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SPECTRA OF SUB-DIRAC OPERATORS ON
CERTAIN NILMANIFOLDS

INES KATH and OLIVER UNGERMANN∗

Abstract
We study sub-Dirac operators associated to left-invariant bracket-generating sub-Riemannian
structures on compact quotients of nilpotent semi-direct products G = Rn �A R. We prove
that these operators admit an L2-basis of eigenfunctions. Explicit examples of this type show
that the spectrum of these operators can be non-discrete and that eigenvalues may have infinite
multiplicity. In this case the sub-Dirac operator is neither Fredholm nor hypoelliptic.

1. Introduction

Spectra of sub-Laplace operators on sub-Riemannian manifolds are intensely
studied. Especially interesting is the case where the distribution defining the
sub-Riemannian structure is bracket generating, what we shall assume in the
following. In this case the sub-Laplacian is known to be hypoelliptic [13].

Many explicit calculations of the spectrum have been done in the situation
where the underlying manifold is a compact Lie group or a quotient of a Lie
group by a discrete cocompact subgroup, see, for example, [3], [4], [5], [19]. In
[3], [4], [19] the authors study spectral properties of sub-Laplace operators on
nilpotent groups of step two and on compact quotients by discrete subgroups.
They determine the heat kernels of these operators. This allows an explicit
determination of the spectrum of the sub-Laplacian, which is discrete in this
situation.

Less is known about differential operators on functions that contain partial
derivatives of arbitrary order. However, some special cases are studied. For
instance, if the geometry is locally close to sub-Riemannian Heisenberg groups,
there are results of van Erp [8] including an index theorem for differential
operators that have a Rockland model operator.

Here we will consider a geometric partial differential operator that acts
on sections of a vector bundle rather than on functions. More exactly, we will
study spectra of sub-Riemannian analogs of the classical Dirac operator. These
operators are defined as follows. Let (M,H , g)be a sub-Riemannian manifold,
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dim H = d. Suppose that ∇ is a metric connection on H . Moreover, assume
that H is oriented and that the bundle of oriented orthonormal frames of H

admits a reduction to Spin(d). Such a reduction will be called a spin structure of
H . Then we can associate a spinor bundle S with this spin structure. Moreover,
using the connection ∇ we can define a sub-Riemannian Dirac operator, which
acts on sections in S.

In the definition of the sub-Dirac operator the following difficulty occurs:
In contrast to the Riemannian case where we have the Levi-Civita connection
as a preferred connection, in general, there is no connection canonically asso-
ciated with a sub-Riemannian structure. Only in special geometric situations
a canonical connection exists. Hence the definition of the sub-Dirac operator
depends on the choice of the connection on H .

In general, i.e., for arbitrary metric connections in H , the sub-Dirac is not
symmetric. We will characterize the symmetry of this operator by a simple
condition on the connection.

Several variants of sub-Dirac operators can be found in the literature. On
sub-Riemannian manifolds of contact type Petit defined an operator of this
kind using the generalized Tanaka-Webster connection and Spinc-structures,
see [18]. This operator is called Kohn-Dirac operator.

On manifolds with foliations Dirac operators are studied by Brüning, Kam-
ber, Prokhorenkov and Richardson, see e.g. [6], [20]. If F is a Riemannian
foliation and if V denotes the tangent distribution to F , then the transversal
Dirac operator defined in [6], Section 2.4, coincides with our sub-Dirac op-
erator on the spinor bundle associated with H := V ⊥. However, while the
transversal Dirac operator in [6] is considered as an operator on so-called ba-
sic sections only, we want to let the sub-Riemannian Dirac operator act on
arbitrary sections of the spinor bundle S.

Finally, we want to mention the paper [2] by Ammann and Bär although it
does not consider sub-Riemannian structures explicitly. However, in a certain
sense, one can consider the limit case of collapsing circle bundles as a sub-
Riemannian structure.

Studying the sub-Riemannian Dirac operator the following natural ques-
tions arise: Is this operator hypoelliptic? Which structure does its spectrum
have? How does the spectrum depend on the sub-Riemannian geometry of the
manifold and on the spin structure of H ? How do the sub-Dirac operator and
its spectrum depend on the chosen connection?

Here we will answer some of these questions for sub-Dirac operators on
certain nilmanifolds. More precisely, we study manifolds of the form M =
� \GwhereG = Rn�A R is a semi-direct product defined by a one-parameter
subgroupA(t) of unipotent matrices in GL(n, R) and� is the subgroup Zn�AZ.
These manifolds M can be interpreted as a suspension of the diffeomorphism
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of the torus Rn/Zn induced by A(1). This is also the starting point of [14]
where the spectrum of the Laplacian on left-invariant differential forms on M
is considered. Our sub-Dirac operators will be associated with sub-Riemannian
structures (Ḣ , ġ) on�\G coming from a left-invariant and bracket-generating
distribution (H , g) on G. We choose a metric connection in H such that D is
symmetric.

Our approach is to give an explicit decomposition of the regular repres-
entation of G. Roughly speaking, it turns out that the sub-Dirac operator is
unitarily equivalent to an orthogonal sum of elliptic operators on the real line,
each having a discrete spectrum. This shows that D on � \ G has pure point
spectrum.

