z}_{+}, 0<r_{1}<r_{0} \\
\vdots & & & \\
r_{j-2} & =r_{j-1} k_{j}+r_{j} & \text { for some } & k_{j} \in \mathbf{Z}_{+}, \quad 0<r_{j}<r_{j-1} \\
r_{j-1} & =d k_{j+1} . & &
\end{aligned}
$$

Theorem 1.3 (Theorem 3.5). For integers $1<N \leq M \in \mathrm{~N}$ and the exchanging specification κ between directed N-loops and M-loops, the C^{*} algebra $\mathscr{O}_{\mathscr{H}_{k}^{[N],[M]}}$ is a simple purely infinite Cuntz-Krieger algebra whose K groups are

$$
\begin{aligned}
K_{1}\left(\mathcal{O}_{\mathscr{H}_{k}^{[N],[M]}}\right) \cong & 0 \\
K_{0}\left(\mathcal{O}_{\mathscr{H}_{k}^{[N],[M]}}\right) \cong & \overbrace{\mathrm{Z} /(N-1) \mathrm{Z} \oplus \cdots \oplus \mathrm{Z} /(N-1) \mathrm{Z}}^{M-2} \\
& \oplus \overbrace{\mathrm{Z} /(M-1) \mathrm{Z} \oplus \cdots \oplus \mathrm{Z} /(M-1) \mathrm{Z}}^{N-2} \\
& \oplus \mathrm{Z} / d \mathrm{Z} \oplus \mathrm{Z} /\left[k_{1}, k_{2}, \ldots, k_{j+1}\right](M-1)(M+N-1) \mathrm{Z}
\end{aligned}
$$

where $d=(N-1, M-1)$ the greatest common divisor of $N-1$ and $M-1$, and the sequence $k_{0}, k_{1}, \ldots, k_{j+1}$ is the successive integral quotients of $M-1$ by $N-1$ by the Euclidean algorithm above, and the integer $\left[k_{1}, k_{2}, \ldots, k_{j+1}\right]$
is defined by inductively

$$
\begin{aligned}
{\left[k_{0}\right]=1, \quad\left[k_{1}\right]=k_{1}, \quad\left[k_{1}, k_{2}\right] } & =1+k_{1} k_{2} \\
\ldots, \quad\left[k_{1}, k_{2}, \ldots, k_{j+1}\right] & =\left[k_{1}, k_{2}, \ldots, k_{j}\right] k_{j+1}+\left[k_{1}, \ldots, k_{j-1}\right]
\end{aligned}
$$

We remark that the C^{*}-algebras studied in this paper are different from the higher rank graph algebras studied by G. Robertson-T. Steger [18], A. KumjianD. Pask [6], V. Deaconu [3], etc., (cf. [4], [17], [15], etc.). Throughout the paper, we denote by N and by Z_{+}the set of positive integers and the set of nonnegative integers respectively.

2. Transitivity of tilings $X_{A, B}^{\kappa}$ and simplicity of $\mathcal{O}_{\mathscr{H}_{K}^{A, B}}$

Let Σ be a finite set. The two-dimensional full shift over Σ is defined to be

$$
\Sigma^{\mathrm{Z}^{2}}=\left\{\left(x_{i, j}\right)_{(i, j) \in \mathrm{Z}^{2}} \mid x_{i, j} \in \Sigma\right\}
$$

An element $x \in \Sigma^{Z^{2}}$ is regarded as a function $x: Z^{2} \rightarrow \Sigma$ which is called a configuration on \mathbf{Z}^{2}. For a vector $m=\left(m_{1}, m_{2}\right) \in \mathbf{Z}^{2}$, let $\sigma^{m}: \Sigma^{\mathrm{Z}^{2}} \rightarrow \Sigma^{\mathrm{Z}^{2}}$ be the translation along vector m defined by

$$
\sigma^{m}\left(\left(x_{i, j}\right)_{(i, j) \in \mathcal{Z}^{2}}\right)=\left(x_{i+m_{1}, j+m_{2}}\right)_{(i, j) \in \mathcal{Z}^{2}} .
$$

A subset $X \subset \Sigma^{\mathrm{Z}^{2}}$ is said to be translation invariant if $\sigma^{m}(X)=X$ for all $m \in \mathbf{Z}^{2}$. It is obvious to see that a subset $X \subset \Sigma^{\mathrm{z}^{2}}$ is translation invariant if and only if X is invariant only both horizontally and vertically, that is, $\sigma^{(1,0)}(X)=X$ and $\sigma^{(0,1)}(X)=X$. For $k \in \mathbf{Z}_{+}$, put

$$
[-k, k]^{2}=\left\{(i, j) \in \mathrm{Z}^{2} \mid-k \leq i, j \leq k\right\}=[-k, k] \times[-k, k]
$$

A metric d on $\Sigma^{\mathrm{Z}^{2}}$ is defined by for $x, y \in \Sigma^{\mathrm{z}^{2}}$ with $x \neq y$

$$
d(x, y)=\frac{1}{2^{k}} \quad \text { if } \quad x_{(0,0)}=y_{(0,0)}
$$

where $k=\max \left\{k \in \mathbf{Z}_{+} \mid x_{[-k, k]^{2}}=y_{[-k, k]^{2}}\right\}$. If $x_{(0,0)} \neq y_{(0,0)}$, put $k=-1$ on the above definition. If $x=y$, we set $d(x, y)=0$. A two-dimensional subshift X is defined to be a closed, translation invariant subset of $\Sigma^{\mathrm{Z}^{2}}$ (cf. [8, p. 467]). A two-dimensional subshift X is said to have the diagonal property if for $\left(x_{i, j}\right)_{(i, j) \in \mathrm{Z}^{2}},\left(y_{i, j}\right)_{(i, j) \in \mathrm{Z}^{2}} \in X$, the conditions $x_{i, j}=y_{i, j}, x_{i+1, j-1}=y_{i+1, j-1}$ imply $x_{i, j-1}=y_{i, j-1}, x_{i+1, j}=y_{i+1, j}$ (see [11]). The diagonal property has the following property: for $x \in X$ and $(i, j) \in \mathrm{Z}^{2}$, the configuration x is determined by the diagonal line $\left(x_{i+n, j-n}\right)_{n \in \mathrm{Z}}$ through (i, j).

We henceforth go back to our previous situation of C^{*}-textile dynamical system $\left(\mathscr{A}_{N}, \rho^{A}, \rho^{B}, E_{A}, E_{B}, \kappa\right)$ coming from $N \times N$ commuting matrices A and B with specification κ as in Section 1. We always assume that both matrices A and B are essential. Recall that the matrices A and B give rise to directed graphs $G_{A}=\left(V, E_{A}\right)$ and $G_{B}=\left(V, E_{B}\right)$ with a common vertex set $V=\left\{v_{1}, \ldots, v_{N}\right\}$ and edge sets E_{A} and E_{B} respectively, where the edge set E_{A} consists of $A(i, j)$-edges from the vertex v_{i} to the vertex v_{j} and E_{B} consists of $B(i, j)$-edges from the vertex v_{i} to the vertex v_{j}. A two-dimensional subshift $X_{A, B}^{\kappa}$ is defined as in the following way. Let Σ be the set E_{κ} of tiles defined in (1.3). For $\omega=(\alpha, b, a, \beta) \in E_{\kappa}$, define maps $t(=$ top $), b(=$ bottom $): E_{\kappa} \rightarrow$ E_{A} and $l(=$ left $), r(=$ right $): E_{\kappa} \rightarrow E_{B}$ by setting

$$
t(\omega)=\alpha, \quad b(\omega)=\beta, \quad l(\omega)=a, \quad r(\omega)=b
$$

as in the following figure:

A configuration $\left(\omega_{i, j}\right)_{(i, j) \in \mathcal{Z}^{2}} \in E_{\kappa}^{\mathrm{Z}^{2}}$ is said to be paved if the conditions

$$
\begin{array}{lll}
t\left(\omega_{i, j}\right)=b\left(\omega_{i, j+1}\right), & & r\left(\omega_{i, j}\right)=l\left(\omega_{i+1, j}\right) \\
l\left(\omega_{i, j}\right)=r\left(\omega_{i-1, j}\right), & & b\left(\omega_{i, j}\right)=t\left(\omega_{i, j-1}\right)
\end{array}
$$

hold for all $(i, j) \in \mathrm{Z}^{2}$. Let $X_{A, B}^{\kappa}$ be the set of all paved configurations $\left(\omega_{i, j}\right)_{(i, j) \in \mathrm{Z}^{2}} \in E_{\kappa}^{\mathrm{Z}^{2}}$. It consists of the Wang tilings of the tiles of E_{κ} (see [19]). The following proposition is easy.

