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CUNTZ-KRIEGER ALGEBRAS ASSOCIATED WITH
HILBERT C∗-QUAD MODULES OF

COMMUTING MATRICES

KENGO MATSUMOTO∗

Abstract
Let O

H
A,B
κ

be the C∗-algebra associated with the Hilbert C∗-quad module arising from commuting
matrices A, B with entries in {0, 1}. We will show that if the associated tiling space Xκ

A,B is
transitive, the C∗-algebra O

H
A,B
κ

is simple and purely infinite. In particular, for two positive

integers N, M , the K-groups of the simple purely infinite C∗-algebra O
H

[N ],[M]
κ

are computed by
using the Euclidean algorithm.

1. Introduction

In [9], the author has introduced a notion of C∗-symbolic dynamical system,
which is a generalization of a finite labeled graph, a λ-graph system and an
automorphism of a unital C∗-algebra (cf. [10]). It is denoted by (A , ρ, �)

and consists of a finite family {ρα}α∈� of endomorphisms of a unital C∗-
algebra A such that ρα(ZA ) ⊂ ZA , α ∈ � and

∑
α∈� ρα(1) ≥ 1 where

ZA denotes the center of A , and endomorphisms are not necessarily unital.
It provides a subshift �ρ over � and a Hilbert C∗-bimodule H

ρ

A over A

which gives rise to a C∗-algebra Oρ as a Cuntz-Pimsner algebra ([9], cf. [5],
[16]). In [11] and [12], the author has extended the notion of C∗-symbolic
dynamical system to C∗-textile dynamical system which is a higher dimen-
sional analogue of C∗-symbolic dynamical system. The C∗-textile dynamical
system (A , ρ, η, �ρ, �η, κ) consists of two C∗-symbolic dynamical systems
(A , ρ, �ρ) and (A , η, �η) with a common unital C∗-algebra A and a com-
mutation relation between the endomorphisms ρ and η through a map κ stated
below. Set

�ρη = {(α, b) ∈ �ρ × �η | ηb ◦ ρα �= 0},
�ηρ = {(a, β) ∈ �η × �ρ | ρβ ◦ ηa �= 0}.

We assume that there exists a bijection κ : �ρη → �ηρ , which we fix and call
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a specification. Then the required commutation relations are

(1.1) ηb ◦ ρα = ρβ ◦ ηa if κ(α, b) = (a, β).

A C∗-textile dynamical system provides a two-dimensional subshift and a
multi-structure of Hilbert C∗-bimodules that has multi-right actions and multi-
left actions and multi-inner products. Such a multi-structure of Hilbert C∗-
bimodules is called a Hilbert C∗-quad module, denoted by H ρ,η

κ . In [12],
the author has introduced a C∗-algebra associated with the Hilbert C∗-quad
module defined by a C∗-textile dynamical system. The C∗-algebra OH

ρ,η
κ

has
been constructed in a concrete way from the structure of the Hilbert C∗-quad
module H ρ,η

κ by a two-dimensional analogue of Pimsner’s construction of C∗-
algebras from Hilbert C∗-bimodules. It is generated by the quotient images of
the creation operators on two-dimensional analogue of Fock Hilbert module
by module maps of compact operators. As a result, the C∗-algebra has been
proved to have a universal property subject to certain operator relations of
generators encoded by structure of the Hilbert C∗-quad module of C∗-textile
dynamical system ([12], cf. [13]).

Let A, B be two N × N matrices with entries in nonnegative integers. We
assume that both A and B are essential, which means that they have no rows or
columns identically to zero vector. They yield directed graphs GA = (V , EA)

and GB = (V , EB) with a common vertex set V = {v1, . . . , vN } and edge sets
EA and EB respectively, where the edge set EA consists of A(i, j)-edges from
the vertex vi to the vertex vj and EB consists of B(i, j)-edges from the vertex
vi to the vertex vj . Denote by s(e), r(e) the source vertex and the range vertex
of an edge e. We set AN = CN . Denote by E1, . . . , EN the set of minimal
projections of AN defined by the standard basis of CN which correspond to
the vertex set v1, . . . , vN respectively, so that

∑N
i=1 Ei = 1. For α ∈ EA,

define ρA
α an endomorphism of AN by ρA

α (Ei) = Ej if s(α) = vi, r(α) = vj ,
otherwise ρA

α (Ei) = 0. Similarly we have an endomorphism ρB
a of AN for

a ∈ EB . We then have two C∗-symbolic dynamical systems (AN, ρA, EA)

and (AN, ρB, EB) with AN = CN . Put

�AB = {(α, b) ∈ EA × EB | r(α) = s(b)},
�BA = {(a, β) ∈ EB × EA | r(a) = s(β)}.

Assume that the commutation relation

(1.2) AB = BA

holds. We may take a bijection κ : �AB → �BA such that s(α) = s(a), r(b) =
r(β) for κ(α, b) = (a, β), which we fix and call a specification by following
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Nasu’s terminology in [14]. This situation is called an LR-textile system in-
troduced by Nasu ([14]). We then have a C∗-textile dynamical system (see
[12])

(AN, ρA, ρB, EA, EB, κ).

Let us denote by H A,B
κ the associated Hilbert C∗-quad module defined in [12].

