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NONSEPARABLE UHF ALGEBRAS II:
CLASSIFICATION
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Abstract
For every uncountable cardinal κ there are 2κ nonisomorphic simple AF algebras of density
character κ and 2κ nonisomorphic hyperfinite II1 factors of density character κ . These estimates
are maximal possible. All C*-algebras that we construct have the same Elliott invariant and Cuntz
semigroup as the CAR algebra.

1. Introduction

The classification program of nuclear separable C*-algebras can be traced
back to classification of UHF algebras of Glimm and Dixmier. However, it
was Elliott’s classification of AF algebras and real rank zero AT algebras that
started the classification program in earnest (see e.g., [24] and [8]).

While it was generally agreed that the classification of nonseparable C*-
algebras is a nontractable problem, there were no concrete results to this effect.
Methods from logic were recently successfully applied to analyze the classific-
ation problem for separable C*-algebras ([15]) and II1 factors with separable
predual ([25]) and it comes as no surprise that they are also instrumental in
analyzing classification of nonseparable operator algebras. We construct large
families of nonseparableAF algebras with identical K-theory and Cuntz semig-
roup as the CAR algebra. Since the CAR algebra is a prototypical example
of a classifiable algebra, this gives a strong endorsement to the above view-
point. We also construct a large family of hyperfinite II1 factors with predual
of density character κ for every uncountable cardinal κ . Recall that a density
character of a metric space is the least cardinality of a dense subset. While the
CAR algebra is unique and there is a unique hyperfinite II1 factor with separ-
able predual, our results show that uniqueness badly fails in every uncountable
density character κ .

For each n ∈ N, we denote by Mn(C) the unital C*-algebra of all n × n

matrices with complex entries. A C*-algebra which is isomorphic to Mn(C)
for some n ∈ N is called a full matrix algebra.
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Definition 1.1. A C*-algebra A is said to be

• uniformly hyperfinite (or UHF) if A is isomorphic to a tensor product of
full matrix algebras.

• approximately matricial (or AM) if it has a directed family of full matrix
subalgebras with dense union.

• locally matricial (or LM) if for any finite subset F of A and any ε > 0,
there exists a full matrix subalgebra M of A such that dist(a,M) < ε for
all a ∈ F .

In [7] Dixmier remarked that in the unital case these three classes coin-
cide under the additional assumption that A is separable and asked whether
this result extends to nonseparable algebras. In [19] a pair of nonseparable
AF algebras not isomorphic to each other but with the same Bratteli diagram
was constructed. Dixmier’s question was answered in the negative in [13].
Soon after, AM algebras with counterintuitive properties were constructed. A
simple nuclear algebra that has irreducible representations on both separable
and nonseparable Hilbert space was constructed in [9] and an algebra with
nuclear dimension zero which does not absorb the Jiang-Su algebra tensori-
ally was constructed in [12]. Curiously, all of these results (with the possible
exception of [12]) were proved in ZFC.

Results of the present paper widen the gap between unital UHF and AM
algebras even further by showing that there are many more AM algebras than
UHF algebras of every uncountable density character. In §5 and §6 we prove
the following.

Theorem 1.2. For every uncountable cardinal κ there are 2κ pairwise
nonisomorphic AM algebras with density character κ . All these algebras have
the same K0, K1, and Cuntz semigroup as the CAR algebra.

Every AM algebra is LM and by Theorem 1.2 there are already as many
AM algebras as there are C*-algebras in every uncountable density character.
Therefore no quantitive information along these lines can be obtained about
LM algebras.

Theorem 1.3. For every uncountable cardinal κ there are 2κ nonisomorphic
hyperfinite II1 factors with predual of density character κ .

While there is a unique hyperfinite II1 factor with separable predual, it
was proved by Widom ([29]) that there are at least as many nonisomorphic
hyperfinite II1 factors with predual of density character κ as there are infinite
cardinals ≤ κ .

Note that there are at most 2κ C*-algebras of density character κ and at
most 2κ von Neumann algebras with predual of density character κ . This is



nonseparable uhf algebras ii: classification 107

because each such algebra has a dense subalgebra of cardinality κ , and an easy
counting argument shows that there are at most 2κ ways to define +, ·, ∗ and
‖·‖ on a fixed set of size κ .

On the positive side, in Proposition 4.2 we show that Glimm’s classification
of UHF algebras by their generalized integers extends to nonseparable algebras.
This shows that the number of isomorphism classes of UHF algebras of density
character ≤ κ is equal to 2ℵ0 , as long as there are only countably many cardinals
≤ κ (Proposition 4.3 and the table in §7). Hence UHF algebras of arbitrary
density character are ‘classifiable’ in the sense of Shelah (e.g., [26]). Note,
however, that they don’t form an elementary class (cf. [5]).

Two C*-algebras are isomorphic if and only if they are isometric, and the
same fact is true for II1 factors with �2-metric. However, in some situations
there exist topologically isomorphic but not isometric structures – notably, in
the case of Banach spaces. The more general problem of constructing many
nonisomorphic models in a given density character was considered in [28].

Organization of the paper

In §2 we set up the toolbox used in the paper. In §3 we study K-theory and Cuntz
semigroup of nonseparable LM algebras. UHF algebras are classified in §4.
In §5 we prove a non-classification result for AM algebras and hyperfinite II1

factors in regular density characters. Shelah’s methods from [27], as adapted
to the context of metric structures in [14], are used to extend this to arbitrary
uncountable density characters in §6. In §7 we state some open problems and
provide some limiting examples.

The paper requires only basic background in operator algebras (e.g., [2])
and in naive set theory. On several occasions we include remarks aimed at
model theorists. Although they provide an additional insight, these remarks
can be safely ignored by readers not interested in model theory.
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2. Preliminaries

A cardinal κ is a successor cardinal if it is the least cardinal greater than some
other cardinal. A cardinal that is not a successor is called a limit cardinal. Note
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that every infinite cardinal is a limit ordinal. Cardinal κ is regular if forX ⊆ κ

we have supX = κ if and only if |X| = κ . For example, every successor
cardinal is regular. A cardinal that is not regular is singular. The least singular
cardinal is ℵω and singular cardinal combinatorics is a notoriously difficult
subject. A subset C of an ordinal γ is closed and unbounded (or club) if its
supremum is γ and whenever δ < γ is such that sup(C ∩ δ) = δ we have
δ ∈ C. A subset of an ordinal γ is called stationary if it intersects every club
in γ non-trivially.