Proposition 2.1. $X_{A, B}^{\kappa}$ is a two-dimensional subshift having the diagonal property.

We write $\mathscr{A}_{N}=\mathrm{C} E_{1} \oplus \cdots \oplus \mathrm{C} E_{N}$ for the minimal projections $E_{i}, i=$ $1, \ldots, N$ of \mathscr{A}_{N} such that $\sum_{i=1}^{N} E_{i}=1$. Let us define the matrices \widehat{A}, \widehat{B} by setting for $\alpha \in E_{A}, a \in E_{B}, i, j=1, \ldots, N$,

$$
\begin{aligned}
& \widehat{A}(i, \alpha, j)= \begin{cases}1 & \text { if } s(\alpha)=i, r(\alpha)=j \\
0 & \text { otherwise }\end{cases} \\
& \widehat{B}(i, a, j)= \begin{cases}1 & \text { if } s(a)=i, r(a)=j \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Recall that the endomorphisms $\rho_{\alpha}^{A}, \rho_{a}^{B}$ of \mathscr{A}_{N} for $\alpha \in E_{A}, a \in E_{B}$ are defined
by

$$
\rho_{\alpha}^{A}\left(E_{i}\right)=\sum_{j=1}^{N} \widehat{A}(i, \alpha, j) E_{j}, \quad \rho_{a}^{B}\left(E_{i}\right)=\sum_{j=1}^{N} \widehat{B}(i, a, j) E_{j}
$$

for $i=1, \ldots, N$. They yield the C^{*}-textile dynamical system

$$
\left(\mathscr{A}_{N}, \rho^{A}, \rho^{B}, E_{A}, E_{B}, \kappa\right)
$$

with specification κ ([12]). Let $e_{\omega}, \omega \in E_{\kappa}$ be the standard basis of $\mathrm{C}^{\left|E_{\kappa}\right|}$. Put the projection $E_{\omega}=\rho_{b}^{B} \circ \rho_{\alpha}^{A}(1)\left(=\rho_{\beta}^{A} \circ \rho_{a}^{B}(1)\right) \in \mathscr{A}_{N}$ for $\omega=(\alpha, b, a, \beta) \in E_{\kappa}$. We set

$$
\mathscr{H}_{\kappa}^{A, B}=\sum_{\omega \in E_{\kappa}} e_{\omega} \otimes E_{\omega} \mathscr{A}_{N}
$$

Then $\mathscr{H}_{\kappa}^{A, B}$ has a natural structure of not only Hilbert C^{*}-right module over \mathscr{A}_{N} but also two other Hilbert C^{*}-bimodule structure, called Hilbert C^{*}-quad module. By two-dimensional analogue of Pimsner's construction of Hilbert C^{*}-bimodule algebra ([16]), we have introduced a C^{*}-algebra $\mathscr{O}_{\mathscr{H}_{K}^{A, B}}$ (see [12] and [13] for detail construction). Let Ω_{κ} be the subset of $E_{A} \times E_{B}$ defined in (1.4). We define two $\left|\Omega_{\kappa}\right| \times\left|\Omega_{\kappa}\right|$-matrcies A_{κ} and B_{κ} with entries in $\{0,1\}$ as in (1.5) and (1.6). The matrices A_{κ} and B_{κ} represent the concatenations of edges as in the following figures respectively:

and

Let H_{κ} be the $2\left|\Omega_{\kappa}\right| \times 2\left|\Omega_{\kappa}\right|$ matrix defined in (1.7). We have proved the following result in [12].

Theorem 2.2. The C^{*}-algebra $\mathscr{O}_{\mathscr{H}_{k}^{A, B}}$ associated with Hilbert C^{*}-quad module $\mathscr{H}_{\kappa}^{A, B}$ defined by commuting matrices A, B and a specification κ is isomorphic to the Cuntz-Krieger algebra $\mathscr{O}_{H_{\kappa}}$ for the matrix H_{κ}. Its K-groups $K_{*}\left(\mathcal{O}_{H_{k}}\right)$ are computed as
$K_{0}\left(\mathscr{O}_{H_{\kappa}}\right)=\mathrm{Z}^{n} /\left(A_{\kappa}+B_{\kappa}-I_{n}\right) \mathrm{Z}^{n}, \quad K_{1}\left(\mathscr{O}_{H_{\kappa}}\right)=\operatorname{Ker}\left(A_{\kappa}+B_{\kappa}-I_{n}\right)$ in Z^{n}, where $n=\left|\Omega_{\kappa}\right|$.

We will study a relationship between transitivity of the tiling space $X_{A, B}^{\kappa}$ and simplicity of the C^{*}-algebra $\mathscr{O}_{\mathscr{H}_{\kappa}^{A, B}}$. An essential matrix with entries in $\{0,1\}$ is said to satisfy condition (I) (in the sense of [2]) if the shift space defined by the topological Markov chain for the matrix is homeomorphic to a Cantor discontinuum. The condition is equivalent to the condition that every loop in the associated directed graph has an exit ([7]). It is a fundamental result that a Cuntz-Krieger algebra is simple and purely infinite if the underlying matrix is irreducible and satisfies condition (I) ([2]). We will find a condition of the two-dimensional subshift $X_{A, B}^{\kappa}$ of the tiling space under which the matrix H_{κ} is irreducible and satisfies condition (I). Hence the condition on $X_{A, B}^{\kappa}$ yields the simplicity and purely infiniteness of the algebra $\mathscr{O}_{\mathscr{H}_{k}^{A, B}}$.

We are assuming that both of the matrices A and B are essential. Then we have

Lemma 2.3. Both of the matrices A_{κ} and B_{κ} are essential.
Proof. For $(\alpha, a) \in \Omega_{\kappa}$, by definition of Ω_{κ}, there exist $\beta \in E_{A}$ and $b \in E_{B}$ such that $\kappa(\alpha, b)=(a, \beta)$. Since A is essential, one may take $\beta_{1} \in$ E_{A} such that $s\left(\beta_{1}\right)=r(b)(=r(\beta))$. Hence $\left(b, \beta_{1}\right) \in \Sigma^{B A}$. Put $\left(\alpha_{1}, b_{1}\right)=$ $\kappa^{-1}\left(b, \beta_{1}\right) \in \Sigma^{A B}$ so that $\left(\alpha_{1}, b\right) \in \Omega_{\kappa}$ and $A_{\kappa}\left((\alpha, a),\left(\alpha_{1}, b\right)\right)=1$ as in the following figure:

For $(\delta, b) \in \Omega_{\kappa}$ there exists $\alpha \in E_{A}$ such that $r(\alpha)=s(\delta)(=s(b))$ because A is essential. Hence $(\alpha, b) \in \Sigma^{A B}$. Put $(a, \beta)=\kappa(\alpha, b)$ so that $(\alpha, a) \in \Omega_{\kappa}$ and $A_{\kappa}((\alpha, a),(\delta, b))=1$ as in the following figure:

Therefore one sees that A_{κ} is essential, and similarly that B_{κ} is essential.
Hence we have
Proposition 2.4. The matrix H_{κ} is essential and satisfies condition (I).
Proof. By the previous lemma, both of the matrices A_{κ} and B_{κ} are essential. Hence every row of A_{κ} and of B_{κ} has at least one 1. Since

$$
H_{\kappa}=\left[\begin{array}{ll}
A_{\kappa} & A_{\kappa} \\
B_{\kappa} & B_{\kappa}
\end{array}\right]
$$

every row of H_{κ} has at least two 1's. This implies that a loop in the directed graph associated to H_{κ} must has an exit so that H_{κ} satisfies condition (I).