We set

(1.3) Eκ = {(α, b, a, β) ∈ EA × EB × EB × EA | κ(α, b) = (a, β)}.
Each element of Eκ is called a tile. Let Xκ

A,B ⊂ (Eκ)
Z2

be the two-dimensional
subshift of the Wang tilings of Eκ (cf. [19]). It consists of the two-dimensional
configurations x : Z2 → Eκ compatible to their boundary edges on each tile,
and is called the subshift of the tiling space for the specification κ : �AB →
�BA. We say that Xκ

A,B is transitive if for two tiles ω, ω′ ∈ Eκ , there exists
(ωi,j )(i,j)∈Z2 ∈ Xκ

A,B such that ω0,0 = ω, ωi,j = ω′ for some (i, j) ∈ Z2 with
j < 0 < i. We set

(1.4) �κ = {(α, a) ∈ EA × EB | s(α) = s(a),

κ(α, b) = (a, β) for some β ∈ EA, b ∈ EB}
and define two |�κ | × |�κ |-matrices Aκ and Bκ with entries in {0, 1} by

(1.5) Aκ((α, a), (δ, b)) =
{

1 κ(α, b) = (a, β) for some β ∈ EA,

0 otherwise

for (α, a), (δ, b) ∈ �κ ,

(1.6) Bκ((α, a), (β, d)) =
{

1 κ(α, b) = (a, β) for some b ∈ EB ,

0 otherwise

for (α, a), (β, d) ∈ �κ respectively. Put the block matrix

(1.7) Hκ =
[

Aκ Aκ

Bκ Bκ

]
.

It has been proved in [12] that the C∗-algebra OH
A,B
κ

associated with the Hilbert
C∗-quad module H A,B

κ is isomorphic to the Cuntz-Krieger algebra OHκ
for the

matrix Hκ (cf. [2]). In this paper, we first show the following theorem.

Theorem 1.1 (Theorem 2.10). The subshift Xκ
A,B of the tiling space is

transitive if and only if the matrix Hκ is irreducible. In this case, Hκ satisfies
condition (I) in the sense of [2]. Hence if the subshift Xκ

A,B of the tiling space
is transitive, the C∗-algebra OH

A,B
κ

is simple and purely infinite.
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We then see the following theorem.

Theorem 1.2 (Theorem 2.11). If the matrix A or B is irreducible, the
matrix Hκ is irreducible and satisfies condition (I), so that the C∗-algebra
OH

A,B
κ

is simple and purely infinite.

Let N, M be positive integers with N, M > 1. They give 1 × 1 commuting
matrices A = [N ], B = [M]. The directed graph GA associated to the matrix
A = [N ] is a graph consists of N -self directed loops denoted by EA with
a vertex denoted by v. Similarly the directed graph GB consists of M-self
directed loops denoted by EB with the vertex v. We fix a specification κ : EA×
EB → EB×EA defined by exchanging κ(α, a) = (a, α) for (α, a) ∈ EA×EB .
The specification is called the exchanging specification between EA and EB .
We present the following K-theory formulae for the C∗-algebra OH

[N ],[M]
κ

. In its
computation, the Euclidean algorithm is used. For integers 1 < N ≤ M ∈ N,
let d = (N − 1, M − 1) be the greatest common divisor of N − 1 and M − 1.
Let k0, k1, . . . , kj+1 be the successive integral quotients of M − 1 by N − 1
by the Euclidean algorithm such as

M − 1 = (N − 1)k0 + r0 for some k0 ∈ Z+, 0 < r0 < N − 1,

N − 1 = r0k1 + r1 for some k1 ∈ Z+, 0 < r1 < r0,
...

rj−2 = rj−1kj + rj for some kj ∈ Z+, 0 < rj < rj−1,

rj−1 = dkj+1.

Theorem 1.3 (Theorem 3.5). For integers 1 < N ≤ M ∈ N and the
exchanging specification κ between directed N -loops and M-loops, the C∗-
algebra OH

[N ],[M]
κ

is a simple purely infinite Cuntz-Krieger algebra whose K-
groups are

K1(OH
[N ],[M]
κ

) ∼= 0,

K0(OH
[N ],[M]
κ

) ∼=
M−2︷ ︸︸ ︷

Z/(N − 1)Z ⊕ · · · ⊕ Z/(N − 1)Z

⊕
N−2︷ ︸︸ ︷

Z/(M − 1)Z ⊕ · · · ⊕ Z/(M − 1)Z

⊕ Z/dZ ⊕ Z/[k1, k2, . . . , kj+1](M − 1)(M + N − 1)Z

where d = (N − 1, M − 1) the greatest common divisor of N − 1 and M − 1,
and the sequence k0, k1, . . . , kj+1 is the successive integral quotients of M −1
by N − 1 by the Euclidean algorithm above, and the integer [k1, k2, . . . , kj+1]
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is defined by inductively

[k0] = 1, [k1] = k1, [k1, k2] = 1 + k1k2,

. . . , [k1, k2, . . . , kj+1] = [k1, k2, . . . , kj ]kj+1 + [k1, . . . , kj−1].

We remark that the C∗-algebras studied in this paper are different from the
higher rank graph algebras studied by G. Robertson-T. Steger [18],A. Kumjian-
D. Pask [6],V. Deaconu [3], etc., (cf. [4], [17], [15], etc.). Throughout the paper,
we denote by N and by Z+ the set of positive integers and the set of nonnegative
integers respectively.

2. Transitivity of tilings Xκ
A,B and simplicity of OH

A,B
κ

Let � be a finite set. The two-dimensional full shift over � is defined to be

�Z2 = {(xi,j )(i,j)∈Z2 | xi,j ∈ �}.
An element x ∈ �Z2

is regarded as a function x : Z2 → � which is called a
configuration on Z2. For a vector m = (m1, m2) ∈ Z2, let σm : �Z2 → �Z2

be
the translation along vector m defined by

σm((xi,j )(i,j)∈Z2) = (xi+m1,j+m2)(i,j)∈Z2 .

A subset X ⊂ �Z2
is said to be translation invariant if σm(X) = X for all

m ∈ Z2. It is obvious to see that a subset X ⊂ �Z2
is translation invariant

if and only if X is invariant only both horizontally and vertically, that is,
σ (1,0)(X) = X and σ (0,1)(X) = X. For k ∈ Z+, put

[−k, k]2 = {(i, j) ∈ Z2 | −k ≤ i, j ≤ k} = [−k, k] × [−k, k].