Some of the lemmas in the present paper, (e.g., Lemma 2.1) are well-known
but we provide proofs for the convenience of the readers.

Lemma 2.1. If κ is a regular cardinal then there exists a function S: P(κ) →
P(κ) such that S(X)�S(Y ) is stationary whenever X 
= Y .

Proof. We first prove that κ can be partitioned into κ many stationary sets,
Zγ , γ < κ . If κ is a successor cardinal then this is a result of Ulam ([20,
Corollary 6.12]). If κ is a limit cardinal, then there are κ regular cardinals
below κ . For each such cardinal the set

Zγ = {δ < κ : min{|X| : X ⊆ δ and supX = δ} = γ }
is stationary.

For X ⊆ κ let S(X) = ⋃
γ∈X Zγ . Then clearly S(X)�S(Y ) is stationary

whenever X 
= Y .

Let |X| denote the cardinality of a set X. We shall now recall some basic
set-theoretic notions worked out explicitly in the case of C*-algebras in [13].

Definition 2.2. A directed set	 is said to beσ -complete if every countable
directed Z ⊆ 	 has the supremum supZ ∈ 	. A directed family {Aλ}λ∈	 of
subalgebras of a C*-algebra A is said to be σ -complete if 	 is σ -complete
and for every countable directed Z ⊆ 	, AsupZ is the closure of the union of
{Aλ}λ∈Z .

Assume A is a nonseparable C*-algebra. Then A is a direct limit of a σ -
complete directed system of its separable subalgebras ([13, Lemma 2.10]).
Also, if A is represented as a direct limit of a σ -complete directed system of
separable subalgebras in two different ways, then the intersection of these two
systems is a σ -complete directed system of separable subalgebras and A is its
direct limit ([13, Lemma 2.6]).

The following was proved in [13, remark following Lemma 2.13].

Lemma 2.3. A C*-algebra A is LM if and only if it is equal to a union of a
σ -complete directed family of separable AM subalgebras.
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In §6 we shall use the following well-known fact without mentioning. We
give its proof for the reader’s convenience.

Lemma 2.4. Let α be an action of a group G on a unital C*-algebra A.
Let {ug}g∈G ⊂ A�r

α G be the implementing unitaries in the reduced crossed
product. Suppose that a unital subalgebra A0 ⊂ A and a subgroup G0 ⊂ G

satisfy that αg[A0] = A0 for all g ∈ G0, and set B0 := C∗(A0 ∪ {ug}g∈G0).
Then we have

B0 ∩ A = A0 and B0 ∩ {ug}g∈G = {ug}g∈G0

in A�α G.

Proof. First note that there exists a conditional expectation E onto A ⊂
A �α G such that E(a) = a and E(aug) = 0 for all a ∈ A and g ∈ G \ {e}
(see [3, Proposition 4.1.9]). Since the linear span of {aug : a ∈ A0, g ∈ G0}
is dense in B0, we have E[B0] = A0. This shows B0 ∩A = E[B0 ∩A] = A0.
For the same reason we haveE[B0u

∗
g] = 0 for all g ∈ G\G0. This shows that

ug /∈ B0 for g ∈ G \G0. Thus B0 ∩ {ug}g∈G = {ug}g∈G0 .

3. K-theory of LM algebras

For definition of groups K0(A) and K1(A) see e.g., [2] or [23] and for the
Cuntz semigroup Cu(A) see e.g., [6].

A reader familiar with the logic of metric structures ([1], [11]) will notice
that in Lemma 3.1 we are only using two standard facts: (1) the family of
separable elementary submodels of algebra A is σ -complete and has A as its
direct limit and (2) if Aλ is an elementary submodel of A then K0(Aλ) is a
subgroup of K0(A) and Cu(Aλ) is a subsemigroup of Cu(A).

Lemma 3.1. If A is a nonseparable C*-algebra then A is a union of a σ -
complete directed family of separable subalgebras Aλ, λ ∈ 	, such that for
each λ ∈ 	 we have

(1) K0(Aλ) is a subgroup of K0(A) and K0(A) = lim−→K0(Aλ),

(2) Cu(Aλ) is a sub-semigroup of Cu(A) and Cu(A) = lim−→ Cu(Aλ).

Proof. (1) As usual p ∼ q denotes the Murray-von Neumann equivalence
of projections in algebraA, namely p ∼ q if and only if p = vv∗ and q = v∗v
for some v in A.

For a subalgebra B of A we have that K0(B) < K0(A) if and only if for
any two projections p and q in B ⊗ K we have p ∼ q in B if and only if
p ∼ q in A.

We need to show that the family of separable subalgebras B of A such that
K0(B) < K0(A) is closed and unbounded. Since ‖p−q‖ < 1 implies p ∼ q,
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this set is closed. The following condition for all p, q in B impliesK0(B) is a
subgroup of K0(A):

inf
v∈B ‖vv∗ − p‖ + ‖v∗v − q‖ = inf

v∈A ‖vv∗ − p‖ + ‖v∗v − q‖.

We can now apply a standard Löwenheim-Skolem closing-up argument similar
to that in the proof of [13, Lemma 2.13] (its version also appears in [2, II.8.5.1]).
Let us write φ(v, p, q) = ‖vv∗ − p‖ + ‖v∗v − q‖. Starting from a separable
subalgebra B0 of A, build an increasing chain of separable subalgebras Bn
of A such that for every n and all p, q in Bn we have infv∈Bn+1 φ(v, p, q) =
infv∈A φ(v, p, q). Since ‖p − p′‖ < 1 implies p ∼ p′ the subalgebra B of A
generated by

⋃
n Bn satisfies the above condition for each pair of projections

in it.
The assertion that K0(A) = lim−→K0(Aλ) is automatic since A = ⋃

λ Aλ.
(2) Recall that the Cuntz ordering on positive elements in algebra A is

defined bya � b if for every ε > 0 there existsx ∈ A such that‖a−xbx∗‖ < ε.
We need to show that the family of separable subalgebras B of A such that

for all a and b in B we have a � b in B if and only if a � b in A is closed
and unbounded. It is clearly closed. Again it suffices to assure that for a dense
set of pairs a, b of positive operators in B we have infx∈B ‖a − xbx∗‖ =
infx∈A ‖a − xbx∗‖, and this is achieved by a Löwenheim-Skolem argument
resembling one sketched in the proof of (1) above.

The assertion that Cu(A) = ⋃
λ Cu(Aλ) is again automatic.

