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CUNTZ-KRIEGER ALGEBRAS ASSOCIATED WITH
HILBERT C*-QUAD MODULES OF
COMMUTING MATRICES

KENGO MATSUMOTO*

Abstract

Let O, A B be the C*-algebra associated with the Hilbert C*-quad module arising from commuting
matrices A, B with entries in {0, 1}. We will show that if the associated tiling space X% p is
transitive, the C*-algebra O A B is simple and purely infinite. In particular, for two positive
integers N, M, the K-groups of the simple purely infinite C*-algebra O’ IN1IM) are computed by
using the Euclidean algorithm.

1. Introduction

In [9], the author has introduced a notion of C*-symbolic dynamical system,
which is a generalization of a finite labeled graph, a A-graph system and an
automorphism of a unital C*-algebra (cf. [10]). It is denoted by (&, p, X)
and consists of a finite family {p,}qecx of endomorphisms of a unital C*-
algebra &/ such that p,(Zy) C Zy,a € ¥ and Zan pe(1) > 1 where
Z . denotes the center of &/, and endomorphisms are not necessarily unital.
It provides a subshift A, over ¥ and a Hilbert C*-bimodule 5%, over .«
which gives rise to a C*-algebra 0, as a Cuntz-Pimsner algebra ([9], cf. [5],
[16]). In [11] and [12], the author has extended the notion of C*-symbolic
dynamical system to C*-textile dynamical system which is a higher dimen-
sional analogue of C*-symbolic dynamical system. The C*-textile dynamical
system (&, p, n, £, X7, k) consists of two C*-symbolic dynamical systems
(o, p, £*) and («, n, X") with a common unital C*-algebra ./ and a com-
mutation relation between the endomorphisms p and 7 through a map « stated
PelOW S 51 — (@ b) € 3 x B [ my 0 p, #0),

" ={(a,B) € Z" x B | pgon, # O}
We assume that there exists a bijection « : ¥°7 — X" which we fix and call
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a specification. Then the required commutation relations are

(1.1) Mo pa=ppgota if «(ab)=1(a,p).

A C*-textile dynamical system provides a two-dimensional subshift and a
multi-structure of Hilbert C*-bimodules that has multi-right actions and multi-
left actions and multi-inner products. Such a multi-structure of Hilbert C*-
bimodules is called a Hilbert C*-quad module, denoted by 7/°". In [12],
the author has introduced a C*-algebra associated with the Hilbert C*-quad
module defined by a C*-textile dynamical system. The C*-algebra Oy has
been constructed in a concrete way from the structure of the Hilbert C*-quad
module 7" by a two-dimensional analogue of Pimsner’s construction of C*-
algebras from Hilbert C*-bimodules. It is generated by the quotient images of
the creation operators on two-dimensional analogue of Fock Hilbert module
by module maps of compact operators. As a result, the C*-algebra has been
proved to have a universal property subject to certain operator relations of
generators encoded by structure of the Hilbert C*-quad module of C*-textile
dynamical system ([12], cf. [13]).

Let A, B be two N x N matrices with entries in nonnegative integers. We
assume that both A and B are essential, which means that they have no rows or
columns identically to zero vector. They yield directed graphs G4 = (V, E4)
and Gp = (V, Ep) with acommon vertex set V = {v, ..., vy} and edge sets
E 4 and Ep respectively, where the edge set E 4 consists of A(i, j)-edges from
the vertex v; to the vertex v; and E consists of B(i, j)-edges from the vertex
v; to the vertex v;. Denote by s(e), r(e) the source vertex and the range vertex
of an edge e. We set &/y = CV. Denote by Ej, ..., Ey the set of minimal
projections of .«/y defined by the standard basis of CV which correspond to
the vertex set vy, ..., vy respectively, so that ZlN:1 E;, = 1. Fora € E4,
define pZ an endomorphism of Ay by p(E;) = E; if s(a) = v;, r(a) = vj,
otherwise p‘f (E;) = 0. Similarly we have an endomorphism ,of of oy for
a € Ep. We then have two C*-symbolic dynamical systems (<Zy, p?, E4)
and (%N’ pB, EB) with (SZfN = CN. Put

4% = {(@,b) € Es x Eg | r(e) = s(b)},
£ ={(a,B) € Eg x E5 | r(a) = 5(B))}.
Assume that the commutation relation
(1.2) AB = BA

holds. We may take a bijectionk : £48 — %84 suchthats(a) = s(a), r(b) =
r(pB) for k (a, b) = (a, B), which we fix and call a specification by following
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Nasu’s terminology in [14]. This situation is called an LR-textile system in-
troduced by Nasu ([14]). We then have a C*-textile dynamical system (see

[12)) o
(ﬂN’IO » P ,EA,EB,K).

Let us denote by 4% the associated Hilbert C*-quad module defined in [12].
We set

(1.3) E.={(x,b,a,B) € Ex x Eg x Eg x E4 | k(a, D) = (a, B)}.