For $(\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right) \in \Omega_{\kappa}$, and $C, D=A$ or B, we have

$$
\left[C_{\kappa} D_{\kappa}\right]\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right)=\sum_{\left(\alpha_{1}, a_{1}\right) \in \Omega_{\kappa}} C_{\kappa}\left((\alpha, a),\left(\alpha_{1}, a_{1}\right)\right) D_{\kappa}\left(\left(\alpha_{1}, a_{1}\right),\left(\alpha^{\prime}, a^{\prime}\right)\right)
$$

Hence $\left[A_{\kappa} A_{\kappa}\right]\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right) \neq 0$ if and only if there exists $\left(\alpha_{1}, a_{1}\right) \in \Omega_{\kappa}$ such that $\kappa\left(\alpha, a_{1}\right)=(a, \beta)$ for some $\beta \in E_{A}$ and $\kappa\left(\alpha_{1}, a^{\prime}\right)=\left(a_{1}, \beta_{1}\right)$ for some $\beta_{1} \in E_{A}$ as in the following figure:

And also $\left[A_{\kappa} B_{\kappa}\right]\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right) \neq 0$ if and only if there exists $\left(\alpha_{1}, a_{1}\right) \in \Omega_{\kappa}$ such that $\kappa\left(\alpha, a_{1}\right)=(a, \beta)$ for some $\beta \in E_{A}$ and $\kappa\left(\alpha_{1}, b_{1}\right)=\left(a_{1}, \alpha^{\prime}\right)$ for some $b_{1} \in E_{B}$ as in the following figure:

Similarly $\left[B_{\kappa} A_{\kappa}\right]\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right) \neq 0$ if and only if there exists $\left(\alpha_{1}, a_{1}\right) \in \Omega_{\kappa}$ such that $\kappa(\alpha, b)=\left(a, \alpha_{1}\right)$ for some $b \in E_{B}$ and $\kappa\left(\alpha_{1}, a^{\prime}\right)=\left(a_{1}, \beta_{1}\right)$ for some $\beta_{1} \in E_{A}$ as in the following figure:

And also $\left[B_{\kappa} B_{\kappa}\right]\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right) \neq 0$ if and only if there exists $\left(\alpha_{1}, a_{1}\right) \in \Omega_{\kappa}$ such that $\kappa(\alpha, b)=\left(a, \alpha_{1}\right)$ for some $b \in E_{B}$ and $\kappa\left(\alpha_{1}, b_{1}\right)=\left(a_{1}, \alpha^{\prime}\right)$ for
some $b_{1} \in E_{B}$ as in the following figure:

Lemma 2.5. $A_{\kappa} B_{\kappa}=B_{\kappa} A_{\kappa}$.
Proof. For $(\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right) \in \Omega_{\kappa}$, we have $\left[A_{\kappa} B_{\kappa}\right]\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right)=m$ if and only if there exist $\left(\alpha_{i}, a_{i}^{\prime}\right) \in \Omega_{\kappa}, i=1, \ldots, m$ such that $\kappa\left(\alpha, a_{i}^{\prime}\right)=\left(a, \beta_{i}\right)$ for some $\beta_{i} \in E_{A}$ and $\kappa\left(\alpha_{i}, b_{i}\right)=\left(a_{i}^{\prime}, \alpha^{\prime}\right)$ for some $b_{i} \in E_{B}$ as in the following figure:

Put $\left(a_{i}, \beta_{i}^{\prime}\right)=\kappa\left(\beta_{i}, a^{\prime}\right)$. We then have $\left(\beta_{i}, a_{i}\right) \in \Omega_{\kappa}$ as in the following figure:

If $\left(\beta_{i}, a_{i}\right)=\left(\beta_{j}, a_{j}\right)$ in Ω_{κ}, then we have $\beta_{i}=\beta_{j}$ so that $a_{i}^{\prime}=a_{j}^{\prime}$ and hence $\alpha_{i}=\alpha_{j}$. Therefore we have $\left[B_{\kappa} A_{\kappa}\right]\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right)=m$.

Lemma 2.6. The following four conditions are equivalent.
(i) The matrix H_{κ} is irreducible.
(ii) For $(\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right) \in \Omega_{\kappa}$, there exist $n, m \in \mathrm{Z}_{+}$such that

$$
\begin{aligned}
& A_{\kappa}\left(A_{\kappa}+B_{\kappa}\right)^{n}\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right)>0 \\
& B_{\kappa}\left(A_{\kappa}+B_{\kappa}\right)^{m}\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right)>0
\end{aligned}
$$

(iii) The matrix $A_{\kappa}+B_{\kappa}$ is irreducible.
(iv) $\operatorname{For}(\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right) \in \Omega_{\kappa}$, there exists a paved configuration $\left(\omega_{i, j}\right)_{(i, j) \in Z^{2}} \in$ $X_{A, B}^{\kappa}$ such that

$$
t\left(\omega_{0,0}\right)=\alpha, \quad l\left(\omega_{0,0}\right)=a, \quad t\left(\omega_{i, j}\right)=\alpha^{\prime}, \quad l\left(\omega_{i, j}\right)=a^{\prime}
$$

for some $(i, j) \in \mathrm{Z}^{2}$ with $j<0<i$.
Proof. (i) \Leftrightarrow (ii): The identity

$$
H_{\kappa}^{n}=\left[\begin{array}{ll}
A_{\kappa}\left(A_{\kappa}+B_{\kappa}\right)^{n} & A_{\kappa}\left(A_{\kappa}+B_{\kappa}\right)^{n} \tag{2.1}\\
B_{\kappa}\left(A_{\kappa}+B_{\kappa}\right)^{n} & B_{\kappa}\left(A_{\kappa}+B_{\kappa}\right)^{n}
\end{array}\right]
$$

implies the equivalence between (i) and (ii).
(ii) \Rightarrow (iii): Suppose that for $(\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right) \in \Omega_{\kappa}$, there exists $n \in \mathbf{Z}_{+}$such that $A_{\kappa}\left(A_{\kappa}+B_{\kappa}\right)^{n}\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right)>0$ so that

$$
\left(A_{\kappa}+B_{\kappa}\right)^{n+1}\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right)>0
$$

Hence the matrix $A_{\kappa}+B_{\kappa}$ is irreducible.
(iii) \Rightarrow (ii): As A_{κ} and B_{κ} are both essential, for $(\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right) \in \Omega_{\kappa}$ there exists $\left(\alpha_{1}, a_{1}\right),\left(\alpha_{2}, a_{2}\right) \in \Omega_{\kappa}$ such that

$$
\begin{aligned}
& A_{\kappa}\left((\alpha, a),\left(\alpha_{1}, a_{1}\right)\right)=1 \\
& B_{\kappa}\left((\alpha, a),\left(\alpha_{2}, a_{2}\right)\right)=1
\end{aligned}
$$

Since $A_{\kappa}+B_{\kappa}$ is irreducible, there exist $n, m \in \mathrm{Z}_{+}$such that

$$
\begin{aligned}
& \left(A_{\kappa}+B_{\kappa}\right)^{n}\left(\left(\alpha_{1}, a_{1}\right),\left(\alpha^{\prime}, a^{\prime}\right)\right)>0 \\
& \left(A_{\kappa}+B_{\kappa}\right)^{m}\left(\left(\alpha_{2}, a_{2}\right),\left(\alpha^{\prime}, a^{\prime}\right)\right)>0
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& A_{\kappa}\left(A_{\kappa}+B_{\kappa}\right)^{n}\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right)>0 \\
& B_{\kappa}\left(A_{\kappa}+B_{\kappa}\right)^{m}\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right)>0
\end{aligned}
$$