It is also true that if A is a nonseparable C*-algebra with the unique trace
then its separable subalgebras with the unique trace form aσ -complete directed
system whose direct limit is equal to A. This follows from an argument due to
N. C. Phillips (see [22]) and it can be proved by the argument of Lemma 3.1
(see also [13, Remark 2.14]).

Let us denote the set of all prime numbers by P . Recall that a formal product
n is a generalized integer (or a supernatural number) if n = ∏

p∈P p
np where

np ∈ N ∪ {∞} for all p. For a unital UHF algebra A define the generalized
integer n = ∏

p∈P p
np of A by

np := sup{ k ∈ N : there exists a unital homomorphism from Mpk(C) to A }
for each p ∈ P .

Glimm ([16]) has shown that the generalized integer provides a complete
invariant for isomorphism of separable unital UHF algebras. For a generalized
integer n define the group

Z[1/n] = {k/m : k ∈ Z,m ∈ Z \ {0},m|n}
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where m|n is defined in the natural way. Then for a separable UHF algebra A
and its generalized integer n we have K0(A) = Z[1/n].

Proposition 3.2. An LM algebra A has a unique tracial state τ . If A is
unital, then τ induces an isomorphism from K0(A) onto Z[1/n] ⊂ R, with n
defined as above, as ordered groups. We have K1(A) = 0.

Proof. Uniqueness of the tracial state immediately follows from the fact
that a nonseparable LM algebra is a σ -complete direct limit of separable UHF
algebras, since they have a unique tracial state. If A is unital we fix τ so that
τ(1) = 1.

For projections p and q of A we have τ(p) = τ(q) if and only if p ∼ q.
This is true for separable LM algebras and the nonseparable case follows
immediately by Lemma 2.3. Therefore τ is an isomorphic embedding ofK0(A)

into Z[1/n]. Since K1(B) = 0 for each separable LM algebra A = lim−→Aλ
implies K1(A) = lim−→K1(Aλ), we have K1(A) = 0 by Lemma 2.3.

The following is an immediate consequence of the main result of [4].

Proposition 3.3. If A is an infinite-dimensional LM algebra then its Cuntz
semigroup is isomorphic to K0(A)+ � (0,∞).

4. Classification of UHF algebras

Lemma 4.1. Assume A = ⊗
x∈X Ax , B = ⊗

y∈Y By and all Ax and all
By are unital, separable, simple, and not equal to C. Let �:A → B be an
isomorphism. Then there exist partitions X = ⊔

z∈Z Xz and Y = ⊔
z∈Z Yz of

X and Y into disjoint nonempty countable subsets indexed by the same set Z
such that

�
[⊗

x∈Xz Ax
] = ⊗

y∈Yz By

for all z ∈ Z.

Proof. Consider the set P of pairs of families ({Xz}z∈Z, {Yz}z∈Z) of disjoint
nonempty countable subsets of X and Y , respectively, with some common
index set Z such that we have �

[⊗
x∈Xz Ax

] = ⊗
y∈Yz By for every z ∈ Z.

Order P by letting

({Xz}z∈Z, {Yz}z∈Z) ≤ ({X′
z}z∈Z′ , {Y ′

z}z∈Z′)

if Z ⊆ Z′ and X′
z = Xz and Y ′

z = Yz for all z ∈ Z.
By Zorn’s lemma, P has a maximal element {Xz}z∈Z and {Yz}z∈Z . If we set

X′ := X \ ⋃
z∈Z Xz and Y ′ := Y \ ⋃

z∈Z Yz then
⊗

x∈X′ Ax = ⋂
z/∈X′ ZA(Az)

and
⊗

y∈Y ′ By = ⋂
z/∈Y ′ ZB(Bz) by [17, Theorem 1]. Therefore�

[⊗
x∈X′ Ax

]
= ⊗

y∈Y ′ Yz. Thus X′ is nonempty if and only if Y ′ is nonempty. Suppose, to



112 ilijas farah and takeshi katsura

derive a contradiction, bothX′ and Y ′ are nonempty. By applying the argument
in the proof of [13, Lemma 2.6] (see also [13, Lemma 2.19]), we find non-
empty countable X0 ⊆ X′ and Y0 ⊆ Y ′ such that�

[⊗
x∈X0

Ax
] = ⊗

y∈Y0
By .

This contradicts the assumed maximality of {Xz}z∈Z and {Yz}z∈Z . Hence both
X′ and Y ′ are empty, and the maximal families {Xz}z∈Z and {Yz}z∈Z are what
we want.

Proposition 4.2. If κp, λp,p ∈ P are sequences of cardinals indexed by the
prime numbers then

⊗
p∈P

⊗
κp
Mp(C) and

⊗
p∈P

⊗
λp
Mp(C) are isomorphic

if and only if κp = λp for all p.

Proof. Only the direct implication requires a proof. The separable case is a
theorem of Glimm ([16]). Assume the algebras are nonseparable, and let X =⋃
p∈P {p} × κp, A(p,γ ) = Mp(C), Y = ⋃

p∈P {p} × λp, and B(p,γ ) = Mp(C).
By Lemma 4.1 applied to the isomorphism between

⊗
x∈X Ax and

⊗
y∈Y By

we can find partitions X = ⋃
z∈Z Xz and Y = ⋃

z∈Z Yz into countable sets
such that

⊗
x∈Xz Ax and

⊗
y∈Yz By are isomorphic for each z ∈ Z. By Glimm’s

theorem and simple cardinal arithmetic this implies κp = λp for all p.

By Proposition 4.2, for each UHF algebra A = ⊗
p∈P

⊗
κp
Mp(C) we can

define the generalized integer κ(A) = ∏
p∈P p

κp and UHF algebras are com-
pletely classified up to isomorphism by the generalized integers κ(A) associ-
ated with them. Note that κ(A) being well-defined hinges on Proposition 4.2.
It is unclear whether κ(A) coincides with the generalized integer obtained by a
straightforward generalization of definition given for separable UHF algebras
before Proposition 3.2; see Problem 7.1 and Problem 7.2.

Proposition 4.3. For every ordinal γ there are (|γ | + ℵ0)
ℵ0 isomorphism

classes of unital UHF algebras of density character ≤ ℵγ .

Proof. Let K be the set of cardinals less than or equal to ℵγ . Then |K| =
|γ | + ℵ0. By Proposition 4.2, the number of isomorphism classes of UHF
algebras of density character ≤ ℵγ is equal to |{f : f : P → K}| = |K|ℵ0 .