Each element of E, is called a tile. Let X ’;L g C (E,()Zz be the two-dimensional
subshift of the Wang tilings of E, (cf. [19]). It consists of the two-dimensional
configurations x : Z> — E, compatible to their boundary edges on each tile,
and is called the subshift of the tiling space for the specification x : 48 —
B4 We say that X 1’2’ p is transitive if for two tiles , 0’ € E,, there exists
(i j)i.jyezz € X p such that wp o = v, w; j = o' for some (i, j) € Z* with
Jj <0 <i.Weset

(1.4) Q¢ ={(a,a) €e E4 x Eg | s(a) =s(a),
k(a,b) = (a, B) forsome B € E4, b € Ep}

and define two |2,| x |€2,|-matrices A, and B, with entries in {0, 1} by

k(a, b) = (a, B) for some B € E4,

otherwise

1
1.5 A, a), (8, b)) = :0

for (av a)v (85 b) € Ql(s

k(a,b) = (a, B) for some b € Ep,
otherwise

1
(1.6)  Bc((a,a),(B.d)) = {0

for (o, a), (B, d) € Q, respectively. Put the block matrix

Ac  Ag
(1.7) HK_|:BK BK].

It has been proved in [12] that the C*-algebra 0415 associated with the Hilbert

C*-quad module -8 is isomorphic to the Cuntz-Krieger algebra Oy, for the
matrix H, (cf. [2]). In this paper, we first show the following theorem.

THEOREM 1.1 (Theorem 2.10). The subshift X'y p of the tiling space is
transitive if and only if the matrix H, is irreducible. In this case, H, satisfies
condition (1) in the sense of [2]. Hence if the subshift Xy p of the tiling space
is transitive, the C*-algebra O sa 1S simple and purely infinite.
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We then see the following theorem.

THEOREM 1.2 (Theorem 2.11). If the matrix A or B is irreducible, the
matrix H, is irreducible and satisfies condition (I), so that the C*-algebra
0 seas is simple and purely infinite.

Let N, M be positive integers with N, M > 1. They give 1 x 1 commuting
matrices A = [N], B = [M]. The directed graph G 4 associated to the matrix
A = [N] is a graph consists of N-self directed loops denoted by E4 with
a vertex denoted by v. Similarly the directed graph Gp consists of M-self
directed loops denoted by E 5 with the vertex v. We fix a specification k : E4 X
Ep — EpXxE 4 defined by exchanging x (o, a) = (a, o) for (o, a) € Eo X Ep.
The specification is called the exchanging specification between E4 and Ep.
We present the following K-theory formulae for the C*-algebra Oy v Inits
computation, the Euclidean algorithm is used. For integers 1 < N < M € N,
letd = (N — 1, M — 1) be the greatest common divisorof N — 1 and M — 1.
Let ko, k1, ..., kj 41 be the successive integral quotients of M — 1 by N — 1
by the Euclidean algorithm such as

M—1=(N—1ky+rg forsome kopeZ,, O<ro<N—1,

N —1=rok; +n forsome k; €Z,, 0<r| <ry,
rio =rj_1kj +r; forsome k; €Z., 0<r; <rj_y,
rji-1 = dkj1.

THEOREM 1.3 (Theorem 3.5). For integers 1 < N < M € N and the
exchanging specification k between directed N-loops and M-loops, the C*-
algebra O s is a simple purely infinite Cuntz-Krieger algebra whose K-
groups are

K, (@%[NJ.[MJ) = 0,
M-=2
Ko(Oymin) ZZ/(N — 1)Z® - ®Z/(N — 1)Z
N-2

®Z/M-DZ® - DZ/(M—1)Z

@© Z/dZDZ/[ki, ko, ... ki ](M —1)(M + N —1)Z

whered = (N — 1, M — 1) the greatest common divisor of N — 1 and M — 1,
and the sequence ko, k1, . .., kj11 is the successive integral quotients of M — 1
by N — 1 by the Euclidean algorithm above, and the integer [ki, ko, ..., kji1]
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is defined by inductively

[kO] = ls [kl] = kl? [kls kZ] =1 +klk27
L) [k19k2a . "7kj+]] = [k1$k2a L 7kj]kj+1 + [klv . '7kj71]'

We remark that the C*-algebras studied in this paper are different from the
higher rank graph algebras studied by G. Robertson-T. Steger [18], A. Kumjian-
D.Pask [6], V. Deaconu [3], etc., (cf. [4], [17], [15], etc.). Throughout the paper,
we denote by N and by Z,_ the set of positive integers and the set of nonnegative
integers respectively.