(ii) \Rightarrow (iv): For $(\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right) \in \Omega_{\kappa}$, take $\left(\alpha_{1}, a_{1}\right) \in \Omega_{\kappa}$ and $\beta \in E_{A}$ such that $\kappa\left(\alpha, a_{1}\right)=(a, \beta)$. By (ii), there exists $m \in \mathrm{Z}_{+}$with $B_{\kappa}\left(A_{\kappa}+\right.$ $\left.B_{\kappa}\right)^{m}\left((\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right)\right)>0$. One may take $b^{\prime} \in E_{B}$ and $\beta^{\prime} \in E_{A}$ satisfying $\kappa\left(\alpha^{\prime}, b^{\prime}\right)=\left(a^{\prime}, \beta^{\prime}\right)$, so that there exists a paved configuration $\left(\omega_{i, j}\right)_{(i, j) \in Z^{2}} \in$ $X_{A, B}^{\kappa}$ such that $\omega_{0,0}=\left(\alpha, a_{1}, a, \beta\right)$ and $\omega_{i, j}=\left(\alpha^{\prime}, b^{\prime}, a^{\prime}, \beta^{\prime}\right)$ for some $(i, j) \in$
Z^{2} with $j<0<i$ as in the following figure:

(iv) \Rightarrow (ii): The assertion is clear.

Definition 2.7. A two-dimensional subshift $X_{A, B}^{\kappa}$ is said to be transitive if for two tiles $\omega, \omega^{\prime} \in E_{\kappa}$ there exists a paved configuration $\left(\omega_{i, j}\right)_{(i, j) \in \mathcal{Z}^{2}} \in X_{A, B}^{\kappa}$ such that $\omega_{0,0}=\omega$ and $\omega_{i, j}=\omega^{\prime}$ for some $(i, j) \in \mathrm{Z}^{2}$ with $j<0<i$.

Theorem 2.8. The subshift $X_{A, B}^{\kappa}$ of the tiling space is transitive if and only if the matrix H_{κ} is irreducible.

Proof. Assume that the matrix H_{κ} is irreducible. Hence the condition (iv) in Lemma 2.6 holds. Let $\omega=(\alpha, b, a, \beta), \omega^{\prime}=\left(\alpha^{\prime}, b^{\prime}, a^{\prime}, \beta^{\prime}\right) \in E_{\kappa}$ be two tiles. Since A is essential, there exists $\beta_{1} \in E_{A}$ such that $r(\beta)(=r(b))=s\left(\beta_{1}\right)$, so that $\left(b, \beta_{1}\right) \in \Sigma^{B A}$. One may take $\left(\alpha_{1}, b_{1}\right) \in \Sigma^{A B}$ such that $\kappa\left(\alpha_{1}, b_{1}\right)=$ (b, β_{1}) and hence $\left(\alpha_{1}, b\right) \in \Omega_{\kappa}$ as in the following figure:

For $\left(\alpha_{1}, b\right),\left(\alpha^{\prime}, a^{\prime}\right) \in \Omega_{\kappa}$, by (iv) in Lemma 2.6, there exists $\left(\omega_{i, j}\right)_{(i, j) \in \mathcal{Z}^{2}} \in$ $X_{A, B}^{\kappa}$ such that $t\left(\omega_{0,0}\right)=\alpha_{1}, l\left(\omega_{0,0}\right)=b, t\left(\omega_{i, j}\right)=\alpha^{\prime}, l\left(\omega_{i, j}\right)=a^{\prime}$ for some $(i, j) \in \mathrm{Z}^{2}$ with $j<0<i$. Since $X_{A, B}^{\kappa}$ has the diagonal property, there exists a paved configuration $\left(\omega_{i, j}^{\prime}\right)_{(i, j) \in Z^{2}} \in X_{A, B}^{\kappa}$ such that $\omega_{0,0}^{\prime}=\omega, \omega_{i, j}^{\prime}=\omega^{\prime}$. Hence $X_{A, B}^{\kappa}$ is transitive.

Conversely assume that $X_{A, B}^{\kappa}$ is transitive. For $(\alpha, a),\left(\alpha^{\prime}, a^{\prime}\right) \in \Omega_{\kappa}$, there exist $b, b^{\prime} \in E_{B}$ and $\beta, \beta^{\prime} \in E_{A}$ such that $\omega=(\alpha, b, a, \beta), \omega^{\prime}=$ $\left(\alpha^{\prime}, b^{\prime}, a^{\prime}, \beta^{\prime}\right) \in E_{\kappa}$. It is clear that the transitivity of $X_{A, B}^{\kappa}$ implies the condition (iv) in Lemma 2.6, so that H_{κ} is irreducible.

Lemma 2.9. If A or B is irreducible, $X_{A, B}^{K}$ is transitive.
Proof. Suppose that the matrix A is irreducible. For two tiles $\omega=$ $(\alpha, b, a, \beta), \omega^{\prime}=\left(\alpha^{\prime}, b^{\prime}, a^{\prime}, \beta^{\prime}\right) \in E_{\kappa}$, there exist concatenated edges $\left(\beta, \beta_{1}, \ldots, \beta_{n}, \alpha^{\prime}\right)$ in the graph G_{A} for some edges $\beta_{1}, \ldots, \beta_{n} \in E_{A}$. Since $X_{A, B}^{\kappa}$ has the diagonal property, there exists a configuration $\left(\omega_{i, j}\right)_{(i, j) \in \mathcal{Z}^{2}} \in$ $X_{A, B}^{\kappa}$ such that $\omega^{\prime}=\omega_{i, j}$ for some $i>0, j=-1$. Hence $X_{A, B}^{\kappa}$ is transitive.

Since the C^{*}-algebra $\mathscr{O}_{\mathscr{H}_{\kappa}^{A, B}}$ is isomorphic to the Cuntz-Krieger algebra $\mathscr{O}_{H_{\kappa}}$ by [12], we see the following theorems.

Theorem 2.10. The subshift $X_{A, B}^{\kappa}$ of the tiling space is transitive if and if the matrix H_{κ} is irreducible. In this case, H_{κ} satisfies condition (I). Hence if the subshift $X_{A, B}^{\kappa}$ of the tiling space is transitive, the C^{*}-algebra $\mathscr{O}_{\mathscr{H}_{K}^{A, B}}$ is simple and purely infinite.

By Lemma 2.9, we have
Theorem 2.11. If the matrix A or B is irreducible, the matrix H_{κ} is irreducible and satisfies condition (I), so that the C^{*}-algebra $\mathscr{O}_{\mathscr{H}_{K}^{A, B}}$ is simple and purely infinite.