Note that for any ordinal γ with 0 ≤ |γ | ≤ 2ℵ0 , we have (|γ |+ℵ0)
ℵ0 = 2ℵ0 .

Thus for such γ , there are only as many UHF algebras of density character
≤ ℵγ as there are separable UHF algebras (see the table in §7).

5. Non-classification of AM algebras in regular uncountable density
characters

The main result of this section shows that for a regular uncountable cardinal κ
there are as many AM algebras of density character κ as there are C*-algebras
of density character κ and as many hyperfinite II1 factors of density character
κ as there are II1 factors whose predual has density character κ . The latter fact
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is in stark contrast with the separable case, when the hyperfinite II1 factor is
unique. While there are continuum many separable UHF algebras, one should
note that all AM algebras constructed here have the same K-theory as the
(unique) CAR algebra.

We first concentrate on case when κ = ℵ1. Let 	 be the set of all limit
ordinals in ℵ1. As an ordered set, 	 is isomorphic to ℵ1. For each ξ ∈ ℵ1,
let Aξ be the C*-algebra generated by two self-adjoint unitaries vξ , wξ with
vξwξ = −wξvξ . By [13, Lemma 4.1], Aξ is isomorphic to M2(C). We define
a UHF algebra A by A := ⊗

ξ∈ℵ1
Aξ ∼= ⊗

ℵ1
M2(C). For a subset Y of ℵ1, we

set AY = ⊗
ξ∈Y Aξ ⊂ A. For ξ ∈ ℵ1, we use the notations [0, ξ) and [0, ξ ]

to denote the subsets {δ ∈ ℵ1 : δ < ξ} and {δ ∈ ℵ1 : δ ≤ ξ} of ℵ1. For each
δ ∈ 	, we define αδ ∈ Aut(A) by

αδ =
⊗
ξ∈[0,δ)

Ad vξ .

Then we have α2
δ = id and {αδ}δ∈	 commute with each other. Let G	 be the

discrete abelian group of all finite subsets of	 as in [13, Definition 6.5]. Define
an action α ofG	 on A by αF := ∏

δ∈F αδ for F ∈ G	 and let B := A�α G.
For each δ ∈ 	, the unitary implementing αδ will be denoted by uδ ∈ B. For
a subset S of 	, we define BS := C∗(A ∪ {uδ}δ∈S) ⊂ B. We note that BS is
naturally isomorphic toA�α GS whereGS is considered as a subgroup ofG	.

Definition 5.1. Let S be a subset of 	, and λ be an element of 	. We
define a subalgebra DS,λ of BS by

DS,λ := C∗(A[0,λ) ∪ {uδ}δ∈S∩[0,λ)
) ⊂ BS.

Lemma 5.2. For each S ⊂ 	 the algebra BS is AM. Also, {DS,λ}λ∈	 is a
σ -complete directed family subalgebras of BS isomorphic to the CAR algebra
with dense union.

Proof. Consider a triple (F ,G,H) such thatF ⊂ λ,G= {δ1, δ2, . . . , δm} ⊂
S and H = {ξ1, ξ2, . . . , ξm} ⊂ λ are finite sets, F ∩H = ∅, and

ξ1 < δ1 < ξ2 < δ2 < ξ3 < · · · < δm−1 < ξm < δm.

For such (F ,G,H) define D(F,G,H) ⊂ BS by

D(F,G,H) := C∗(AF ∪ {uδ}δ∈G ∪ {wξ }ξ∈H
) ⊂ BS.

We have AF ∼= M2n (C) where n is the cardinality of F . For each k =
1, 2, . . . , m, there exists a unitary vk ∈ AF with vka = αδk (a)vk for all
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a ∈ AF . For k = 1, 2, . . . , m, we set v′
k := vkuδk which is a self-adjoint unit-

ary in D(F,G,H) commuting with AF . We define self-adjoint unitaries {w′
k}mk=1

inD(F,G,H) by w′
k := wξkwξk+1 for k = 1, 2, . . . , m− 1 and w′

m := wξm . Since
F ∩ H = ∅, the unitaries {w′

k}mk=1 commute with AF . It is routine to check
v′
kw

′
l = w′

lv
′
k for k, l ∈ {1, 2, . . . , m} with k 
= l, and v′

kw
′
k = −w′

kv
′
k for

k = 1, 2, . . . , m. Thus by [13, Lemma 4.1] the subalgebra A′
k of D(F,G,H)

generated by v′
k and w′

k is isomorphic to M2(C) for every k. The family
{AF } ∪ {A′

k}mk=1 of unital subalgebras of D(F,G,H) mutually commutes, and
generate D(F,G,H). Hence D(F,G,H) is isomorphic to M2n+m(C).

For two such triples (F,G,H), (F ′,G′, H ′), we haveD(F,G,H)�D(F ′,G′,H ′)
if F ∪ H ⊂ F ′ and G ⊂ G′. Since there exist infinitely many elements of
λ between two elements of S, for arbitrary finite subsets F ⊂ λ and G ⊂ S

there exists a finite subset H ⊂ λ such that the triple (F,G,H) satisfies
the conditions above. Therefore the family {D(F,G,H)}(F,G,H) of full matrix
subalgebras ofDS,λ is directed. It is clear that the union of this family is dense
in DS,λ. Since DS,λ is separable and a unital direct limit of algebras M2k (C),
k ∈ N, it is isomorphic to the CAR algebra.

Since the family {DS,λ}λ∈	 is clearly σ -complete and covers BS , this com-
pletes the proof.

Proposition 5.3. For every S ⊂ 	, BS is a unital AM algebra of density
character ℵ1 with the same K0, K1, and the Cuntz semigroup as the CAR
algebra.

Proof. Since χ(A) = ℵ1 and |G	| = ℵ1, χ(BS) = ℵ1. By Lemma 5.2
the algebra BS is the direct limit of the σ -complete system DS,λ, λ ∈ 	, of
its separable subalgebras each of which is isomorphic to the CAR algebra. By
Lemma 3.1 and [13, Lemma 2.6], BS has the same K0, K1, and the Cuntz
semigroup as the CAR algebra.

Following [13] we write ZB[D] = {b ∈ B | bd = bd for all d ∈ D}.
Lemma 5.4. For S ⊂ 	 and λ ∈ 	, we have

ZBS (DS,λ) = C∗(Aℵ1\[0,λ) ∪ {uδuδ′ }δ,δ′∈S\[0,λ)
)
,

ZBS (ZBS (DS,λ)) = C∗(A[0,λ) ∪ {uδ}δ∈S∩[0,λ]
)
.