2. Transitivity of tilings X , and simplicity of @%A,B

Let X be a finite set. The two-dimensional full shift over X is defined to be
2
2% = {(xi )i ez | xij € T

An element x € ©7 is regarded as a function x : Z2 — ¥ which is called a
configuration on Z2. For a vector m = (my, m,) € 2%, lete™ : % — £% be
the translation along vector m defined by

0" ((xi, )i, ez2) = Kickm,, j4m>) i, jyez2-

A subset X C X7 is said to be translation invariant if o™(X) = X for all
m € Z?%. It is obvious to see that a subset X C 7 is translation invariant
if and only if X is invariant only both horizontally and vertically, that is,
o10(X) = X and 6 ®V(X) = X. Fork € Z,, put

[k, k1> = {(i, j) € 22 | —k < i, j < k} = [k, k] x [k, k].

A metric d on £Z is defined by for x, y € % with x # y

1 .
dx,y) = o it x0,00 = Y0,0)

where k = max{k € Z | x_i4p = Y—kk2}- If X(0.0) # Y0.0)» putk = —1 on
the above definition. If x = y, we setd(x, y) = 0. A two-dimensional subshift
X is defined to be a closed, translation invariant subset of »Z (cf. [8, p. 467]).
A two-dimensional subshift X is said to have the diagonal property if for
(xi.)) . pezz> Vij)i,jezr € X, the conditions x; j = y; j, Xit1,j—1 = Yi+1,j—1
imply x; j_1 = Yi,j—1, Xi+1,; = Yi+1,; (see [11]). The diagonal property has
the following property: for x € X and (i, j) € Z°, the configuration x is
determined by the diagonal line (x4, j_n)nez through (i, j).
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We henceforth go back to our previous situation of C*-textile dynamical
system (Ly, p?, pB, E4, Ep, k) coming from N x N commuting matrices
A and B with specification « as in Section 1. We always assume that both
matrices A and B are essential. Recall that the matrices A and B give rise to
directed graphs G4 = (V, E4) and Gg = (V, Ep) with a common vertex set
V ={vy,..., vy} and edge sets E, and Ep respectively, where the edge set
E 4 consists of A(i, j)-edges from the vertex v; to the vertex v; and Ep consists
of B(i, j)-edges from the vertex v; to the vertex v;. A two-dimensional subshift
X’y p is defined as in the following way. Let X be the set E, of tiles defined in
(1.3). Forw = (&, b, a, B) € E,, define maps t (= top), b(= bottom) : E, —
E 4 and [ (= left), r(=right) : E, — Ep by setting

tw)y=a, blw)=p, I[l(w)=a, rw) =>b

as in the following figure: a=t(w)

o o
a=lI (a))l lb:r (w)
o

—> O
B=b(w)

A configuration (w;, ;). j)ez2 € Efz is said to be paved if the conditions

t(w;, ;) = b(w; j41), r(wi ;) = lwiq1,;),

Hw; ;) =r(wi-1,j), b(w; ;) = t(wij-1)

hold for all (i, j) € Z%. Let X’ p be the set of all paved configurations

(i, j)i ez € E,fz. It consists of the Wang tilings of the tiles of E, (see
[19]). The following proposition is easy.

PROPOSITION 2.1. XY  is a two-dimensional subshift having the diagonal
property.

We write &/y = CE; @ --- @ CEy for the minimal projections E’l =
1,..., N of &y such that ZlN:1 E; = 1. Let us define the matrices A, B by

setting forae € Eq,a € Eg,i,j=1,..., N,
—~ 1 ifs(e) =i,r(a) =7,
A(i,a,j)={ ) = e =

0 otherwise,

~ . . 1 ifs(a) =i,r(a) =],
B.a. ) =| .
G.aJj) 0 otherwise.

Recall that the endomorphisms ,0(;4, ,of of Ay fora € E4, a € Ep are defined
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by N N
pa(E)) =Y Al.a, DE;,  pl(E) =) Bli.a,j)E;
j=1 j=I
fori =1,..., N.They yield the C*-textile dynamical system
(n, p*, 0P, Ex, Ep, &)

with specification k ([12]). Lete,,, @ € E, be the standard basis of C/é<!, Put the
projection E,, = pf o p2(1)(= pg opB(1)) € Ay forw = (a, b, a, B) € E,.

We set
HLP =" ey ® Eydly.

wekE,

Then 48 has a natural structure of not only Hilbert C*-right module over
&/y but also two other Hilbert C*-bimodule structure, called Hilbert C*-quad
module. By two-dimensional analogue of Pimsner’s construction of Hilbert
C*-bimodule algebra ([16]), we have introduced a C*-algebra & s (see [12]
and [13] for detail construction). Let €2, be the subset of E4 x Ejpg defined
in (1.4). We define two |2, | x |2, |-matrcies A, and B, with entries in {0, 1}
as in (1.5) and (1.6). The matrices A, and B, represent the concatenations of
edges as in the following figures respectively:

5
o 25 0 230

l bl if Ac((ar, @), (8,b)) =1,
O —> O

and o 9o
i L)i if B.((at, a), (B,d)) = 1.

Let H, be the 2|Q2,| x 2|R2,| matrix defined in (1.7). We have proved the
following result in [12].