We apply our results to compute the spectrum ofD explicitly for two classes
of two-step nilmanifolds of the above form. First we consider three-dimen-
sional Heisenberg manifolds. Secondly, we study a class of five-dimensional
two-step nilpotent nilmanifolds with a three-dimensional distribution. Finally,
we discuss a three-step nilpotent example of dimension four with a two-dimen-
sional distribution. In this case the spectrum can be expressed in terms of the
spectra of the family of operators Pc = ∂2

t + (t2 + c)2 ± 2t , c ∈ R. In all three
examples, the multiplicities of the eigenvalues of D can be read off from the
coadjoint orbit picture.

The examples will show that

• the spectrum of the sub-Dirac operator on a compact 2-step nilmanifold
is not necessarily a discrete subset of R; its eigenvalues may have infinite
multiplicity, contrary to the results for the spectrum of the sub-Laplacian
on compact 2-step nilmanifolds;

• the kernel of the sub-Dirac operator on such manifolds can be infinite-
dimensional;

• in general, sub-Dirac operators are not Rockland operators in the fol-
lowing sense.

Let be given a left-invariant sub-Riemannian structure on a Lie group G. The
sub-Dirac operator acting on C∞(G,�) corresponds to an element Dsub ∈
U(�)⊗End(�). As a natural generalization of the Rockland condition for oper-
ators acting on functions introduced in [21], one might take that (dρ⊗id)(Dsub)

is injective for every irreducible representation ρ of G. However, our explicit
examples show that this condition does not hold true in general. For example,
it is not satisfied for the sub-Dirac operator associated to any left-invariant sub-
Riemannian structure (H , g, PSpin,ε,∇, μ) on the three-dimensional Heisen-
berg group, see Section 4.2.

The results on the spectrum mentioned above imply that there exists a
uniform discrete subgroup � and a left-invariant sub-Riemannian structure
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(H , g, PSpin,∇, μ) on a simply connected two-step nilpotent Lie group G
with a distribution of codimension two in the tangent bundle ofG such that the
associated sub-Dirac operatorD on�\G is symmetric but neither hypoelliptic
nor Fredholm (see Section 4.5).

It follows that in this situation D2
sub = �sub + P , P a differential operator

of first order, is not hypoelliptic. In particular, we observe that hypoellipticity
is not preserved by adding operators of lower order.

Acknowledgements. We would like to thank Paul-Andi Nagy for several
useful discussions.

2. Sub-Riemannian Dirac operators

2.1. Definition of sub-Dirac operators

LetM be a smooth manifold and let H ⊂ TM be a smooth distribution, where
dim Hx = d for all x ∈ M . Let �(H ) denote the space of smooth sections of
H . We assume that H is bracket-generating. That means, that for each x ∈ M
there is a J ∈ N such that the sequence

�0 := �(H ), �j+1 := �j + [�0, �j ]

satisfies {X(x) | X ∈ �J } = TxM . If g is a Riemannian metric on H , then
the pair (H , g) is called a sub-Riemannian structure on M and (M,H , g) is
called a sub-Riemannian manifold.

A sub-Riemannian manifold is said to be regular if for each j = 1, . . . , J
the dimension of {X(x) | X ∈ �j } does not depend on the point x ∈ M .
Examples are contact structures and left-invariant sub-Riemannian structures
on Lie groups. In case of a regular sub-Riemannian structure one has the
notion of an intrinsic volume form, i.e., of a nowhere vanishing section of
�dimM(TM) naturally defined by the sub-Riemannian structure so that one
can define an intrinsic Laplacian, see [1].

Let ∇ : �(H )⊗ �(H ) → �(H ) be a metric connection on H . Note that
here we consider only derivations by vector fields in H . Suppose that H is ori-
ented and that it admits a spin structure, i.e., that there is a Spin(d)-reduction
PSpin(H ) of the principal SO(d)-bundle PSO(H ) of oriented orthonormal
frames of (H , g). We consider the complex representation of Spin(d)which is
obtained by restriction of (one of) the complex irreducible representation(s) of
the Clifford algebra C l(d) := C l(Rd). We will call it spinor representation and
denote it by �d . The associated bundle PSpin(H ) ×Spin(d) �d is called spinor
bundle S of (H , g). The space of smooth sections in S is denoted by �(S).
The connection ∇ defines a connection ∇S : �(H ) × �(S) → �(S) in the
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following way. Let s1, . . . , sd be a local orthonormal frame of H and consider
the local connection forms ωij = g(∇si, sj ). Then we define

∇S
Xϕ := X(ϕ)+ 1

2

∑
i<j

ωji(X)si · sj · ϕ,

where ‘·’ denotes the Clifford multiplication.
Now we can define a sub-Riemannian Dirac operator, or sub-Dirac operator

for short, by

(1) D =
∑
i

si · ∇S
si

: �(S) −→ �(S),

where again s1, . . . , sd is a local orthonormal frame of H . Note, that the
definition of D depends on the choice of the connection ∇ on H and that, in
general, this choice is far from being canonical in contrast to the Riemannian
case, where we have the Levi-Civita connection as a preferred connection.