A metric d on �Z2
is defined by for x, y ∈ �Z2

with x �= y

d(x, y) = 1

2k
if x(0,0) = y(0,0),

where k = max{k ∈ Z+ | x[−k,k]2 = y[−k,k]2}. If x(0,0) �= y(0,0), put k = −1 on
the above definition. If x = y, we set d(x, y) = 0. A two-dimensional subshift
X is defined to be a closed, translation invariant subset of �Z2

(cf. [8, p. 467]).
A two-dimensional subshift X is said to have the diagonal property if for
(xi,j )(i,j)∈Z2 , (yi,j )(i,j)∈Z2 ∈ X, the conditions xi,j = yi,j , xi+1,j−1 = yi+1,j−1

imply xi,j−1 = yi,j−1, xi+1,j = yi+1,j (see [11]). The diagonal property has
the following property: for x ∈ X and (i, j) ∈ Z2, the configuration x is
determined by the diagonal line (xi+n,j−n)n∈Z through (i, j).
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We henceforth go back to our previous situation of C∗-textile dynamical
system (AN, ρA, ρB, EA, EB, κ) coming from N × N commuting matrices
A and B with specification κ as in Section 1. We always assume that both
matrices A and B are essential. Recall that the matrices A and B give rise to
directed graphs GA = (V , EA) and GB = (V , EB) with a common vertex set
V = {v1, . . . , vN } and edge sets EA and EB respectively, where the edge set
EA consists of A(i, j)-edges from the vertex vi to the vertex vj and EB consists
of B(i, j)-edges from the vertex vi to the vertex vj . A two-dimensional subshift
Xκ

A,B is defined as in the following way. Let � be the set Eκ of tiles defined in
(1.3). For ω = (α, b, a, β) ∈ Eκ , define maps t (= top), b(= bottom) : Eκ →
EA and l(= left), r(= right) : Eκ → EB by setting

t (ω) = α, b(ω) = β, l(ω) = a, r(ω) = b

as in the following figure: ◦ α=t (ω)−−−−−→ ◦
a=l(ω) b=r(ω)

◦ −−−−−→
β=b(ω)

◦

A configuration (ωi,j )(i,j)∈Z2 ∈ EZ2

κ is said to be paved if the conditions

t (ωi,j ) = b(ωi,j+1),

l(ωi,j ) = r(ωi−1,j ),

r(ωi,j ) = l(ωi+1,j ),

b(ωi,j ) = t (ωi,j−1)

hold for all (i, j) ∈ Z2. Let Xκ
A,B be the set of all paved configurations

(ωi,j )(i,j)∈Z2 ∈ EZ2

κ . It consists of the Wang tilings of the tiles of Eκ (see
[19]). The following proposition is easy.

Proposition 2.1. Xκ
A,B is a two-dimensional subshift having the diagonal

property.

We write AN = CE1 ⊕ · · · ⊕ CEN for the minimal projections Ei, i =
1, . . . , N of AN such that

∑N
i=1 Ei = 1. Let us define the matrices Â, B̂ by

setting for α ∈ EA, a ∈ EB , i, j = 1, . . . , N ,

Â(i, α, j) =
{

1 if s(α) = i, r(α) = j ,

0 otherwise,

B̂(i, a, j) =
{

1 if s(a) = i, r(a) = j ,
0 otherwise.

Recall that the endomorphisms ρA
α , ρB

a of AN for α ∈ EA, a ∈ EB are defined
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by

ρA
α (Ei) =

N∑
j=1

Â(i, α, j)Ej , ρB
a (Ei) =

N∑
j=1

B̂(i, a, j)Ej

for i = 1, . . . , N . They yield the C∗-textile dynamical system

(AN, ρA, ρB, EA, EB, κ)

with specificationκ ([12]). Let eω, ω ∈ Eκ be the standard basis of C|Eκ |. Put the
projection Eω = ρB

b ◦ρA
α (1)(= ρA

β ◦ρB
a (1)) ∈ AN for ω = (α, b, a, β) ∈ Eκ .

We set
H A,B

κ =
∑
ω∈Eκ

eω ⊗ EωAN.

Then H A,B
κ has a natural structure of not only Hilbert C∗-right module over

AN but also two other Hilbert C∗-bimodule structure, called Hilbert C∗-quad
module. By two-dimensional analogue of Pimsner’s construction of Hilbert
C∗-bimodule algebra ([16]), we have introduced a C∗-algebra OH

A,B
κ

(see [12]
and [13] for detail construction). Let �κ be the subset of EA × EB defined
in (1.4). We define two |�κ | × |�κ |-matrcies Aκ and Bκ with entries in {0, 1}
as in (1.5) and (1.6). The matrices Aκ and Bκ represent the concatenations of
edges as in the following figures respectively:

◦ α ◦ δ ◦
a b

◦ ◦
if Aκ((α, a), (δ, b)) = 1,

and ◦ α ◦
a

◦ β ◦
d

if Bκ((α, a), (β, d)) = 1.

Let Hκ be the 2|�κ | × 2|�κ | matrix defined in (1.7). We have proved the
following result in [12].

Theorem 2.2. The C∗-algebra OH
A,B
κ

associated with Hilbert C∗-quad
module H A,B

κ defined by commuting matrices A, B and a specification κ is
isomorphic to the Cuntz-Krieger algebra OHκ

for the matrix Hκ . Its K-groups
K∗(OHκ

) are computed as

K0(OHκ
) = Zn/(Aκ + Bκ − In)Z

n, K1(OHκ
) = Ker(Aκ + Bκ − In) in Zn,

where n = |�κ |.
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We will study a relationship between transitivity of the tiling space Xκ
A,B and

simplicity of the C∗-algebra OH
A,B
κ

. An essential matrix with entries in {0, 1}
is said to satisfy condition (I) (in the sense of [2]) if the shift space defined
by the topological Markov chain for the matrix is homeomorphic to a Cantor
discontinuum. The condition is equivalent to the condition that every loop in
the associated directed graph has an exit ([7]). It is a fundamental result that
a Cuntz-Krieger algebra is simple and purely infinite if the underlying matrix
is irreducible and satisfies condition (I) ([2]). We will find a condition of the
two-dimensional subshift Xκ

A,B of the tiling space under which the matrix Hκ

is irreducible and satisfies condition (I). Hence the condition on Xκ
A,B yields

the simplicity and purely infiniteness of the algebra OH
A,B
κ

.
We are assuming that both of the matrices A and B are essential. Then we

have

Lemma 2.3. Both of the matrices Aκ and Bκ are essential.