THEOREM 2.2. The C*-algebra Oy a5 associated with Hilbert C*-quad
module (8 defined by commuting matrices A, B and a specification « is
isomorphic to the Cuntz-Krieger algebra Oy, for the matrix H,. Its K-groups
K.(Oy,) are computed as

KO(@HK) = Zn/(AK + BK - In)znv Kl (GH,() = Ker(AK + BK - In) in va

where n = |Q,|.
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We will study a relationship between transitivity of the tiling space X  and
simplicity of the C*-algebra 0y,a.s. An essential matrix with entries in {0, 1}
is said to satisfy condition (I) (in the sense of [2]) if the shift space defined
by the topological Markov chain for the matrix is homeomorphic to a Cantor
discontinuum. The condition is equivalent to the condition that every loop in
the associated directed graph has an exit ([7]). It is a fundamental result that
a Cuntz-Krieger algebra is simple and purely infinite if the underlying matrix
is irreducible and satisfies condition (I) ([2]). We will find a condition of the
two-dimensional subshift X’ , of the tiling space under which the matrix H,
is irreducible and satisfies condition (I). Hence the condition on X Q’ 5 yields
the simplicity and purely infiniteness of the algebra Oy a.5.

We are assuming that both of the matrices A and B are essential. Then we
have

LeEMMA 2.3. Both of the matrices A, and B, are essential.

Proor. For (o, a) € ., by definition of 2,, there exist § € E, and
b € Ep such that x(«, b) = (a, B). Since A is essential, one may take 8; €
E 4 such that s(8;) = r(b)(= r(B)). Hence (b, B1) € L84, Put (ay, b)) =
k1 (b, B1) € =48 so that («;, b) € Q, and A.((«, a), (a1, b)) = 1 as in the

following figure: o o
O —> O —8> O

al bl b[l
B Bi
0o —> 0o —

For (8, b) € Q, there exists @« € E4 such that r(«) = s(8)(= s(b)) because
A is essential. Hence (a, b) € 48, Put (a, B) = k(«, b) so that («, a) € Q.
and A, ((«, a), (8, b)) = 1 as in the following figure:

o )
O —> O —8> 0
|
B
O —> O
Therefore one sees that A, is essential, and similarly that B, is essential.
Hence we have
PROPOSITION 2.4. The matrix H, is essential and satisfies condition (I).

PrOOF. By the previous lemma, both of the matrices A, and B, are essen-
tial. Hence every row of A, and of B, has at least one 1. Since

_[A A
H”_[BK BK]
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every row of H, has at least two 1’s. This implies that a loop in the directed
graph associated to H, must has an exit so that H, satisfies condition (I).

For (a, a), (¢/,a’) € Q,,and C, D = A or B, we have

[CcD (e, @), (o, a')) = Z Ce((@, a), (a1, a1)) D (a1, ar), (@, ).

(orp,a1) €82

Hence [A A ]((a, @), (@', a’)) # 0 if and only if there exists («;, a;) € Qi
such that « (&, @1) = (a, B) for some B € E4 and «(«,a’) = (a1, By) for
some f; € E4 as in the following figure:

o o] o
(@] (@] (@]
al all a/l
B Bi
O —> O (@]

And also [A, B.]1((e, a), (&, a’)) # 0 if and only if there exists (x|, a;) € 2,
such that «(«, a;) = (a, B) for some B € E4 and k(«y, b)) = (ay, a’) for
some b; € Ep as in the following figure:

o ap
O —> O —> O

|

Similarly [B, A, ]((«, @), (&, a’)) # 0if and only if there exists (a1, a;) € 2,
such that « (o, b) = (a, ;) for some b € Ep and «(ay,a’) = (a, B1) for
some B € E4 as in the following figure:

iga

S

a

O «—— 0 <«— ©
ls
:\
o <«— o

=

And also [B, B, 1((«, a), (', a’)) # 0if and only if there exists (x|, a;) € 2,
such that «(a, b) = (a, a;) for some b € Ep and «(aq, b)) = (a1, ') for
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some b, € Ep as in the following figure:

y

(e}

Q
S

;

.

2
s
O <—— O

ap

LEMMA 2.5. A, B, = B A,.

Proor. For (a, a), (a’,a’) € Q,, we have [A, B ]((«, a), (&', a)) = m if
and only if there exist («;, a!) € Q,,i = 1,..., msuchthatk(«, a}) = (a, B;)
forsome B; € E4 andk («;, b;) = (a}, ') forsome b; € Ep asinthe following

figure: o o
O —> 0 —> O

1,

Bi o
O —> O —» O

O —> O
a a;
Bi o
o o —>
all al
B;
o —> O

If (Bi,a;) = (Bj, aj) in Q,, then we have §; = B; so that a; = aj’. and hence
«; = o;. Therefore we have [B A ]((a, a), (o', a’)) = m.