In particular, DS,λ = ZBS (ZBS (DS,λ)) if and only if λ /∈ S.

Proof. Let us set D′ := C∗(Aℵ1\[0,λ) ∪ {uδuδ′ }δ,δ′∈S\[0,λ)
)
. It is clear that

Aℵ1\[0,λ) ⊂ ZBS (DS,λ) and ug ∈ ZBS (DS,λ) for g ∈ GS such that |g| is even
and g ⊂ [λ,ℵ1). Hence we get D′ ⊂ ZBS (DS,λ). Take a ∈ ZBS (DS,λ). For
any ε > 0, there exist a finite set F ⊆ ℵ1, finite families b1, b2, . . . , bn ∈ AF
and g1, g2, . . . , gn ∈ GS such that b = ∑n

k=1 bkugk satisfies ‖a − b‖ < ε. Let
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δ1, δ2, . . . , δm be the list of [0, λ) ∩ (⋃n
k=1 gk

)
ordered increasingly. Choose

H = {ξ1, ξ2, . . . , ξm} ⊂ ℵ1 \ F such that

ξ1 < δ1 < ξ2 < δ2 < ξ3 < · · · < δm−1 < ξm < δm < λ.

For each H ′ ⊂ H , we define a self-adjoint unitary wH ′ by wH ′ = ∏
ξ∈H ′ wξ

Let us define a linear map E:BS → BS by E(x) = 2−m ∑
H ′⊂H wH ′xwH ′ .

Then E is a contraction. Since a ∈ ZBS (DS,λ), we have E(a) = a. Hence
‖a − E(b)‖ < ε. For g ∈ GS with δk ∈ g for some k, we have E(ug) = 0.
For g ∈ GS such that g ⊂ [λ,ℵ1) and |g| is odd, we also have E(ug) = 0.
For g ∈ GS with g ⊂ [λ,ℵ1) and |g| is even, we get E(ug) = ug . Therefore
E(b) = ∑

k bkugk where k runs over elements such that gk ∈ GS satisfies
that |gk| is even and gk ⊂ [λ,ℵ1). Next let F ′ = F ∩ [0, λ). We define a
contractive linear map E′:BS → BS by E′(x) = ∫

U
uxu∗ du where U is the

unitary group of the finite dimensional subalgebra AF ′ of DS,λ, and du is its
normalized Haar measure. Since a ∈ ZBS (DS,λ), we have E′(a) = a. Hence
‖a − E′(E(b))‖ < ε. For gk ∈ GS such that |gk| is even and gk ⊂ [λ,ℵ1),
we have ugku

∗ = u∗ugk for all u ∈ U . Hence for such k, we have E′(bkugk ) =
E′(bk)ugk . Since E′(bk) ∈ A[λ,ℵ1), we get E′(E(b)) ∈ D′. Since ε > 0 was
arbitrary, a ∈ D′. Thus we have shown ZBS (DS,λ) = D′.

The equality ZBS (D
′) = C∗(A[0,λ) ∪ {ug}g ∈ GS , g ⊂ [0, λ]

)
can also be

proved in a similar way as above. The only difference is that δ1, δ2, . . . , δm
is now the list of (λ,ℵ1) ∩ (⋃n

k=1 gk
)

ordered increasingly, and choose H =
{ξ1, ξ2, . . . , ξm} ⊂ ℵ1 \ F such that

λ < ξ1 < δ1 < ξ2 < δ2 < ξ3 < · · · < δm−1 < ξm < δm.

We leave the details to the readers.

Lemma 5.5. For S ⊂ 	 and λ ∈ 	, BS is generated byDS,λ andZBS (DS,λ)

if and only if S ⊂ [0, λ).

Proof. Lemma 5.4 implies that BS is generated by DS,λ and ZBS (DS,λ)

if S ⊂ [0, λ). If there exists δ ∈ S \ [0, λ), then uδ is not in the C*-algebra
generated by DS,λ and ZBS (DS,λ).

Compare the following proposition to Proposition 6.6.

Proposition 5.6. For S ⊂ 	, the C*-algebra BS is UHF if and only if S is
bounded. In this case, BS is isomorphic to A ∼= ⊗

ℵ1
M2(C).

Proof. When S is unbounded, the σ -complete system {DS,λ}λ∈	 in Lem-
ma 5.2 satisfies that BS is not generated by DS,λ and ZBS (DS,λ) for all λ by
Lemma 5.5. HenceBS is not a UHF algebra. WhenS ⊂ [0, λ) for someλ ∈ ℵ1,
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then we have BS = DS,λ ⊗A[λ,ℵ1) by Lemma 5.5. By Lemma 5.2, DS,λ is the
CAR algebra. Hence BS ∼= ⊗

ℵ1
M2(C).

Proposition 5.7. Let S and S ′ be two subsets of 	. If BS and BS ′ are
isomorphic, then there exists a club 	0 in 	 such that 	0 ∩ (S�S ′) = ∅.

Proof. Assume�:BS →BS ′ is an isomorphism. By [13, Proposition 2.12],
there exists a club 	0 ⊂ 	 such that �[DS,λ] = DS ′,λ for all λ ∈ 	0.
For λ ∈ 	0, λ ∈ S if and only if λ ∈ S ′ by Lemma 5.4. Thus we have
	0 ∩ (S�S ′) = ∅.

Proof of Theorem 1.2. By Lemma 2.1 we can fix a family S0(X), X ⊆
ℵ1, of subsets of ℵ1 such that S0(X)�S0(Y ) is stationary whenever X 
= Y .
Since 	 is a club in ℵ1, the sets S(X) = 	 ∩ S0(X) retain this property.

Therefore the algebras BS(X), X ⊆ ℵ1, are nonisomorphic by Proposi-
tion 5.7. By Proposition 5.3 these algebras have the sameK-theory and Cuntz
semigroup as the CAR algebra.

For any uncountable regular cardinal κ one can define< κ-complete direc-
ted systems of algebras of density character < κ and prove results analogous
to those for σ -complete directed systems so that the latter coincide with< ℵ1-
complete systems. Given this and Lemma 2.1, a straightforward extension of
the proof of Theorem 1.2 gives the following.

Theorem 5.8. If κ is a regular cardinal then there are 2κ nonisomorphic
AM algebras of density character κ .

However, this method does not work for singular cardinals and we shall
treat this case in the following section.