3. The algebra $\mathscr{O}_{\mathscr{H}} \mathscr{E}_{k],[M]}$ for two positive integers N, M

Let N, M be positive integers with $N, M>1$. They give 1×1 commuting matrices $A=[N], B=[M]$. We will present K-theory formulae for the C^{*}-algebras $\mathscr{O}_{\mathscr{H}_{k}^{[N],[M]}}$ with the exchanging specification κ. In the computations below, we will use the Euclidean algorithm to find order of the torsion part of the K_{0}-group. The directed graph G_{A} for the matrix $A=[N]$ is a graph consisting of N-self directed loops with a vertex denoted by v. The N-self directed loops are denoted by E_{A}. Similarly the directed graph G_{B} for $B=[M]$ consists of M-self directed loops denoted by E_{B} with the vertex v. We fix a specification $\kappa: E_{A} \times E_{B} \rightarrow E_{B} \times E_{A}$ defined by exchanging $\kappa(\alpha, a)=(a, \alpha)$ for $(\alpha, a) \in$ $E_{A} \times E_{B}$. Hence $\Omega_{\kappa}=E_{A} \times E_{B}$ so that $\left|\Omega_{\kappa}\right|=\left|E_{A}\right| \times\left|E_{B}\right|=N \times M$. We then know $A_{\kappa}((\alpha, a),(\delta, b))=1$ if and only if $b=a$, and $B_{\kappa}((\alpha, a),(\beta, d))=1$ if and only if $\beta=\alpha$ as in the following figures respectively.

and

In [12], the K-groups for the case $N=2$ and $M=3$ have been computed such that

$$
K_{0}\left(\mathscr{O}_{\left.\mathscr{H}_{k}^{[2],[3]}\right)} \cong \mathrm{Z} / 8 \mathrm{Z}, \quad K_{1}\left(\mathscr{O}_{\left.\mathscr{H}_{k}^{[2],[3]}\right)} \cong 0\right.\right.
$$

Hence $\mathscr{O}_{\mathscr{H}_{\kappa}^{[2][1]]}}$ is stably isomorphic to the Cuntz algebra \mathscr{O}_{9} of order 9 ([1]). We will generalize the above computations.

Let I_{n} be the $n \times n$ identity matrix and E_{n} the $n \times n$ matrix whose entries are all 1's. For an $N \times N$-matrix $C=\left[c_{i, j}\right]_{i, j=1}^{N}$ and an $M \times M$-matrix $D=\left[d_{k, l}\right]_{k, l=1}^{M}$, denote by $C \otimes D$ the $N M \times N M$ matrix

$$
C \otimes D=\left[\begin{array}{cccc}
c_{11} D & c_{12} D & \ldots & c_{1 N} D \\
c_{21} D & c_{22} D & \ldots & c_{2 N} D \\
\vdots & \vdots & \ddots & \vdots \\
c_{N 1} D & c_{N 2} D & \ldots & c_{N N} D
\end{array}\right]
$$

Hence we have

$$
\begin{aligned}
& E_{N} \otimes I_{M}=\left[\begin{array}{cccc}
I_{M} & I_{M} & \ldots & I_{M} \\
I_{M} & I_{M} & \ldots & I_{M} \\
\vdots & \vdots & \ddots & \vdots \\
I_{M} & I_{M} & \ldots & I_{M}
\end{array}\right], \\
& I_{N} \otimes E_{M}=\left[\begin{array}{cccc}
E_{M} & 0 & \ldots & 0 \\
0 & E_{M} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & E_{M}
\end{array}\right]
\end{aligned}
$$

We put $E_{[N]}=\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}, E_{[M]}=\left\{a_{1}, \ldots, a_{M}\right\}$. As $\Omega_{\kappa}=E_{[N]} \times E_{[M]}$, the basis of $\mathrm{C}^{N} \otimes \mathrm{C}^{M}$ are ordered lexicographically from left as in the following way:

$$
\begin{array}{r}
\left(\alpha_{1}, a_{1}\right), \ldots,\left(\alpha_{1}, a_{M}\right),\left(\alpha_{2}, a_{1}\right), \ldots,\left(\alpha_{2}, a_{M}\right) \tag{3.1}\\
\ldots,\left(\alpha_{N}, a_{1}\right), \ldots,\left(\alpha_{N}, a_{M}\right)
\end{array}
$$

Let A_{κ} and B_{κ} be the matrices defined in the previous section for the matrices $A=[N], B=[M]$ with the exchanging specification κ. The following lemma is direct.

Lemma 3.1. The matrices A_{κ}, B_{κ} are written as

$$
A_{\kappa}=E_{N} \otimes I_{M}, \quad B_{\kappa}=I_{N} \otimes E_{M}
$$

along the ordered basis (3.1). Hence we have

$$
A_{\kappa}+B_{\kappa}-I_{N M}=\left[\begin{array}{cccc}
E_{M} & I_{M} & \ldots & I_{M} \tag{3.2}\\
I_{M} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & I_{M} \\
I_{M} & \ldots & I_{M} & E_{M}
\end{array}\right]
$$

We denote by $H(0)$ the matrix $A_{\kappa}+B_{\kappa}-I_{N M}$. By Theorem 2.2, the K-groups of the algebra $\mathscr{O}_{\mathscr{H}_{k}^{[N],[M]}}$ are given by the kernel $\operatorname{Ker}(H(0))$ and the cokernel Coker $(H(0))$ of the matrix $H(0)$ in $\mathrm{Z}^{N M}$. For an $M \times M$ matrix C and $i, j=1,2, \ldots, N$ with $i \neq j$, define an $N \times N$ block matrix $\mathrm{E}_{i, j}(C)=$ $\left[\mathrm{E}_{i, j}(C)(k, l)\right]_{k, l=1}^{N}$, whose entries $\mathrm{E}_{i, j}(C)(k, l), k, l=1,2, \ldots, N$ are $M \times M$ matrices, by setting

$$
\mathrm{E}_{i, j}(C)(k, l)= \begin{cases}I_{M} & (k=l) \\ C & (k=i, j=l) \\ 0 & \text { else }\end{cases}
$$

The multiplication of the matrix $\mathrm{E}_{i, j}(C)$ from the left (resp. right) corresponds to the operation of adding the C-multiplication of the j th row (resp. i th column) to the i th row (resp. j th column). We will transform $H(0)$ preserving isomorphism classes of the groups $\operatorname{Ker}(H(0))$ and $\operatorname{Coker}(H(0))$ in $\mathbf{Z}^{N M}$ by multiplying the matrices $\mathrm{E}_{i, j}(C), i, j=1,2, \ldots, N$.

We first consider row operations and set

$$
\begin{aligned}
& H(1)=\mathrm{E}_{N-1, N}\left(-I_{M}\right) \mathrm{E}_{N-2, N-1}\left(-I_{M}\right) \cdots \mathrm{E}_{1,2}\left(-I_{M}\right) H(0), \\
& H(2)=\mathrm{E}_{N, N-1}\left(I_{M}\right) \mathrm{E}_{N-1, N-2}\left(I_{M}\right) \cdots \mathrm{E}_{2,1}\left(I_{M}\right) H(1) \\
& H(3)=\mathrm{E}_{1,2}\left(I_{M}\right) \mathrm{E}_{2,3}\left(I_{M}\right) \cdots \mathrm{E}_{N-2, N-1}\left(I_{M}\right) \mathrm{E}_{N-1, N}\left(E_{M}-I_{M}\right) H(2) .
\end{aligned}
$$

It is straightforward to see that the matrix H (3) goes to

$$
H(3)=\left[\begin{array}{cccccc}
p_{M}(N-1) & 0 & & \ldots & & 0 \\
p_{M}(N-2) & E_{M}-I_{M} & & & & \\
\vdots & \vdots & \ddots & \ddots & & \vdots \\
p_{M}(2) & \vdots & & \ddots & & \\
p_{M}(1) & E_{M}-I_{M} & \ldots & \ldots & E_{M}-I_{M} & 0 \\
E_{M} & I_{M} & \ldots & \ldots & I_{M} & I_{M}
\end{array}\right]
$$

where $p_{M}(i)=E_{M}^{2}+(i-1) E_{M}-i I_{M}=\left(E_{M}+i I_{M}\right)\left(E_{M}-I_{M}\right)$ for $i=1, \ldots N-1$.