LEMMA 2.6. The following four conditions are equivalent.
(1) The matrix H, is irreducible.
(ii) For («, a), (&', a’) € Q, there exist n, m € Z, such that
Ac(Ac + B)" (@, @), (o, a")) > 0,
B.(Ac+ B)" (@, a), (&', a")) > 0.
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(iii)) The matrix A, + B, is irreducible.
(iv) For(a,a),(a', a’) € Q,, there exists a paved configuration (w; ;). j)ez> €
X'y p such that
Hwoo) =, lwoo) =a, tw;)=ad, lw;)=d
for some (i, j) € 2> with j <0 < i.

PrOOF. (i) < (ii): The identity

K

A (A + B)" A (Ac + B)"
@.1) o =[ (Ac + By) (Ac + By) }
B.(Ac + B)" Bc(Ac+ Bo)"

implies the equivalence between (i) and (ii).
(ii) = (iii): Suppose that for (&, a), (¢/, @’) € Q,, there exists n € Z, such
that A, (A, + B.)"((«, a), (&', a")) > 0 so that

(Ac + B)" (@, @), (@', a")) > 0.

Hence the matrix A, + B, is irreducible.
(iii) = (ii): As A, and B, are both essential, for («, a), (¢’, a’) € Q, there
exists (a1, ay), (a2, ar) € L, such that
AK((a7 a)a (al’ al)) = 17
B, (o, a), (2, a2)) = 1.

Since A, + B, is irreducible, there exist n, m € Z, such that

(Ac + B)" (a1, a1), (&', a")) > 0,
(Ac + B)" (a2, a2), (&', a")) > 0.

Hence we have
Ac(Ae + B)"(a, @), (&, ad)) >0,

Bc(Ac + B)" (@, @), (¢, ")) > 0.

(i) = (iv): For (a, a), (@’,a’) € K, take («j,a;) € Q, and B € E,
such that x(«, a;) = (a, B). By (ii), there exists m € Z, with B.(A, +
B.)"((a,a), (¢/,a’)) > 0. One may take b’ € Ep and 8’ € E4 satisfying
k(a',b") = (a’, B'), so that there exists a paved configuration (;, ;) j)ezz €
XY psuchthatwoo = (o, ar, a, B) and w; j = (o, b',a’, B’) forsome (i, j) €
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Z? with j < 0 < i as in the following figure:

(iv) = (ii): The assertion is clear.

DEFINITION 2.7. A two-dimensional subshift X’ , is said to be transitive if
fortwotiles w, " € E, there exists a paved configuration (w;, ;) i, j)ez2 € X4 B
such that wy o = w and w; ; = o’ for some (i, j) € 7> with j <0 < i.

THEOREM 2.8. The subshift X'y p of the tiling space is transitive if and only
if the matrix H, is irreducible.

PrOOF. Assume that the matrix H, isirreducible. Hence the condition (iv) in
Lemma2.6 holds. Letw = (a, b, a, B), v’ = (&', b, d’, B') € E, betwotiles.
Since A is essential, there exists ; € E, such that r(8)(= r(b)) = s(B1),
so that (b, ;) € L84, One may take (o, b;) € 4% such that «(ay, by) =
(b, B1) and hence («y, b) € L, as in the following figure:

o o]
O —> 0 ——> O

al bl bll

[¢] i} (@] L} (@]
For (a1, b), (@', a’) € Q, by (iv) in Lemma 2.6, there exists (w;, ;) j)ez2 €
X'y g such that t (wo0) = a1, l(wo,0) = b, t(w; ;) = &', [(w; ;) = a’ for some
(i, j) € Z* with j < 0 < i. Since X¥ j has the diagonal property, there exists
a paved configuration (a)l’.yj)(,-,j)ezz = X'y p such that o ) = o, a)l’j = o
Hence X’ p is transitive.

Conversely assume that X',  is transitive. For (a, a), (o, a’) € Q,, there
exist b,b' € Ep and B,B € E4 such that w = (o, b,a,pB),0 =
(', b,a,B") € E,.Itis clear that the transitivity of X .. g implies the condi-
tion (iv) in Lemma 2.6, so that H, is irreducible.
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LEMMA 2.9. If A or B is irreducible, XXB is transitive.

ProOF. Suppose that the matrix A is irreducible. For two tiles o =
(o, b,a,B8),0 = (&,b,a',8) € E,, there exist concatenated edges
(B, Bi, ..., B, @) in the graph G4 for some edges Bi, ..., B, € E4. Since
X’y p has the diagonal property, there exists a configuration (w; ), jez2 €
X'y p such that " = w; ; for some i > 0, j = —1. Hence X’ j is transitive.

Since the C*-algebra 0,5 is isomorphic to the Cuntz-Krieger algebra O,
by [12], we see the following theorems.

THEOREM 2.10. The subshift X'y p of the tiling space is transitive if and
if the matrix H, is irreducible. In this case, H, satisfies condition (I). Hence
if the subshift X\ p of the tiling space is transitive, the C*-algebra Oy .5 is
simple and purely infinite.