Proof. For (α, a) ∈ �κ , by definition of �κ , there exist β ∈ EA and
b ∈ EB such that κ(α, b) = (a, β). Since A is essential, one may take β1 ∈
EA such that s(β1) = r(b)(= r(β)). Hence (b, β1) ∈ �BA. Put (α1, b1) =
κ−1(b, β1) ∈ �AB so that (α1, b) ∈ �κ and Aκ((α, a), (α1, b)) = 1 as in the
following figure: ◦ α ◦ α1 ◦

a b b1

◦ β ◦ β1

For (δ, b) ∈ �κ there exists α ∈ EA such that r(α) = s(δ)(= s(b)) because
A is essential. Hence (α, b) ∈ �AB . Put (a, β) = κ(α, b) so that (α, a) ∈ �κ

and Aκ((α, a), (δ, b)) = 1 as in the following figure:

◦ α ◦ δ ◦
a b

◦ β ◦
Therefore one sees that Aκ is essential, and similarly that Bκ is essential.

Hence we have

Proposition 2.4. The matrix Hκ is essential and satisfies condition (I).

Proof. By the previous lemma, both of the matrices Aκ and Bκ are essen-
tial. Hence every row of Aκ and of Bκ has at least one 1. Since

Hκ =
[

Aκ Aκ

Bκ Bκ

]
,
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every row of Hκ has at least two 1′s. This implies that a loop in the directed
graph associated to Hκ must has an exit so that Hκ satisfies condition (I).

For (α, a), (α′, a′) ∈ �κ , and C, D = A or B, we have

[CκDκ ]((α, a), (α′, a′)) =
∑

(α1,a1)∈�κ

Cκ((α, a), (α1, a1))Dκ((α1, a1), (α
′, a′)).

Hence [AκAκ ]((α, a), (α′, a′)) �= 0 if and only if there exists (α1, a1) ∈ �κ

such that κ(α, a1) = (a, β) for some β ∈ EA and κ(α1, a
′) = (a1, β1) for

some β1 ∈ EA as in the following figure:

◦ α ◦ α1 ◦ α′

a a1 a′

◦ β ◦ β1 ◦
And also [AκBκ ]((α, a), (α′, a′)) �= 0 if and only if there exists (α1, a1) ∈ �κ

such that κ(α, a1) = (a, β) for some β ∈ EA and κ(α1, b1) = (a1, α
′) for

some b1 ∈ EB as in the following figure:

◦ α ◦ α1 ◦
a a1 b1

◦ β ◦ α′ ◦
a′

Similarly [BκAκ ]((α, a), (α′, a′)) �= 0 if and only if there exists (α1, a1) ∈ �κ

such that κ(α, b) = (a, α1) for some b ∈ EB and κ(α1, a
′) = (a1, β1) for

some β1 ∈ EA as in the following figure:

◦ α ◦
a b

◦ α1 ◦ α′

a1 a′

◦ β1 ◦
And also [BκBκ ]((α, a), (α′, a′)) �= 0 if and only if there exists (α1, a1) ∈ �κ

such that κ(α, b) = (a, α1) for some b ∈ EB and κ(α1, b1) = (a1, α
′) for
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some b1 ∈ EB as in the following figure:

◦ α ◦
a b

◦ α1 ◦
a1 b1

◦ α′ ◦
a1

Lemma 2.5. AκBκ = BκAκ.

Proof. For (α, a), (α′, a′) ∈ �κ , we have [AκBκ ]((α, a), (α′, a′)) = m if
and only if there exist (αi, a

′
i ) ∈ �κ, i = 1, . . . , m such that κ(α, a′

i ) = (a, βi)

for some βi ∈ EA and κ(αi, bi) = (a′
i , α

′) for some bi ∈ EB as in the following
figure: ◦ α ◦ αi ◦

a a′
i bi

◦ βi ◦ α′ ◦
a′

Put (ai, β
′
i ) = κ(βi, a

′). We then have (βi, ai) ∈ �κ as in the following figure:

◦ α ◦
a a′

i

◦ βi ◦ α′

ai a′

◦ β ′
i ◦

If (βi, ai) = (βj , aj ) in �κ , then we have βi = βj so that a′
i = a′

j and hence
αi = αj . Therefore we have [BκAκ ]((α, a), (α′, a′)) = m.

Lemma 2.6. The following four conditions are equivalent.

(i) The matrix Hκ is irreducible.

(ii) For (α, a), (α′, a′) ∈ �κ , there exist n, m ∈ Z+ such that

Aκ(Aκ + Bκ)
n((α, a), (α′, a′)) > 0,

Bκ(Aκ + Bκ)
m((α, a), (α′, a′)) > 0.
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(iii) The matrix Aκ + Bκ is irreducible.

(iv) For (α, a),(α′, a′) ∈ �κ , there exists a paved configuration (ωi,j )(i,j)∈Z2 ∈
Xκ

A,B such that

t (ω0,0) = α, l(ω0,0) = a, t (ωi,j ) = α′, l(ωi,j ) = a′

for some (i, j) ∈ Z2 with j < 0 < i.