We second consider column operations and set

$$
H(4)=H(3) \mathrm{E}_{N, N-1}\left(-I_{M}\right) \mathrm{E}_{N, N-2}\left(-I_{M}\right) \cdots \mathrm{E}_{N, 2}\left(-I_{M}\right) \mathrm{E}_{N, 1}\left(-E_{M}\right)
$$

which goes to

$$
H(4)=\left[\begin{array}{cccccc}
p_{M}(N-1) & 0 & & \cdots & & 0 \\
p_{M}(N-2) & E_{M}-I_{M} & & & & \\
\vdots & \vdots & \ddots & \ddots & & \vdots \\
p_{M}(2) & \vdots & & \ddots & & \\
p_{M}(1) & E_{M}-I_{M} & \ldots & \ldots & E_{M}-I_{M} & 0 \\
0 & 0 & \ldots & \ldots & 0 & I_{M}
\end{array}\right]
$$

By successive multiplications of the matrices

$$
\begin{aligned}
& \mathrm{E}_{N-1, N-2}\left(-I_{M}\right) \mathrm{E}_{N-1, N-3}\left(-I_{M}\right) \cdots \mathrm{E}_{N-1,2}\left(-I_{M}\right) \mathrm{E}_{N-1,1}\left(-\left(E_{M}+I_{M}\right)\right) \\
& \mathrm{E}_{N-2, N-3}\left(-I_{M}\right) \mathrm{E}_{N-2, N-4}\left(-I_{M}\right) \cdots \mathrm{E}_{N-2,2}\left(-I_{M}\right) \mathrm{E}_{N-2,1}\left(-\left(E_{M}+2 I_{M}\right)\right) \\
& \mathrm{E}_{3,2}\left(-I_{M}\right) \mathrm{E}_{3,1}\left(-\left(E_{M}+(N-2) I_{M}\right)\right) \\
& \mathrm{E}_{2,1}\left(-\left(E_{M}+(N-1) I_{M}\right)\right),
\end{aligned}
$$

from the right side of $H(4)$, we obtain the diagonal matrix

$$
\tilde{H}=\left[\begin{array}{cccccc}
p_{M}(N-1) & 0 & & \cdots & & 0 \\
0 & E_{M}-I_{M} & & & & \\
& & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & & \\
& & & & E_{M}-I_{M} & 0 \\
0 & & \cdots & & 0 & I_{M}
\end{array}\right]
$$

As $E_{M}^{2}=M E_{M}$, we have $p_{M}(N-1)=(M+N-2) E_{M}-(N-1) I_{M}$. We thus have

Lemma 3.2.

$$
\operatorname{Ker}\left(A_{\kappa}+B_{\kappa}-I_{N M}\right) \text { in } \mathrm{Z}^{N M} \cong 0
$$

and

$$
\begin{aligned}
& \operatorname{Coker}\left(A_{\kappa}+B_{\kappa}-I_{N M}\right) \text { in } \mathrm{Z}^{N M} \\
& \cong \overbrace{\mathrm{Z}^{M} /\left(E_{M}-I_{M}\right) \mathrm{Z}^{M} \oplus \cdots \oplus \mathrm{Z}^{M} /\left(E_{M}-I_{M}\right) \mathrm{Z}^{M}}^{(N-2)} \\
& \quad \oplus \mathrm{Z}^{M} /\left((M+N-2) E_{M}-(N-1) I_{M}\right) \mathrm{Z}^{M} .
\end{aligned}
$$

Proof. It is straightforward to see that the matrix $A_{\kappa}+B_{\kappa}-I_{N M}$ is invertible by the formula (3.2). Since

$$
\operatorname{Coker}\left(A_{\kappa}+B_{\kappa}-I_{N M}\right) \text { in } \mathbf{z}^{N M} \cong \mathrm{z}^{N M} / \tilde{H} \mathbf{Z}^{N M}
$$

the formula for the cokernel is obvious.
We will next compute the following groups to compute $\operatorname{Coker}\left(A_{\kappa}+B_{\kappa}-\right.$ $\left.I_{N M}\right)$ in $\mathrm{Z}^{N M}$.
(i) $\mathrm{Z}^{M} /\left(E_{M}-I_{M}\right) \mathrm{Z}^{M}$,
(ii) $\mathrm{Z}^{M} /\left((M+N-2) E_{M}-(N-1) I_{M}\right) \mathrm{Z}^{M}$

For an integer c and $i, j=1,2, \ldots, M$ with $i \neq j$, define an $M \times M$ matrix $E_{i, j}(c)=\left[E_{i, j}(c)(k, l)\right]_{k, l=1}^{M}$ by setting

$$
E_{i, j}(c)(k, l)= \begin{cases}1 & (k=l) \tag{3.3}\\ c & (k=i, j=l) \\ 0 & \text { else }\end{cases}
$$

(i) By successive multiplications of the matrices

$$
\begin{aligned}
& E_{M-1, M}(-1) E_{M-2, M-1}(-1) \cdots E_{1,2}(-1) \\
& E_{M, M-1}(1) E_{M-1, M-2}(1) \cdots E_{2,1}(1) \\
& E_{M, M-1}(-1) E_{M, M-2}(-1) \cdots E_{M, 1}(-1)
\end{aligned}
$$

from the left side of the matrix

$$
E_{M}-I_{M}=\left[\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \ldots & 1 & 0
\end{array}\right]
$$

we get the matrix

$$
\left[\begin{array}{ccccc}
-1 & 1 & 0 & \ldots & 0 \\
-1 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & 1 & 0 \\
-1 & 0 & \ldots & 0 & 1 \\
M-1 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

which goes to the diagonal matrix with diagonal entries $[1,1, \ldots, 1, M-1]$ by elementary column operations. Hence we see that

$$
\begin{equation*}
\mathrm{Z}^{M} /\left(E_{M}-I_{M}\right) \mathrm{Z}^{M} \cong \mathrm{Z} /(M-1) \mathrm{Z} \tag{3.4}
\end{equation*}
$$

(ii) Put $e=(M+N-2)-(N-1)=M-1$ and $f=M+N-2$. Then we have

$$
(M+N-2) E_{M}-(N-1) I_{M}=\left[\begin{array}{cccc}
e & f & \cdots & f \tag{3.5}\\
f & e & \ddots & \vdots \\
\vdots & \ddots & \ddots & f \\
f & \cdots & f & e
\end{array}\right]
$$

By a similar manner to the preceding matrix operations from $H(1)$ to $H(4)$, one obtains the following matrix denoted by $L(1)$ from the matrix (3.5)

$$
L(1)=\left[\begin{array}{ccccc}
e-f & f-e & 0 & \cdots & 0 \\
e-f & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & f-e & 0 \\
e-f & 0 & \cdots & 0 & f-e \\
e & f & \cdots & f & f
\end{array}\right]
$$

By exchanging columns in the matrix

$$
L(1) E_{2,1}(1) E_{3,1}(1) \cdots E_{M, 1}(1),
$$

we have

$$
L(2)=\left[\begin{array}{ccccc}
f-e & 0 & \cdots & 0 & 0 \\
0 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & f-e & 0 & 0 \\
0 & \cdots & 0 & f-e & 0 \\
f & \cdots & f & f & e+(M-1) f
\end{array}\right]
$$

It is easy to see that the matrix

$$
E_{M-1, M-2}(1) \cdots E_{3,2}(1) E_{2,1}(1) L(2) E_{2,1}(-1) E_{3,2}(-1) \cdots E_{M-1, M-2}(-1)
$$

goes to

$$
\tilde{L}=\left[\begin{array}{ccccc}
f-e & 0 & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & f-e & 0 \\
0 & \ldots & 0 & f & e+(M-1) f
\end{array}\right]
$$

Put the 2×2 matrix $L_{(N, M)}$ by setting

$$
L_{(N, M)}=\left[\begin{array}{cc}
f-e & 0 \\
f & e+(M-1) f
\end{array}\right] .
$$

As $f-e=N-1$, we have the following lemma with (3.4).
Lemma 3.3.
(i) $\mathrm{Z}^{M} /\left(E_{M}-I_{M}\right) \mathrm{Z}^{M} \cong \mathrm{Z} /(M-1) \mathrm{Z}$.
(ii) $\mathrm{Z}^{M} /\left((M+N-2) E_{M}-(N-1) I_{M}\right) \mathrm{Z}^{M}$

$$
\cong \overbrace{\mathbf{Z} /(N-1) \mathbf{Z} \oplus \cdots \oplus \mathbf{Z} /(N-1) \mathbf{Z}}^{M-2} \oplus \mathrm{Z}^{2} / L_{(N, M)} \mathbf{Z}^{2} .
$$