By Lemma 2.9, we have

THEOREM 2.11. If the matrix A or B is irreducible, the matrix H, is irre-
ducible and satisfies condition (1), so that the C*-algebra O y.5 is simple and
purely infinite.

3. The algebra @%,Km,[m for two positive integers N, M

Let N, M be positive integers with N, M > 1. They give 1 x 1 commuting
matrices A = [N], B = [M]. We will present K-theory formulae for the
C*-algebras Oy with the exchanging specification . In the computations
below, we will use the Euclidean algorithm to find order of the torsion part of the
Ky-group. The directed graph G 4 for the matrix A = [N]is a graph consisting
of N-self directed loops with a vertex denoted by v. The N-self directed loops
are denoted by E 4. Similarly the directed graph G 5 for B = [M] consists of
M-self directed loops denoted by Ep with the vertex v. We fix a specification
k : Ex4x Eg — Ep x E 4 defined by exchanging « («, a) = (a, «) for (¢, a) €
EsxEp.Hence 2, = Esx Epsothat|Q,| = |Es| x|Eg| = N x M. Wethen
know A, ((a, a), (8, b)) = 1 if and only if b = a, and B, ((«, a), (B,d)) =1
if and only if 8 = « as in the following figures respectively.

o ——
o 8 l
O —> 0 —> a
and a=p
a a=b o ——
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In [12], the K-groups for the case N = 2 and M = 3 have been computed

such that
Ko(@%,(mﬁl) =7Z/8Z, Kl(@%m.m) =0.

Hence @’m[z],m is stably isomorphic to the Cuntz algebra Oy of order 9 ([1]).
We will generalize the above computations.

Let I, be the n x n identity matrix and E, the n x n matrix whose entries
are all 1’s. For an N x N-matrix C = [ci,j]ff’jzl and an M x M-matrix

D= [dk,l]%:l’ denote by C ® D the NM x N M matrix

CllD C12D C1ND
6’21D C22D . CZND
C®D=
CNlD CNzD CNND
Hence we have
Iy Iy ... Iy
Iy Iy ... Iy
En@Iy=| . . . s
Iy Iy ... Iy
_EM 0 0
0 E
In®Ey = Y
: . .0
L0 ... 0 Ey

We put E[N] = {oy,...,ay}, E[M] ={a,...,ay}. As Q, = E[N] X E[M],
the basis of C¥ ® C are ordered lexicographically from left as in the following
way:

3.1 (a1, ar),....(ar,am), (a2, ar), ..., (a2, am),
) ...,(aN,al),...,(aN,aM).

Let A, and B, be the matrices defined in the previous section for the matrices
A = [N], B = [M] with the exchanging specification . The following lemma
is direct.

LEMMA 3.1. The matrices A, B, are written as

Ac=EnN® Iy, B.=IynQEy
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along the ordered basis (3.1). Hence we have

Ey Iy ... Iy
Im
(32) Ac+ Be — Inu =
: . Iy
Iy ... Iy Ey

We denote by H(0) the matrix A, + B, — Iypy. By Theorem 2.2, the
K-groups of the algebra Oy mun are given by the kernel Ker(H (0)) and the
cokernel Coker(H (0)) of the matrix H(0) in Z¥”. For an M x M matrix C
andi, j =1,2,..., N withi # j, define an N x N block matrix E; ;(C) =
[Ei j (C)(k, l)],lxl:], whose entries E; ;(C)(k, 1), k,l =1,2,..., Nare M x M
matrices, by setting

Iy (k=1),
EjO&D=YC (k=i j=1),
0 else.

The multiplication of the matrix E; ;(C) from the left (resp. right) corres-
ponds to the operation of adding the C-multiplication of the jth row (resp. ith
column) to the ith row (resp. jth column). We will transform H (0) preserving
isomorphism classes of the groups Ker(H (0)) and Coker(H (0)) in Ak by
multiplying the matrices E; ;(C),i,j =1,2,..., N.

We first consider row operations and set

H(1) =En_1 n(—Im)En_o n—1(—=1p) - - - E1 o(= 1) H(0),

HQ) =Enx y-1Up)En—1.v—2Ip) - - Ex 1 (U) H (D),
HQ@) =E1o(Um)E23(Iy) -+ - En2 N1 (Uy)En—1,.n(Ey — I) H(2).