Proof. (i) ⇔ (ii): The identity

(2.1) Hn
κ =

[
Aκ(Aκ + Bκ)

n Aκ(Aκ + Bκ)
n

Bκ(Aκ + Bκ)
n Bκ(Aκ + Bκ)

n

]

implies the equivalence between (i) and (ii).
(ii) ⇒ (iii): Suppose that for (α, a), (α′, a′) ∈ �κ , there exists n ∈ Z+ such

that Aκ(Aκ + Bκ)
n((α, a), (α′, a′)) > 0 so that

(Aκ + Bκ)
n+1((α, a), (α′, a′)) > 0.

Hence the matrix Aκ + Bκ is irreducible.
(iii) ⇒ (ii): As Aκ and Bκ are both essential, for (α, a), (α′, a′) ∈ �κ there

exists (α1, a1), (α2, a2) ∈ �κ such that

Aκ((α, a), (α1, a1)) = 1,

Bκ((α, a), (α2, a2)) = 1.

Since Aκ + Bκ is irreducible, there exist n, m ∈ Z+ such that

(Aκ + Bκ)
n((α1, a1), (α

′, a′)) > 0,

(Aκ + Bκ)
m((α2, a2), (α

′, a′)) > 0.

Hence we have
Aκ(Aκ + Bκ)

n((α, a), (α′, a′)) > 0,

Bκ(Aκ + Bκ)
m((α, a), (α′, a′)) > 0.

(ii) ⇒ (iv): For (α, a), (α′, a′) ∈ �κ , take (α1, a1) ∈ �κ and β ∈ EA

such that κ(α, a1) = (a, β). By (ii), there exists m ∈ Z+ with Bκ(Aκ +
Bκ)

m((α, a), (α′, a′)) > 0. One may take b′ ∈ EB and β ′ ∈ EA satisfying
κ(α′, b′) = (a′, β ′), so that there exists a paved configuration (ωi,j )(i,j)∈Z2 ∈
Xκ

A,B such that ω0,0 = (α, a1, a, β) and ωi,j = (α′, b′, a′, β ′) for some (i, j) ∈
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Z2 with j < 0 < i as in the following figure:

◦ α ◦ α1 ◦
a a1

◦ β ◦ . . .

. . .

◦ α′ ◦
a′ b′

◦ β ◦
(iv) ⇒ (ii): The assertion is clear.

Definition 2.7. A two-dimensional subshift Xκ
A,B is said to be transitive if

for two tiles ω, ω′ ∈ Eκ there exists a paved configuration (ωi,j )(i,j)∈Z2 ∈ Xκ
A,B

such that ω0,0 = ω and ωi,j = ω′ for some (i, j) ∈ Z2 with j < 0 < i.

Theorem 2.8. The subshift Xκ
A,B of the tiling space is transitive if and only

if the matrix Hκ is irreducible.

Proof. Assume that the matrixHκ is irreducible. Hence the condition (iv) in
Lemma 2.6 holds. Let ω = (α, b, a, β), ω′ = (α′, b′, a′, β ′) ∈ Eκ be two tiles.
Since A is essential, there exists β1 ∈ EA such that r(β)(= r(b)) = s(β1),
so that (b, β1) ∈ �BA. One may take (α1, b1) ∈ �AB such that κ(α1, b1) =
(b, β1) and hence (α1, b) ∈ �κ as in the following figure:

◦ α ◦ α1 ◦
a b b1

◦ β ◦ β1 ◦
For (α1, b), (α′, a′) ∈ �κ , by (iv) in Lemma 2.6, there exists (ωi,j )(i,j)∈Z2 ∈
Xκ

A,B such that t (ω0,0) = α1, l(ω0,0) = b, t (ωi,j ) = α′, l(ωi,j ) = a′ for some
(i, j) ∈ Z2 with j < 0 < i. Since Xκ

A,B has the diagonal property, there exists
a paved configuration (ω′

i,j )(i,j)∈Z2 ∈ Xκ
A,B such that ω′

0,0 = ω, ω′
i,j = ω′.

Hence Xκ
A,B is transitive.

Conversely assume that Xκ
A,B is transitive. For (α, a), (α′, a′) ∈ �κ , there

exist b, b′ ∈ EB and β, β ′ ∈ EA such that ω = (α, b, a, β), ω′ =
(α′, b′, a′, β ′) ∈ Eκ . It is clear that the transitivity of Xκ

A,B implies the condi-
tion (iv) in Lemma 2.6, so that Hκ is irreducible.
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Lemma 2.9. If A or B is irreducible, Xκ
A,B is transitive.

Proof. Suppose that the matrix A is irreducible. For two tiles ω =
(α, b, a, β), ω′ = (α′, b′, a′, β ′) ∈ Eκ , there exist concatenated edges
(β, β1, . . . , βn, α

′) in the graph GA for some edges β1, . . . , βn ∈ EA. Since
Xκ

A,B has the diagonal property, there exists a configuration (ωi,j )(i,j)∈Z2 ∈
Xκ

A,B such that ω′ = ωi,j for some i > 0, j = −1. Hence Xκ
A,B is transitive.

Since the C∗-algebra OH
A,B
κ

is isomorphic to the Cuntz-Krieger algebra OHκ

by [12], we see the following theorems.

Theorem 2.10. The subshift Xκ
A,B of the tiling space is transitive if and

if the matrix Hκ is irreducible. In this case, Hκ satisfies condition (I). Hence
if the subshift Xκ

A,B of the tiling space is transitive, the C∗-algebra OH
A,B
κ

is
simple and purely infinite.

By Lemma 2.9, we have

Theorem 2.11. If the matrix A or B is irreducible, the matrix Hκ is irre-
ducible and satisfies condition (I), so that the C∗-algebra OH

A,B
κ

is simple and
purely infinite.