It remains to compute the group $\mathrm{Z}^{2} / L_{(N, M)} \mathrm{Z}^{2}$. Put $n=N-1, m=M-1$. As $f-e=n$ and $f=m+n$, we have $e+(M-1) f=(M-1)(M+N-1)=$ $m(m+n+1)$ so that

$$
L_{(N, M)}=\left[\begin{array}{cc}
n & 0 \\
n+m & m(m+n+1)
\end{array}\right] .
$$

For an integer c and $i, j=1,2$ with $i \neq j$, define an 2×2 matrix $E_{i, j}(c)=$ $\left[E_{i, j}(c)(k, l)\right]_{k, l=1}^{2}$ in a similar way to (3.3). Put $L_{n, m}=E_{2,1}(-1) L_{(N, M)}$ so that

$$
L_{n, m}=\left[\begin{array}{cc}
n & 0 \\
m & m(m+n+1)
\end{array}\right]
$$

We may assume that $M \geq N$ and hence $m \geq n$.

If m is divided by n so that $m=n k$ for some $k \in \mathrm{~N}$, the matrix $E_{2,1}(-k) L_{n, m}$ goes to the diagonal matrix:

$$
\left[\begin{array}{cc}
n & 0 \\
0 & m(m+n+1)
\end{array}\right]=\left[\begin{array}{cc}
N-1 & 0 \\
0 & (M-1)(M+N-1)
\end{array}\right] .
$$

Hence we have

$$
\mathrm{Z}^{2} / L_{(N, M)} \mathrm{Z}^{2} \cong \mathrm{Z} /(N-1) \mathrm{Z} \oplus \mathrm{Z} /(M-1)(M+N-1) \mathrm{Z}
$$

Otherwise, by the Euclidean algorithm, we have lists of integers $r_{0}, r_{1}, \ldots, r_{j}$ and $k_{0}, k_{1}, \ldots, k_{j+1}$ for some $j \in \mathrm{~N}$ such that

$$
\begin{array}{rlrl}
m & =n k_{0}+r_{0}, & & 0<r_{0}<n, \\
n & =r_{0} k_{1}+r_{1}, & & 0<r_{1}<r_{0}, \\
r_{0} & =r_{1} k_{2}+r_{2}, & & 0<r_{2}<r_{1}, \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \cdots \\
r_{j-2} & =r_{j-1} k_{j}+r_{j}, & & 0<r_{j}<r_{j-1}, \\
r_{j-1} & =r_{j} k_{j+1}, & & 0=r_{j+1}
\end{array}
$$

where $r_{j}=(m, n)$ the greatest common divisor of m and n. Put $g=m(m+$ $n+1)$. We set

$$
L_{n, m}(0)=E_{2,1}\left(-k_{0}\right) L_{n, m}=\left[\begin{array}{cc}
n & 0 \\
r_{0} & g
\end{array}\right]
$$

We define a finite sequence of matrices $L_{n, m}(l), l=1,2, \ldots$ by

$$
L_{n, m}(1)=E_{1,2}\left(-k_{1}\right) L_{n, m}(0), \quad L_{n, m}(2)=E_{2,1}\left(-k_{2}\right) L_{n, m}(1)
$$

and inductively

$$
\begin{aligned}
L_{n, m}(2 i-1) & =E_{1,2}\left(-k_{2 i-1}\right) L_{n, m}(2 i-2) \\
L_{n, m}(2 i) & =E_{2,1}\left(-k_{2 i}\right) L_{n, m}(2 i-1)
\end{aligned}
$$

The Euclidean algorithm stops at $j+1=2 i-1$ or $j+1=2 i$ for some $i \in \mathrm{~N}$. We set

$$
\begin{gathered}
{\left[k_{0}\right]=1, \quad\left[k_{1}\right]=k_{1}, \quad\left[k_{1}, k_{2}\right]=1+k_{1} k_{2}, \quad\left[k_{1}, k_{2}, k_{3}\right]=\left[k_{1}, k_{2}\right] k_{3}+\left[k_{1}\right]} \\
\ldots, \quad\left[k_{1}, k_{2}, \ldots, k_{j+1}\right]=\left[k_{1}, k_{2}, \ldots, k_{j}\right] k_{j+1}+\left[k_{1}, \ldots, k_{j-1}\right]
\end{gathered}
$$

Then we have

$$
L_{n, m}(1)=\left[\begin{array}{cc}
r_{1} & -\left[k_{1}\right] g \\
r_{0} & g
\end{array}\right], \quad L_{n, m}(2)=\left[\begin{array}{cc}
r_{1} & -\left[k_{1}\right] g \\
r_{2} & {\left[k_{1}, k_{2}\right] g}
\end{array}\right],
$$

and inductively

$$
\begin{aligned}
L_{n, m}(2 i-1) & =\left[\begin{array}{cc}
r_{2 i-1} & -\left[k_{1}, k_{2}, \ldots, k_{2 i-1}\right] g \\
r_{2 i-2} & {\left[k_{1}, k_{2}, \ldots, k_{2 i-2}\right] g}
\end{array}\right], \\
L_{n, m}(2 i) & =\left[\begin{array}{cc}
r_{2 i-1} & -\left[k_{1}, k_{2}, \ldots, k_{2 i-1}\right] g \\
r_{2 i} & {\left[k_{1}, k_{2}, \ldots, k_{2 i}\right] g}
\end{array}\right]
\end{aligned}
$$

for $i=1,2, \ldots$ We denote by d the greatest common divisor (m, n) of m and n, so that $d=r_{j}$. Take $m_{0} \in \mathbf{Z}$ such that $m=m_{0} d$. Put $g_{0}=m_{0}(m+n+1)$ so that $g=g_{0} d$. We have two cases.

Case 1: $j+1=2 i-1$ for some $i \in \mathrm{~N}$. We have

$$
L_{n, m}(j+1)=\left[\begin{array}{cc}
r_{j+1} & -\left[k_{1}, k_{2}, \ldots, k_{j+1}\right] g \\
r_{j} & {\left[k_{1}, k_{2}, \ldots, k_{j}\right] g}
\end{array}\right]=\left[\begin{array}{cc}
0 & -\left[k_{1}, k_{2}, \ldots, k_{j+1}\right] g \\
d & {\left[k_{1}, k_{2}, \ldots, k_{j}\right] g_{0} d}
\end{array}\right]
$$

and hence

$$
L_{n, m}(j+1) E_{1,2}\left(-\left[k_{1}, k_{2}, \ldots, k_{j}\right] g_{0}\right)=\left[\begin{array}{cc}
0 & -\left[k_{1}, k_{2}, \ldots, k_{j+1}\right] g \\
d & 0
\end{array}\right]
$$

Case 2: $j+1=2 i$ for some $i \in \mathrm{~N}$. We have

$$
L_{n, m}(j+1)=\left[\begin{array}{cc}
r_{j} & -\left[k_{1}, k_{2}, \ldots, k_{j}\right] g \\
r_{j+1} & {\left[k_{1}, k_{2}, \ldots, k_{j+1}\right] g}
\end{array}\right]=\left[\begin{array}{cc}
d & -\left[k_{1}, k_{2}, \ldots, k_{j}\right] g_{0} d \\
0 & {\left[k_{1}, k_{2}, \ldots, k_{j+1}\right] g}
\end{array}\right]
$$

and hence

$$
L_{n, m}(j+1) E_{1,2}\left(\left[k_{1}, k_{2}, \ldots, k_{j}\right] g_{0}\right)=\left[\begin{array}{cc}
d & 0 \\
0 & {\left[k_{1}, k_{2}, \ldots, k_{j+1}\right] g}
\end{array}\right]
$$