6. Non-classification of AM algebras in all density characters

The proof of the present section relies on two components. The first is the non-
structure theory as developed by Shelah in [27] and adapted to metric structures
in [14], and the second is the order property of theories of C*-algebras and II1

factors proved in [11]. We shall define a functor from the category of linear
orders to the category ofAM algebras and argue that if in cardinality κ there are
many sufficiently different linear orders then in density character κ there are
many nonisomorphicAM algebras (see Lemma 6.4). Readers with background
in model theory will notice that the algebras that we construct are EM-models
generated by an ordered set of indiscernibles.

Fix a total ordering 	 and let 	+ denote 	 × N with the lexicogaphical
ordering. We identify 	 with 	 × {0} ⊆ 	+ and note that between any two
elements ξ < η of 	 there are infinitely many elements of 	+ \	. For each
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ξ ∈ 	+, letAξ be the C*-algebra generated by two self-adjoint unitaries vξ , wξ
with vξwξ = −wξvξ . By [13, Lemma 4.1], Aξ is isomorphic to M2(C). We
define a UHF algebra A	 by A	 := ⊗

ξ∈	+ Aξ ∼= ⊗
	+ M2(C). For ξ ∈ 	+

we write
[0, ξ) := {δ ∈ 	+ : δ < ξ}
[0, ξ ] := {δ ∈ 	+ : δ ≤ ξ}.

For each δ ∈ 	, we define αδ ∈ Aut(A) by

αδ = ⊗
ξ∈[0,δ) Ad vξ .

Then we have α2
δ = id and {αδ}δ∈	 commute with each other. Let G	 be

the discrete abelian group of all finite subsets of 	 as in [13, Definition 6.5].
Define an action α of G	 on A	 by αF := ∏

δ∈F αδ for F ∈ G	 and let

B	 := A	 �α G	.

For each δ ∈ 	, the unitary implementing αδ will be denoted by uδ ∈ B. For
S ⊆ 	 let AS := ⊗

ξ∈S×NAξ and consider it as a subalgebra of A	.
Note that B	 is generated by the set {vξ , wξ , uξ : ξ ∈ 	}. Moreover,

the relation between these generators depends only on the order between their
indices; for example, uξ andwη commute if and only if ξ ≥ η. It is not difficult
to check that if 	 is a suborder of 	′ then B	 is a unital subalgebra of B	′ .
We moreover have a functor 	 �→ B	 from the category of linear orders into
the category of AM algebras (see [18, 11.2] for the general setup).

If S is a subset of 	 define a subalgebra DS of B	 by

DS := C∗(AS ∪ {uδ}δ∈S).
Lemma 6.1. For each uncountable total order 	 the algebra A	 is AM.

Also, {DS : S ∈ [	]ℵ0} is a σ -complete directed family of subalgebras of A	
isomorphic to the CAR algebra with dense union.

Proof. This proof is almost identical to the proof of Lemma 5.2. The as-
sumption that λ is a limit ordinal used in the former proof is replaced by the fact
that the generators are indexed by 	+ and the interval (ξ, η) ∩	+ is infinite
for all ξ < η in 	.

Our plan is to prove that ‘sufficiently different’ linear orders result in noni-
somorphic algebras.

Proposition 6.2. For every infinite cardinal κ and total ordering 	 of
cardinality κ , B	 is a unital AM algebra of character density equal to κ with
the same K0, K1, and the Cuntz semigroup as the CAR algebra.
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Proof. Since χ(A	) = κ and |G	| = κ , χ(B	) = κ . By Lemma 6.1
the algebra B	 is the direct limit of the σ -complete system DS , S ∈ [	]ℵ0 ,
of its separable subalgebras each of which is isomorphic to the CAR algebra.
By Lemma 3.1 and [13, Lemma 2.6], BS has the same K0, K1, and the Cuntz
semigroup as the CAR algebra.

It remains to prove there are 2κ nonisomorphic B	 in every cardinality κ .
Assume P(�x, �y) is a *-polynomial in 2n variables. Then for every C*-

algebraA the expression φ(�x, �y) = ‖P(�x, �y)‖ defines a uniformly continuous
map from A2n into the nonnegative reals. Let (A≤1) denote the unit ball of A
and on (A≤1)

n define a binary relation ≺φ by letting �a ≺ �b if

φ(�a, �b) = 1 and φ(�b, �a) = 0.

Note that ≺φ is not required to be an ordering. If	 is a total ordering we shall
say that an indexed set �aλ, for λ ∈ 	 is a φ-chain if �aλ ≺φ �aλ′ whenever
λ < λ′. We write �a �φ

�b if �a = �b or �a ≺φ
�b.

Here is an example of a formula φ and a φ-chain. Formula

φ(x1, x2, y1, y2) = 1
2‖[x1, y2]‖

defines a uniformly continuous function on A4 for any C*-algebra A. With	,
B	, uξ , and wξ as above, for all ξ and η in 	 we have

φ(uξ , wξ , uη, wη) =
{

0, if ξ < η

1, if ξ ≥ η,

and therefore (uξ , wξ ), for ξ ∈ 	, is a φ-chain. Moreover, the algebra B	 is
generated by this φ-chain, and this is exactly what the following definition is
capturing.

Definition 6.3 ([14, Definition 3.1]). A φ-chain C is weakly (ℵ1, φ)-
skeleton like inside A if for every �a ∈ An there is a countable C�a ⊆ C such
that for all �b and �c in C for which �b �φ �c and no �d ∈ C�a satisfies �b �φ

�d �φ �c
we have

φ(�b, �a) = φ(�c, �a) and φ(�a, �b) = φ(�a, �c).

Behind the following lemma is the idea that sufficiently different linear
orders 	 produce nonisomorphic C*-algebras generated by weakly (ℵ1, φ)-
skeleton like chains.

Lemma 6.4. Assume K is a class of C*-algebras, φ(�x, �y) is as above, and κ
is an uncountable cardinal. If for every linear ordering	 of cardinality κ there
is B	 ∈ K of density character κ such that the n-th power of the unit ball of
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B	 includes a φ-chain C isomorphic to 	 which is weakly (ℵ1, φ)-skeleton
like, then K contains 2κ nonisomorphic algebras of density character κ .