3. The algebra OH
[N ],[M]
κ

for two positive integers N, M

Let N, M be positive integers with N, M > 1. They give 1 × 1 commuting
matrices A = [N ], B = [M]. We will present K-theory formulae for the
C∗-algebras OH

[N ],[M]
κ

with the exchanging specification κ . In the computations
below, we will use the Euclidean algorithm to find order of the torsion part of the
K0-group. The directed graph GA for the matrix A = [N ] is a graph consisting
of N -self directed loops with a vertex denoted by v. The N -self directed loops
are denoted by EA. Similarly the directed graph GB for B = [M] consists of
M-self directed loops denoted by EB with the vertex v. We fix a specification
κ : EA×EB → EB ×EA defined by exchanging κ(α, a) = (a, α) for (α, a) ∈
EA×EB . Hence �κ = EA×EB so that |�κ | = |EA|×|EB | = N×M . We then
know Aκ((α, a), (δ, b)) = 1 if and only if b = a, and Bκ((α, a), (β, d)) = 1
if and only if β = α as in the following figures respectively.

◦ α ◦ δ

a a=b
and

◦ α

a

◦ α=β

d
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In [12], the K-groups for the case N = 2 and M = 3 have been computed
such that

K0(OH
[2],[3]
κ

) ∼= Z/8Z, K1(OH
[2],[3]
κ

) ∼= 0.

Hence OH
[2],[3]
κ

is stably isomorphic to the Cuntz algebra O9 of order 9 ([1]).
We will generalize the above computations.

Let In be the n × n identity matrix and En the n × n matrix whose entries
are all 1′s. For an N × N -matrix C = [ci,j ]Ni,j=1 and an M × M-matrix
D = [dk,l]Mk,l=1, denote by C ⊗ D the NM × NM matrix

C ⊗ D =

⎡
⎢⎢⎢⎢⎣

c11D c12D . . . c1ND

c21D c22D . . . c2ND

...
...

. . .
...

cN1D cN2D . . . cNND

⎤
⎥⎥⎥⎥⎦ .

Hence we have

EN ⊗ IM =

⎡
⎢⎢⎢⎢⎣

IM IM . . . IM

IM IM . . . IM

...
...

. . .
...

IM IM . . . IM

⎤
⎥⎥⎥⎥⎦ ,

IN ⊗ EM =

⎡
⎢⎢⎢⎢⎣

EM 0 . . . 0

0 EM

.. .
...

...
. . .

. . . 0

0 . . . 0 EM

⎤
⎥⎥⎥⎥⎦ .

We put E[N ] = {α1, . . . , αN }, E[M] = {a1, . . . , aM}. As �κ = E[N] × E[M],
the basis of CN ⊗CM are ordered lexicographically from left as in the following
way:

(3.1)
(α1, a1),. . . ,(α1, aM), (α2, a1), . . . ,(α2, aM),

. . . ,(αN, a1),. . . ,(αN, aM).

Let Aκ and Bκ be the matrices defined in the previous section for the matrices
A = [N ], B = [M] with the exchanging specification κ . The following lemma
is direct.

Lemma 3.1. The matrices Aκ, Bκ are written as

Aκ = EN ⊗ IM, Bκ = IN ⊗ EM
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along the ordered basis (3.1). Hence we have

(3.2) Aκ + Bκ − INM =

⎡
⎢⎢⎢⎢⎣

EM IM . . . IM

IM

. . .
. . .

...

...
. . .

. . . IM

IM . . . IM EM

⎤
⎥⎥⎥⎥⎦ .

We denote by H(0) the matrix Aκ + Bκ − INM . By Theorem 2.2, the
K-groups of the algebra OH

[N ],[M]
κ

are given by the kernel Ker(H(0)) and the
cokernel Coker(H(0)) of the matrix H(0) in ZNM . For an M × M matrix C

and i, j = 1, 2, . . . , N with i �= j , define an N × N block matrix Ei,j (C) =
[Ei,j (C)(k, l)]Nk,l=1, whose entries Ei,j (C)(k, l), k, l = 1, 2, . . . , N are M ×M

matrices, by setting

Ei,j (C)(k, l) =
⎧⎨
⎩

IM (k = l),

C (k = i, j = l),
0 else.

The multiplication of the matrix Ei,j (C) from the left (resp. right) corres-
ponds to the operation of adding the C-multiplication of the j th row (resp. ith
column) to the ith row (resp. j th column). We will transform H(0) preserving
isomorphism classes of the groups Ker(H(0)) and Coker(H(0)) in ZNM by
multiplying the matrices Ei,j (C), i, j = 1, 2, . . . , N .

We first consider row operations and set

H(1) = EN−1,N (−IM)EN−2,N−1(−IM) · · · E1,2(−IM)H(0),

H(2) = EN,N−1(IM)EN−1,N−2(IM) · · · E2,1(IM)H(1),

H(3) = E1,2(IM)E2,3(IM) · · · EN−2,N−1(IM)EN−1,N (EM − IM)H(2).

It is straightforward to see that the matrix H(3) goes to

H(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pM(N − 1) 0 . . . 0

pM(N − 2) EM − IM

...
...

. . .
. . .

...

pM(2)
...

. . .

pM(1) EM − IM . . . . . . EM − IM 0

EM IM . . . . . . IM IM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where pM(i) = E2
M + (i − 1)EM − iIM = (EM + iIM)(EM − IM) for

i = 1, . . . N − 1.
We second consider column operations and set

H(4) = H(3)EN,N−1(−IM)EN,N−2(−IM) · · · EN,2(−IM)EN,1(−EM)

which goes to

H(4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pM(N − 1) 0 . . . 0

pM(N − 2) EM − IM

...
...

. . .
. . .

...

pM(2)
...

. . .

pM(1) EM − IM . . . . . . EM − IM 0

0 0 . . . . . . 0 IM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By successive multiplications of the matrices

EN−1,N−2(−IM)EN−1,N−3(−IM) · · · EN−1,2(−IM)EN−1,1(−(EM + IM))

EN−2,N−3(−IM)EN−2,N−4(−IM) · · · EN−2,2(−IM)EN−2,1(−(EM + 2IM))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E3,2(−IM)E3,1(−(EM + (N − 2)IM))

E2,1(−(EM + (N − 1)IM)),

from the right side of H(4), we obtain the diagonal matrix

H̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pM(N − 1) 0 . . . 0

0 EM − IM

. . .
. . .