We reach the following lemma.
Lemma 3.4.

$$
\mathrm{Z}^{2} / L_{(N, M)} \mathrm{Z}^{2} \cong \mathrm{Z} / d \mathrm{Z} \oplus \mathrm{Z} /\left[k_{1}, k_{2}, \ldots, k_{j+1}\right] g \mathrm{Z}
$$

Therefore we have
Theorem 3.5. For positive integers $1<N \leq M \in \mathrm{~N}$ and the exchanging specification κ between N-loops and M-loops in a graph with one vertex, the
C^{*}-algebra $\mathscr{O}_{\mathscr{H}_{\kappa}^{[N],[M]}}$ is a simple purely infinite Cuntz-Krieger algebra whose K-groups are

$$
\begin{aligned}
K_{1}\left(\mathcal{O}_{\mathscr{H}_{k}^{[N],[M]}}\right) \cong & 0 \\
K_{0}\left(\mathcal{O}_{\mathscr{H}_{k}^{[N],[M]}}\right) \cong & \overbrace{\mathbf{Z} /(N-1) \mathbf{Z} \oplus \cdots \oplus \mathbf{Z} /(N-1) \mathbf{Z}}^{M-2} \\
& \oplus \overbrace{\mathbf{Z} /(M-1) \mathbf{Z} \oplus \cdots \oplus \mathbf{Z} /(M-1) \mathbf{Z}}^{N-2} \\
& \oplus \mathbf{Z} / d \mathbf{Z} \oplus \mathbf{Z} /\left[k_{1}, k_{2}, \ldots, k_{j+1}\right](M-1)(M+N-1) \mathbf{Z}
\end{aligned}
$$

where $d=(N-1, M-1)$ is the greatest common divisor of $N-1$ and $M-1$, the sequence $k_{0}, k_{1}, \ldots, k_{j+1}$ of integers is the list of the successive integral quotients of $M-1$ by $N-1$ in the Euclidean algorithm such as

$$
\begin{aligned}
M-1 & =(N-1) k_{0}+r_{0} & \text { for some } & k_{0} \in \mathbf{Z}_{+}, 0<r_{0}<N-1, \\
N-1 & =r_{0} k_{1}+r_{1} & \text { for some } & k_{1} \in \mathbf{Z}_{+}, 0<r_{1}<r_{0}, \\
& \vdots & & \\
r_{j-2} & =r_{j-1} k_{j}+r_{j} & \text { for some } & k_{j} \in \mathbf{Z}_{+}, 0<r_{j}<r_{j-1}, \\
r_{j-1} & =d k_{j+1}, & &
\end{aligned}
$$

and the integer $\left[k_{1}, k_{2}, \ldots, k_{j+1}\right]$ is defined by inductively

$$
\begin{aligned}
{\left[k_{0}\right]=1, \quad\left[k_{1}\right]=k_{1}, \quad\left[k_{1}, k_{2}\right] } & =1+k_{1} k_{2} \\
\ldots, \quad\left[k_{1}, k_{2}, \ldots, k_{j+1}\right] & =\left[k_{1}, k_{2}, \ldots, k_{j}\right] k_{j+1}+\left[k_{1}, \ldots, k_{j-1}\right]
\end{aligned}
$$

We finally present examples.
Examples 3.6. 1. For the case $1<N=M$, we have $d=N-1, k_{0}=$ $1, r_{0}=0$. As we see $\left[k_{1}, \ldots, k_{j+1}\right]=1$, we have

$$
\left[k_{1}, \ldots, k_{j+1}\right](M-1)(M+N-1)=(N-1)(2 N-1)
$$

Hence

$$
K_{0}\left(\mathscr{O}_{\mathscr{H}_{k}^{[N],[N]}}\right) \cong \overbrace{\mathrm{Z} /(N-1) \mathrm{Z} \oplus \cdots \cdot \oplus \mathrm{Z} /(N-1) \mathrm{Z}}^{2 N-3} \oplus \mathrm{Z} /(N-1)(2 N-1) \mathrm{Z} .
$$

2. For the case $N=2$ and $M \geq 2$, we have $d=1, r_{0}=0$. As we see $\left[k_{1}, \ldots, k_{j+1}\right]=1$, we have

$$
\left[k_{1}, \ldots, k_{j+1}\right](M-1)(M+N-1)=1 \times(M-1)(M+1)=M^{2}-1
$$

Hence

$$
K_{0}\left(\mathscr{O}_{\mathscr{H}_{k}^{[2],[M]}}\right) \cong \mathrm{Z} /\left(M^{2}-1\right) \mathrm{Z}
$$

The formula for $N=2, M=3$ is already seen in [12].
Acknowledgment. The author would like to thank the referee for careful reading of the first draft of the paper and useful suggestions.

REFERENCES

1. Cuntz, J., Simple C^{*}-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173185.
2. Cuntz, J., and Krieger, W., A class of C^{*}-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268.
3. Deaconu, V., C*-algebras and Fell bundles associated to a textile system, J. Math. Anal. Appl. 372 (2010), 515-524.
4. Exel, R., Gonçalves D., and Starling, C., The tiling C^{*}-algebra viewed as a tight inverse semigroup algebra, Semigroup Forum 84 (2012), 229-240.
5. Kajiwara, T., Pinzari, C., and Watatani, Y., Ideal structure and simplicity of the C^{*}-algebras generated by Hilbert modules, J. Funct. Anal. 159 (1998), 295-322.
6. Kumjian, A., and Pask, D., Higher rank graph C^{*}-algebras, New York J. Math. 6 (2000), 1-20.
7. Kumjian, A., Pask, D., Raeburn, I., and Renault, J., Graphs, groupoids and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), 505-541.
8. Lind, D., and Marcus, B., An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995.
9. Matsumoto, K., Actions of symbolic dynamical systems on C^{*}-algebras, J. Reine Angew. Math. 605 (2007), 23-49.
10. Matsumoto, K., Actions of symbolic dynamical systems on C^{*}-algebras II. Simplicity of C^{*} symbolic crossed products and some examples, Math. Z. 265 (2010), 735-760.
11. Matsumoto, K., C^{*}-algebras associated with textile dynamical systems, preprint, arXiv: 1106.5092 v 1 .
12. Matsumoto, K., C^{*}-algebras associated with Hilbert C^{*}-quad modules of C^{*}-textile dynamical systems, preprint, arXiv:1111.3091v1.
13. Matsumoto, K., C^{*}-algebras associated with Hilbert C^{*}-quad modules of finite type, Int. J. Math. Math. Sci. 2014, Art. ID 952068, 21 pp.
14. Nasu, M., Textile systems for endomorphisms and automorphisms of the shift, Mem. Amer. Math. Soc. 546 (1995).
15. Pask, D., Raeburn, I., and Weaver, N. A., A family of 2-graphs arising from two-dimensional subshifts, Ergodic Theory Dynam. Sytems 29 (2009), 1613-1639.
16. Pimsner, M. V., A class of C^{*}-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z, in Free Probability Theory, Fields Inst. Commun. 12 (1996), 189-212.
17. Pino, G. A., Clark, J., an Huef, A., and Raeburn, I., Kumjian-Pask algebras of higher rank graphs, Trans. Amer. Math. Soc. 365 (2013), 3613-3641.
18. Robertson, G., and Steger, T., Affine buildings, tiling systems and higher rank Cuntz-Krieger algebras, J. Reine Angew. Math. 513 (1999), 115-144.
19. Wang, H., Notes on a class of tiling problems, Fundam. Math. 82 (1975), 295-305.
[^1]
[^0]: * This work was supported by JSPS Grant-in-Aid for Scientific Reserch ((C), No 23540237). Received March 192013.

[^1]: DEPARTMENT OF MATHEMATICS
 JOETSU UNIVERSITY OF EDUCATION
 JOETSU 943-8512
 JAPAN
 E-mail: kengo@@juen.ac.jp