Proof. This is an immediate consequence of results from [14], but we
sketch a proof for the convenience of the reader. By [14, Lemma 2.5] for every
m ∈ N (actually m = 3 suffices) there are 2κ total orderings of cardinality κ
that have disjoint representing sequences of m, κ-invariants (in the sense of
[14, §2.2]). For any such ordering	 the algebraB	 has density character κ and
therefore the m, κ-invariant of 	 belongs to INVm,κ(B	), as defined in [14,
Definition 3.8 and §6.2]. By [14, Lemma 6.4] for each C*-algebraB of density
character κ the set INVm,κ(B) has cardinality at most κ . Since 2κ cannot be
written as the supremum of κ smaller cardinals ([20, Corollary 10.41]), by a
counting argument there are 2κ isomorphism classes among algebras B	 for a
total ordering 	 of cardinality κ .

Proof of Theorem 1.2. As noted earlier, formula φ(x1, x2, y1, y2) =
1
2‖[x1, y2]‖ defines a uniformly continuous function onA4 for any C*-algebra
A. For a linear ordering 	 with the notation from the second paragraph of §6
we have that (uξ , wξ ), for ξ ∈ 	, is a φ-chain in B	

Consider S ⊆ 	. 	 \ S define an equivalence relation by ξ ∼S η if and
only if no element of S is between ξ and η. Then for ξ ∼S η the algebras
C∗(BS ∪{uξ ,wξ }) and C∗(BS ∪{uη,wη}) are isomorphic via an isomorphism
that is an identity on BS and sends uξ to uη and wξ to wη.

We claim that	 is weakly (ℵ1, φ)-skeleton like inBS . Every finiteF ⊆ B	
is included in DS for some countable S = S(F ) ⊆ 	. For a1 and a2 in B	 fix
a countable S such that {a1, a2} ⊆ BS . Let C{a1,a2} = S and note that ξ ∼S η

implies that φ(a1, a2, uξ , wξ ) = φ(a1, a2, uη, wη) and φ(uξ , wξ , a1, a2) =
φ(uη,wη, a1, a2).

Therefore our distinguished 	-chain (uξ , wξ ), for ξ ∈ 	, is (ℵ1, φ)-
skeleton like. Since 	 was arbitrary, Lemma 6.4 applies to show that there
are 2κ isomorphism classes among algebras B	 for |	| = κ . By Proposi-
tion 6.2 these algebras have the same K-theory and Cuntz semigroup as the
CAR algebra.

The assumption that we were dealing with C*-algebras in Lemma 6.4 was
not crucial. This lemma applies to any class of models of logic of metric
structures ([1], [10]), and in particular to II1 factors. We shall now state the
general form of Lemma 6.4. The definition of ‘metric structure’and ‘formula’is
given in [1] (see also [10] for the case of C*-algebras and tracial von Neumann
algebras). Although this lemma uses logic for metric structures, class C is not
required to be axiomatizable. Indeed, neither AM algebras nor hyperfinite II1

factors are axiomatizable (cf. the proof of [10, Proposition 6.1], but see also
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[5]). We state this lemma in the case of bounded metric structures, and the
version for II1 factors necessitates requiring that the chain be included in the
n-power of the unit ball. The proof of Lemma 6.5 is identical to the proof of
Lemma 6.4.

Lemma 6.5. Assume C is a class of bounded metric structures andφ(�x, �y) is
a 2n-ary formula. Assume that for every linear ordering	 there is A	 ∈ C of
density character |	| such thatAn	 includes aφ-chain C isomorphic to	which
is weakly (ℵ1, φ)-skeleton like. Then C contains 2κ nonisomorphic structures
in every uncountable density character κ .

Proof of Theorem 1.3. For each of the algebras B	 constructed in the
proof of Theorem 1.2 consider the GNS representation corresponding to its
unique trace and let R	 be the weak closure of the image of B	. Then each
R	 is a hyperfinite II1 factor whose predual has density character κ = |	|.
The formula

ψ(x1, x2, y1, y2) = ‖[x1, y2]‖2

defines a uniformly continuous with respect to the 2-norm function onR	. Let
A	 denote the operator norm unit ball of B	. Then each A	, equipped with
the �2-norm and function that evaluates ψ is a bounded metric structure and it
suffices to check that Lemma 6.5 applies to this family.

By the proof of Theorem 1.2 (uξ , wξ ), for ξ ∈ 	, is a φ-chain that is weakly
(ℵ1, φ)-skeleton like. By Lemma 6.5 there are 2κ nonisomorphic unit balls of
II1-factors of the form B	 with the predual of density character κ . Therefore
there are 2κ nonisomorphic hyperfinite II1 factors with the density character κ
for every uncountable cardinal κ .

Note that the assumption that κ is uncountable is necessary in Lemma 6.4,
since the hyperfinite II1 factor with separable predual is unique.

The remainder of this section is aimed at logicians. A class of models is
non-classifiable in a strong sense if it does not allow sequences of cardinal
numbers as complete invariants (see [26]). The following proposition shows
that AM algebras and hyperfinite II1 factors are non-classifiable even in this
weak sense.

Proposition 6.6. There are AM algebras A and B of density character ℵ1

and a forcing notion P that does not collapse cardinals or add countable
sequences of cardinals such thatA andB are not isomorphic, but P forces that
A and B are isomorphic.

There are also hyperfinite II1 factors of density character ℵ1 with the same
property.

Proof. Let S ⊆ ℵ1 a stationary set whose complement is also stationary.
Let η denote the ordering of the rational numbers. Let 	(1) be the linear
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ordering obtained from ℵ1 by replacing all points with a copy of η (i.e., 	(1)
is the lexicographical ordering of ℵ1 × η). Let 	(2) be the linear ordering
obtained from ℵ1 by replacing points in S with a copy of η and leaving points
in ℵ1 \ S unchanged.

Since ℵ1 \ S is stationary, the argument from the proof of Proposition 5.7
shows that the algebras A := A	(1) and B := A	(2) are not isomorphic. Let
P be Jensen’s forcing for adding a club subset of S. Then P is σ -distributive
(see e.g., [20, VII.H18]) and therefore it does not collapse ℵ1 and does not add
new sequences of cardinals. Since P has cardinality ℵ1, it does not collapse
cardinals larger than ℵ1.

We claim that P nevertheless forces A and B to be isomorphic. It clearly
suffices to show that it forces 	(1) and 	(2) are isomorphic linear orderings.
If C ⊆ S is the club added by P, then points in C separate	(1) and	(2) into
ℵ1 sequence of countable linear orderings without endpoints. Any two such
orderings are isomorphic by Cantor’s classical back-and-forth argument, and
these isomorphisms together define an isomorphism between 	(1) and 	(2).

Construction of the required II1 factors is analogous.