...
...

. . .
. . .

EM − IM 0

0 . . . 0 IM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As E2
M = MEM , we have pM(N − 1) = (M + N − 2)EM − (N − 1)IM .

We thus have

Lemma 3.2.
Ker(Aκ + Bκ − INM) in ZNM ∼= 0
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and
Coker(Aκ + Bκ − INM) in ZNM

∼=
(N−2)︷ ︸︸ ︷

ZM/(EM − IM)ZM ⊕ · · · ⊕ ZM/(EM − IM)ZM

⊕ ZM/((M + N − 2)EM − (N − 1)IM)ZM.

Proof. It is straightforward to see that the matrixAκ+Bκ−INM is invertible
by the formula (3.2). Since

Coker(Aκ + Bκ − INM) in ZNM ∼= ZNM/H̃ZNM,

the formula for the cokernel is obvious.

We will next compute the following groups to compute Coker(Aκ + Bκ −
INM) in ZNM .

(i) ZM/(EM − IM)ZM ,

(ii) ZM/((M + N − 2)EM − (N − 1)IM)ZM

For an integer c and i, j = 1, 2, . . . , M with i �= j , define an M × M matrix
Ei,j (c) = [Ei,j (c)(k, l)]Mk,l=1 by setting

(3.3) Ei,j (c)(k, l) =
⎧⎨
⎩

1 (k = l),

c (k = i, j = l),
0 else.

(i) By successive multiplications of the matrices

EM−1,M(−1)EM−2,M−1(−1) · · · E1,2(−1),

EM,M−1(1)EM−1,M−2(1) · · · E2,1(1),

EM,M−1(−1)EM,M−2(−1) · · · EM,1(−1)

from the left side of the matrix

EM − IM =

⎡
⎢⎢⎢⎢⎣

0 1 . . . 1

1 0
. . .

...
...

. . .
. . . 1

1 . . . 1 0

⎤
⎥⎥⎥⎥⎦ ,
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we get the matrix ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 . . . 0

−1 0
. . .

. . .
...

...
...

. . . 1 0

−1 0 . . . 0 1

M − 1 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

which goes to the diagonal matrix with diagonal entries [1, 1, . . . , 1, M − 1]
by elementary column operations. Hence we see that

(3.4) ZM/(EM − IM)ZM ∼= Z/(M − 1)Z.

(ii) Put e = (M + N − 2) − (N − 1) = M − 1 and f = M + N − 2. Then
we have

(3.5) (M + N − 2)EM − (N − 1)IM =

⎡
⎢⎢⎢⎢⎢⎣

e f . . . f

f e
. . .

...

...
. . .

. . . f

f . . . f e

⎤
⎥⎥⎥⎥⎥⎦ .

By a similar manner to the preceding matrix operations from H(1) to H(4),
one obtains the following matrix denoted by L(1) from the matrix (3.5)

L(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e − f f − e 0 . . . 0

e − f 0
. . .

. . .
...

...
...

. . . f − e 0

e − f 0 . . . 0 f − e

e f . . . f f

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

By exchanging columns in the matrix

L(1)E2,1(1)E3,1(1) · · · EM,1(1),

we have

L(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f − e 0 . . . 0 0

0
. . .

. . .
...

...
...

. . . f − e 0 0

0 . . . 0 f − e 0

f . . . f f e + (M − 1)f

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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It is easy to see that the matrix

EM−1,M−2(1) · · · E3,2(1)E2,1(1)L(2)E2,1(−1)E3,2(−1) · · · EM−1,M−2(−1)

goes to

L̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f − e 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 f − e 0

0 . . . 0 f e + (M − 1)f

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Put the 2 × 2 matrix L(N,M) by setting

L(N,M) =
[

f − e 0

f e + (M − 1)f

]
.

As f − e = N − 1, we have the following lemma with (3.4).

Lemma 3.3.

(i) ZM/(EM − IM)ZM ∼= Z/(M − 1)Z.

(ii) ZM/((M + N − 2)EM − (N − 1)IM)ZM

∼=
M−2︷ ︸︸ ︷

Z/(N − 1)Z ⊕ · · · ⊕ Z/(N − 1)Z ⊕ Z2/L(N,M)Z
2.

It remains to compute the group Z2/L(N,M)Z2. Put n = N − 1, m = M − 1.
As f −e = n and f = m+n, we have e+(M−1)f = (M−1)(M+N −1) =
m(m + n + 1) so that

L(N,M) =
[

n 0

n + m m(m + n + 1)

]
.

For an integer c and i, j = 1, 2 with i �= j , define an 2 × 2 matrix Ei,j (c) =
[Ei,j (c)(k, l)]2

k,l=1 in a similar way to (3.3). Put Ln,m = E2,1(−1)L(N,M) so
that

Ln,m =
[

n 0

m m(m + n + 1)

]
.

We may assume that M ≥ N and hence m ≥ n.
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If m is divided by n so that m = nk for some k ∈ N, the matrix E2,1(−k)Ln,m

goes to the diagonal matrix:[
n 0

0 m(m + n + 1)

]
=

[
N − 1 0

0 (M − 1)(M + N − 1)

]
.

Hence we have

Z2/L(N,M)Z
2 ∼= Z/(N − 1)Z ⊕ Z/(M − 1)(M + N − 1)Z.