It is straightforward to see that the matrix H (3) goes to

rpu(N —1) 0 0
pu(N —2) Ey—1Iy

H@3) =
pm(2)
pu()  Ey—1Iy ... ... Ey—1Iy O
L Eu I Iy Iy
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where py(i) = E3 + (i — DEy —ily = (Ey + ily)(Ey — Iy) for
i=1,...N—1.
We second consider column operations and set

H4) = HG)En n_1(=Im)Enn-2(=1y) - - En2(—=Ip)En 1 (= Epn)
which goes to

“ou(N—1 0 0 -
pu(N =2) Ey—1Iy

H(4) =
ru2)
pm(l) Ey—Iy ... ... Ey—1Iy 0
L 0 0 0 Iy 4

By successive multiplications of the matrices

Ev—1.v—2(=Im)En—1,n—3(—=1Ip) - - - En—12(—=Im)En—11(—=(Epm + Iy))
Ev—on—3(—Im)En—2 N—4(—1p) - - En_22(—=Ip)En—21(—(Ey + 21y))

E32(—Ip)E3 1 (—(Epm + (N — 2)1y))
Exi(—(Em + (N — D1y)),

from the right side of H (4), we obtain the diagonal matrix

mpu (N — 1) 0 0
0 Ey — Iy
H=
Ey—1Iy O
L0 0 Iy

As E;, = MEy, wehave py(N — 1) = (M + N —2)Ey — (N — DIy.
We thus have

LEMMA 3.2.
Ker(A, + B, — Iyy) in ZVM =0
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and
Coker(A, + B — Iyy) in ZVM

(N=2)

=M J(Ey — I & - ® ZM J(Ey — Iy)ZM

&M /(M + N —2)Ey — (N — DI)Z™.

ProoF. Itis straightforward to see that the matrix A, + B, — [y is invertible
by the formula (3.2). Since

Coker(A + B, — Iyy) in ZVY = ZNM/HZNM,

the formula for the cokernel is obvious.

We will next compute the following groups to compute Coker(A, + B, —
1 N M) in ZNM .

) Z"/(Ey — L)z,
(i) Z¥/(M + N —2)Ey — (N — ) I))Z"

For an integer c and i, j = 1,2, ..., M withi # j, define an M x M matrix
E; j(c) = [E; j(c)(k, D]},_, by setting

1 (k=1D),
(3.3) Eijok,D=1¢ *k=i,j=1),
0 else.

(i) By successive multiplications of the matrices

Ev—1m(=D)Ey—2m-1(=1)--- E;2(=1),

Eym—1(DEy—1,m—2(1) - Ez1(1),

Eym-1(=D)Eym—2(=1)--- Ey1(=1)
from the left side of the matrix

o 1 ... 1

Ey—1In=| N
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we get the matrix - 1 0 0
—1 0
: 1 O
—1 0 0 1
M -1 0 0 0
which goes to the diagonal matrix with diagonal entries [1,1,...,1, M — 1]
by elementary column operations. Hence we see that

(3.4) MI(Ey — LM =2/ (M - 1)Z.

(ii)Pute=M+N—-2)—(N—1)=M—1and f = M+ N — 2. Then
we have

e f ... f
f e

(3.5) M+ N—-2)Ey—(N—-1DIy=
: f
f foe

By a similar manner to the preceding matrix operations from H (1) to H(4),
one obtains the following matrix denoted by L(1) from the matrix (3.5)

re—f f—e O 0 7
e— f 0

L=\ f—-e 0
e— f 0 0 f—e
L e f f [

By exchanging columns in the matrix

L E> 1 (DE3 (1) -+ Epi (1),

we have
f—e O 0 0 )
0
L=\ f—e 0 0
0 0 f—e 0
. f foe+tWM-Df ]



144 KENGO MATSUMOTO

It is easy to see that the matrix

Ey_i1,m—2(1) - E3p(N)Ey 1(1)L(2)Er 1 (=1 E30(—=1) -+ Epy_y py—2(—1)

goes to
" f—e 0 ... ... 0 .
0
Z: . . .
0 ... 0 f—e 0
L 0 ... 0 f e+M-Df]

Put the 2 x 2 matrix Ly, ) by setting
f—e 0 :|
fooetm =Dl

As f —e = N — 1, we have the following lemma with (3.4).

Ln,my = [

LEmMmA 3.3.
Q) ZM)(Ey — I)ZM = 2/ (M — 1)z.

(i) ZM /(M + N —2)Ey — (N — ) [,))ZY
M-2

=Z/(N-1)Z&---®Z/(N - 1)Z & Z*/Ly.mZ’.

It remains to compute the group Z2/Ly 2> Putn = N —1,m = M — 1.
As f—e=mnand f = m+n,wehavee+(M—-1)f = (M—-1)(M+N—-1) =
m(m + n + 1) so that

L _[ n 0 :|
M) = n+m mm+n+1)]

For an integer c and i, j = 1,2 with i # j, define an 2 x 2 matrix E; ;(c) =
[E; (o) (k, l)],%y,:1 in a similar way to (3.3). Put L, ,, = E»1(—1)Ln pm) sO
that

L _|:n 0 :|
T m mm+n+1) ]

We may assume that M > N and hence m > n.
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If misdivided by n sothatm = nk forsome k € N, the matrix E»  (—k) L,

goes to the diagonal matrix:

[n 0 ]_[N—l 0 }
0 mm+n+1)] L 0 M-DM+N-D]
Hence we have

/Ly ZZ/(N—1)Z & Z/(M — 1)(M + N — 1)Z.