Proposition 6.6 shows that the classification problem of AM algebras of
density character ℵ1 is at least as complicated as the classification of subsets
of ℵ1 modulo the nonstationary ideal. The latter problem is largely considered
to be intractable. One reason for this is that, as demonstrated in the proof of
Proposition 6.6, a function that associates a sequence of cardinals to a subset
of ℵ1 in an absolute way cannot be a complete invariant for the relation of
equality modulo the nonstationary ideal.

7. Concluding remarks

The number of AM algebras and UHF algebras in some density characters
as well as the number of hyperfinite II1-factors whose predual has the same
density character is given in the table below. We identify each cardinal with
the least ordinal having it as a cardinality, write � := 2ℵ0 , and �+ denotes the
least cardinal greater than �.

Density character ℵ0 ℵ1 ℵ2 . . . ℵω . . . ℵω1 . . . ℵ�+ . . .

The number of
� � � . . . � . . . � . . . �+ . . .

UHF algebras

The number of
� 2ℵ1 2ℵ2 . . . 2ℵω . . . 2ℵω1 . . . 2ℵ�+ . . .

AM algebras

The number of
hyperfinite � 2ℵ1 2ℵ2 . . . 2ℵω . . . 2ℵω1 . . . 2ℵ�+ . . .

II1 factors
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While the cardinals in this table resemble those predicted by Shelah’s Main
Gap Theorem for the number of models of classifiable and non-classifiable
theories in uncountable cardinalities ([26]), it should be noted that all algebras
appearing in our proofs are elementarily equivalent to the CAR algebra and
that the class of UHF algebras does not seem to have a natural model-theoretic
characterization. On the other hand, all AM (and even all LM) algebras are by
[5], atomic models. It is not difficult to see that the methods of [5] also show
that hyperfinite II1 factors (of arbitrary density character) are atomic models.

For a unital C*-algebra A, we define two generalized integers, κ(A) and
κ ′(A), associated to A as follows. Recall that P denotes the set of all primes.
If A = ⊗

p∈P

⊗
κp
Mp(C), then let κ(A)p = κp for p ∈ P .

κ ′(A)p := sup
{ |X| : there exists a unital

homomorphism from
⊗

X Mp(C) to A
}

for each p ∈ P . Clearly these two definitions coincide when A is separable
and κ(A) ≤ κ ′(A), pointwise.

Problem 7.1. If A is a UHF algebra, is κ(A) = κ ′(A)?

Here is a version of Problem 7.1.

Problem 7.2. Assume A is UHF, κ < κ ′ are cardinals and
⊗

κ ′ M2(C)
unitally embeds into

⊗
κ M2(C) ⊗ A. Can we conclude that there is a unital

embedding of
⊗

κ M2(C) into A?

We cannot even prove that in the above situation M2(C) unitally embeds
into A. The most embarrassing version of Problem 7.2 is whether

⊗
ℵ1
M2(C)

unitally embeds into
⊗

ℵ0
M2(C)⊗⊗

ℵ1
M3(C). Since any two unital copies of

Mn(C), for n ∈ N, in a UHF algebra are conjugate, Problem 7.2 has a positive
answer when κ is finite.

Standard results on classification of unital, separable, nuclear, simple C*-
algebras imply that ifA is not UHF then the answer to Problem 7.2 is negative.
We shall need the following well-known fact.

Lemma 7.3. There are an abelian groupG and a nonzero g0 ∈ G such that

(1) no infinite nonzero sequence (fn) in G satisfies fn = 2fn+1 for all n,

(2) for every n there is hn satisfying 2nhn = g0, and

(3) h1 
= 2f for all f ∈ G.

Proof. Let m be the generalized integer defined by m2 = ℵ0, mp = 0 for
p 
= 2 and let G be the subgroup of (recall that Z[1/m] was defined before
Proposition 3.2)

∏∞
n=1(Z/2

nZ)× Z[1/m] consisting of all (xn)n≤∞ such that

xn = 2nx∞ mod 1
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for all but finitely many n. Since x∞ ∈ Z[1/m], for a large enough n we
will have that x∞ is equal to an element of Z/2nZ for all large enough n. Let
g0 = (xn) where xn = 0 for all finite n and x∞ = 1. Then hn = (xj ) where
xj = 0 for j < n, xj = 2j−n for j ≥ n finite and x∞ = 2−n satisfy 2nhn = g0

for each n. If f = (yn) is such that 2f = h1 then necessarily 2y1 = 1, but
there is no such element in Z/2Z. This proves (3) and the proof of (1) is similar.

The following two propositions rely on the Kirchberg-Phillips classification
of Kirchberg algebras A by its K-theoretic invariants

I (A) = (K0(A), [1]0,K1(A))

and the fact that every pair of countable abelian groups with a distinguished
element is an invariant of some Kirchberg algebra (see e.g., [21] or [24]).

Proposition 7.4. There is a C*-algebra A such that
⊗

X M2(C) unitally
embeds into A if and only if X is finite. Moreover, A = M2(C)⊗ B for some
B such that M2(C) does not unitally embed into B.

Proof. Let G and g0 be as in Lemma 7.3 and let A be the Kirchberg
algebra with K0(A) = G such that g0 is equal to the class of the identity and
with trivial K1(A). For n ∈ N, M2n (C) embeds unitally into A by K-theoretic
consideration. Pick a projection q in A such that [q] = g, and let C be a
unital copy of M2(C) in A with q as its matrix unit. Then A ∼= M2(C) ⊗ B,
with B = ZA(C). By (3) andK-theoretic considerations B has no unital copy
of M2(C) and the proof is complete.

Proposition 7.5. There is no unital *-homomorphism fromM2(C) into the
Cuntz algebra O3, but there is a unital *-homomorphism from the CAR algebra
into M2(O3).

Proof. Let A denote the CAR algebra. The algebras O3 and M2(O3) are
Kirchberg algebras. Since I (O3) = (Z/2Z, 1, 0) (see [24]), the identity in
K0(O3) is not divisible by 2 and therefore M2(C) is not a unital subalgebra of
O3. Since M2(O3)⊗ K ∼= O3 ⊗ K we have K0(M2(O3) = Z/2Z but the class
of the identity element is 0 and we have I (M2(O3)) = (Z/2Z, 0, 0).

Since 2 × 0 = 0 and M2(O3) is purely infinite, it contains a unital copy
of O2 and therefore a unital copy of any other simple nuclear C*-algebra –
including the CAR algebra.
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