Otherwise, by the Euclidean algorithm, we have lists of integers r0, r1, . . . , rj
and k0, k1, . . . , kj+1 for some j ∈ N such that

m = nk0 + r0, 0 < r0 < n,

n = r0k1 + r1, 0 < r1 < r0,

r0 = r1k2 + r2, 0 < r2 < r1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rj−2 = rj−1kj + rj , 0 < rj < rj−1,

rj−1 = rj kj+1, 0 = rj+1

where rj = (m, n) the greatest common divisor of m and n. Put g = m(m +
n + 1). We set

Ln,m(0) = E2,1(−k0)Ln,m =
[

n 0

r0 g

]
.

We define a finite sequence of matrices Ln,m(l), l = 1, 2, . . . by

Ln,m(1) = E1,2(−k1)Ln,m(0), Ln,m(2) = E2,1(−k2)Ln,m(1)

and inductively

Ln,m(2i − 1) = E1,2(−k2i−1)Ln,m(2i − 2),

Ln,m(2i) = E2,1(−k2i )Ln,m(2i − 1).

The Euclidean algorithm stops at j +1 = 2i −1 or j +1 = 2i for some i ∈ N.
We set

[k0] = 1, [k1] = k1, [k1, k2] = 1 + k1k2, [k1, k2, k3] = [k1, k2]k3 + [k1],

. . . , [k1, k2, . . . , kj+1] = [k1, k2, . . . , kj ]kj+1 + [k1, . . . , kj−1].
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Then we have

Ln,m(1) =
[

r1 −[k1]g

r0 g

]
, Ln,m(2) =

[
r1 −[k1]g

r2 [k1, k2]g

]
,

and inductively

Ln,m(2i − 1) =
[

r2i−1 −[k1, k2, . . . , k2i−1]g

r2i−2 [k1, k2, . . . , k2i−2]g

]
,

Ln,m(2i) =
[

r2i−1 −[k1, k2, . . . , k2i−1]g

r2i [k1, k2, . . . , k2i]g

]

for i = 1, 2, . . .. We denote by d the greatest common divisor (m, n) of m and
n, so that d = rj . Take m0 ∈ Z such that m = m0d. Put g0 = m0(m + n + 1)

so that g = g0d. We have two cases.
Case 1: j + 1 = 2i − 1 for some i ∈ N. We have

Ln,m(j +1) =
[

rj+1 −[k1, k2, . . . , kj+1]g

rj [k1, k2, . . . , kj ]g

]
=

[
0 −[k1, k2, . . . , kj+1]g

d [k1, k2, . . . , kj ]g0d

]

and hence

Ln,m(j + 1)E1,2(−[k1, k2, . . . , kj ]g0) =
[

0 −[k1, k2, . . . , kj+1]g

d 0

]
.

Case 2: j + 1 = 2i for some i ∈ N. We have

Ln,m(j + 1) =
[

rj −[k1, k2, . . . , kj ]g

rj+1 [k1, k2, . . . , kj+1]g

]
=

[
d −[k1, k2, . . . , kj ]g0d

0 [k1, k2, . . . , kj+1]g

]

and hence

Ln,m(j + 1)E1,2([k1, k2, . . . , kj ]g0) =
[

d 0

0 [k1, k2, . . . , kj+1]g

]
.

We reach the following lemma.

Lemma 3.4.

Z2/L(N,M)Z
2 ∼= Z/dZ ⊕ Z/[k1, k2, . . . , kj+1]gZ.

Therefore we have

Theorem 3.5. For positive integers 1 < N ≤ M ∈ N and the exchanging
specification κ between N -loops and M-loops in a graph with one vertex, the



cuntz-krieger algebras 147

C∗-algebra OH
[N ],[M]
κ

is a simple purely infinite Cuntz-Krieger algebra whose
K-groups are

K1(OH
[N ],[M]
κ

) ∼= 0,

K0(OH
[N ],[M]
κ

) ∼=
M−2︷ ︸︸ ︷

Z/(N − 1)Z ⊕ · · · ⊕ Z/(N − 1)Z

⊕
N−2︷ ︸︸ ︷

Z/(M − 1)Z ⊕ · · · ⊕ Z/(M − 1)Z

⊕ Z/dZ ⊕ Z/[k1, k2, . . . , kj+1](M − 1)(M + N − 1)Z

where d = (N −1, M −1) is the greatest common divisor of N −1 and M −1,
the sequence k0, k1, . . . , kj+1 of integers is the list of the successive integral
quotients of M − 1 by N − 1 in the Euclidean algorithm such as

M − 1 = (N − 1)k0 + r0 for some k0 ∈ Z+, 0 < r0 < N − 1,

N − 1 = r0k1 + r1 for some k1 ∈ Z+, 0 < r1 < r0,
...

rj−2 = rj−1kj + rj for some kj ∈ Z+, 0 < rj < rj−1,

rj−1 = dkj+1,

and the integer [k1, k2, . . . , kj+1] is defined by inductively

[k0] = 1, [k1] = k1, [k1, k2] = 1 + k1k2,

. . . , [k1, k2, . . . , kj+1] = [k1, k2, . . . , kj ]kj+1 + [k1, . . . , kj−1].

We finally present examples.

Examples 3.6. 1. For the case 1 < N = M , we have d = N − 1, k0 =
1, r0 = 0. As we see [k1, . . . , kj+1] = 1, we have

[k1, . . . , kj+1](M − 1)(M + N − 1) = (N − 1)(2N − 1).

Hence

K0(OH
[N ],[N ]
κ

) ∼=
2N−3︷ ︸︸ ︷

Z/(N − 1)Z ⊕ · · · ⊕ Z/(N − 1)Z ⊕ Z/(N − 1)(2N − 1)Z.

2. For the case N = 2 and M ≥ 2, we have d = 1, r0 = 0. As we see
[k1, . . . , kj+1] = 1, we have

[k1, . . . , kj+1](M − 1)(M + N − 1) = 1 × (M − 1)(M + 1) = M2 − 1.



148 kengo matsumoto

Hence
K0(OH

[2],[M]
κ

) ∼= Z/(M2 − 1)Z.

The formula for N = 2, M = 3 is already seen in [12].
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