Otherwise, by the Euclidean algorithm, we have lists of integers ro, 71, ..., 7;
and ko, ki, ..., kj1 for some j € N such that
m = nky + ro, 0<ry<n,
n = rok; + ry, 0<r <ro,
ro = riky + ra, 0<r<r,
rj_zzrj_lkj+rj, 0<7"j <rj-1,
ri—1 =rjkjq1, 0=rj4

where r; = (m, n) the greatest common divisor of m and n. Put g = m(m +
n+1). We set

n 0
Ln,m(o) = E2,1(_k0)Ln,m = .
ro &8

We define a finite sequence of matrices L, ,,(I),l = 1,2, ... by
Ln,m(l) = E1,2(_kl)Ln,m(O)a Ln,m(z) = EZ,I(_kZ)Ln,m(l)
and inductively

Ln,m(2i - 1) = E1,2(_k2i—l)Ln,m(2i - 2):
Ln,m(Zi) = E2,1(_k2i)Ln,m(2i - 1)

The Euclidean algorithm stopsat j +1 =2i —1or j+1 = 2i forsome i € N.
We set

kol =1, [kil = ki, [ki, k2]l =1+ kiko, [ki, ko, k3] = [ki, kalks + [ki],
vy Lkt ko oo kil = ke, ko oo kK Tk L k]
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Then we have

Lyn(l) = [rl _[kl]g:|

s Ln,m(z) = |:r1 _[kl]g i| s
ro

ry ki, kalg

and inductively

i—1 —lki, ko, ool ko
Ln,m(2i—1)=[r2 1 [k1, ko 2 1]gj|’

iy ki, ko, .o koio]g

i1 —lki,ka, ..., kzi—l]g]
o ki, ko, ..., koilg

fori =1,2,.... We denote by d the greatest common divisor (m, n) of m and
n, so that d = r;. Take mo € Z such that m = mod. Put go = mo(m +n + 1)
so that g = god. We have two cases.

Case I: j+1=2i — 1 forsomei € N. We have

rig1 —lki ko, oo kjrlg |:0 —[ki, ko, .. -,kj+1]8i|

rj ki, ko, ..., kilg d ki, ko, ... kjlgod

Ln,m (21) = |:

and hence

. [0 —[ki, ko, ..., kjt1lg
Lym(j+DEo(=lki, ko, ..., kjlgo) = a ] .

d 0

Case 2: j + 1 = 2i for some i € N. We have

r] _[klkaaak]]g]_ [d _[k17k277k]]g0d}

Ln,m(j + 1) = |:
rivr ki ko, oo kjplg 0 [ki,ko, .. kjp1lg

and hence

d 0
L,,.(j+DE ki, kr, ..., k; = .
m(J+ DE 2([k1, k2 i180) [0 [kl,kz,...,kj+1]g:|

We reach the following lemma.

LEMMA 3.4.

Z2/LivnZ> =2/d2® Z/[k, ka, .. ., kjt118Z.

Therefore we have

THEOREM 3.5. For positive integers 1 < N < M € N and the exchanging
specification k between N -loops and M -loops in a graph with one vertex, the
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C*-algebra O s is a simple purely infinite Cuntz-Krieger algebra whose
K-groups are

Kl(@%m],w]) =0,
M=2
Ko(Oymiin) = Z/(N = DZ&---@Z/(N - 1)Z
N=2
®Z/M-1)ZH---SZ/(M—-1)Z
® Z2/dZDZ/ki, ko, ... kjt1](M — 1) (M +N —1)Z

whered = (N — 1, M — 1) is the greatest common divisor of N — 1 and M — 1,
the sequence ko, ki, ..., kjq1 of integers is the list of the successive integral
quotients of M — 1 by N — 1 in the Euclidean algorithm such as

M—-1=(N—-Dko+ry forsome ko€eZy, 0<ro<N—1,

N —1=rok; +1 forsome ki e€Z., 0<r <ry,

rioy =rj_ikj +7; forsome kieZ,, 0<r; <rj_y,
rj_l = dkj_H,
and the integer [k, k, ..., kjy1] is defined by inductively

kol =1, [kil =ki, [ki,ko]l =1+ kiks,
vy Lkika, oo kil =k ko, o kTR o A TR k]

We finally present examples.

ExAaMPLES 3.6. 1. Forthecase ]l < N = M,wehaved = N — 1,ky =
1,ro =0.As we see [ky, ..., kj;1] =1, we have

[k, ... ki J(M —1)(M + N —1) = (N — H2N — 1).

Hence
2N-3

Ko(Oymn) = Z/(N = DZ® - ®Z/(N — DZ @Z/(N — (2N — 1)zZ.

2. Forthecase N =2 and M > 2, we haved = 1,ry = 0. As we see
[ki,...,kj11] =1, we have

[kl,...,kj+1](M—1)(M—|—N—1)=1x(M—l)(M—|—1)=M2—1.
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Hence

Ko(Oy1om) = Z/(M? = 1)Z.

The formula for N = 2, M = 3 is already seen in [12].
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