A large class of metric connections in H can be obtained in the following
way. Suppose we are given a further distribution V ⊂ TM such that TM =
H ⊕ V . Then this decomposition of TM gives us a projection pr : TM → H

and we can define a connection ∇ by the Koszul formula

(2) 2g(∇XY,Z) = X(g(Y,Z))+ Y (g(X,Z))− Z(g(X, Y ))

+ g(pr[X, Y ], Z)− g(pr[X,Z], Y )− g(pr[Y,Z], X),

whereX, Y,Z ∈ �(H ). In this case ∇ is uniquely determined by the vanishing
of ∇XY − ∇YX − pr[X, Y ]. The latter condition is equivalent to saying that
the torsion T (X, Y ) := ∇XY −∇YX− [X, Y ] is vertical for allX, Y ∈ �(H ).

2.2. Symmetry of the sub-Dirac operator

Let (M,H , g) be an oriented sub-Riemannian manifold and ω an arbitrary
volume form onM . Define the divergence of a vector fieldX onM by LXω =
(divX) · ω. Let ∇ be a metric connection on H . Suppose that H admits a
spin structure and define D : �(S) → �(S) as above. Let 〈·,·〉 be a hermitian
inner product on �d for which the Clifford multiplication is antisymmetric.
This inner product is unique up to scale. It induces a hermitian inner product
on S, which together with ω gives anL2-inner product (·,·) on the space �0(S)

of sections in S with compact support.
It is easy to find examples of three-dimensional Heisenberg manifolds with

two-dimensional distribution H and metric connection for which D is not
symmetric, see Section 4.2.
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The following lemma states that the sub-Dirac operator is symmetric if and
only if the divergence defined by the sub-Riemannian structure coincides with
the divergence given by the connection, compare also [9] for the Riemannian
case.

Lemma 2.1. Under the above conditions, D is symmetric if and only if

(3) divX =
d∑
i=1

g(∇siX, si)

holds for all X ∈ �(H ) and for one (and therefore every) local orthonormal
basis s1, . . . , sd of H .

If, in addition, V is a complement of H in TM and ∇ is defined as in
(2), then (3) is equivalent to the following condition. For one (and therefore
for all) sets {ξ1, . . . , ξl}, l = dimM − k, of local sections of V that satisfy
ω(s1, . . . , sd , ξ1, . . . , ξl) = 1 the equation

η1([X, ξ1])+ · · · + ηl([X, ξl]) = 0

holds for all X ∈ �(H ), where η1, . . . , ηl ∈ �(T ∗M) are defined to be zero
on H and dual to ξ1, . . . , ξl .

In particular, if codim H = 1, then D is symmetric if and only if [�(H ),

ξ1] ⊂ �(H ).

Proof. Consider sections ϕ,ψ ∈ �0(S) and define f : H → C by

(4) f (w) := 〈ϕ,w · ψ〉.
Moreover, define u ∈ �0(H ⊗ C) by

(5) gC(u,w) = f (w)

for all w ∈ �(H ), where gC denotes the the complex bilinear extension of g.
Choose a local orthonormal frame s1, . . . , sd of H . Then

〈Dϕ,ψ〉 − 〈ϕ,Dψ〉 =
d∑
i=1

(
f (∇si si)− si(f (si))

) =
d∑
i=1

gC(∇si u, si),

thus

(Dϕ,ψ)− (ϕ,Dψ) =
∫
M

( d∑
i=1

gC(∇si u, si)

)
ω

=
∫
M

( d∑
i=1

gC(∇si u, si)− div(u)

)
ω.
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In particular, (3) is sufficient for the symmetry of D. On the other hand, any
section u1 ∈ �0(H ) is the real part of a section u ∈ �0(H ⊗C) that satisfies (4)
and (5) for some ϕ,ψ ∈ �0(S). Indeed, chooseψ such that 〈ψ(x), ψ(x)〉 = 1
for all x ∈ supp u1 and put ϕ := u1 · ψ . Define u by (4) and (5). Then

g(u1, w) = Re〈u1 · ψ,w · ψ〉 = Re〈ϕ,w · ψ〉 = Re f (w)

for allw ∈ �(H ), hence u1 = Re u. Consequently, the symmetry ofD implies

∫
M

( d∑
i=1

g(∇si u, si)− div(u)

)
ω = 0

for all u ∈ �0(H ). Since the integrand is C∞
0 (M)-linear in u, Equation (3)

follows.
The second part of the lemma now follows from

div(u) = (Luω)(s1, . . . , sd , ξ1, . . . , ξl)

= −
d∑
i=1

ω(s1, . . . , [u, si], . . . , sd , ξ1, . . . , ξl)

−
l∑

j=1

ω(s1, . . . , sd , ξ1, . . . , [u, ξj ], . . . , ξl)

= −
d∑
i=1

g(pr[u, si], si)−
l∑

j=1

ηj ([u, ξj ])

=
d∑
i=1

g(∇si u, si)−
l∑

j=1

ηj ([u, ξj ]),

where the last equality is a consequence of Equation (2).

2.3. Sub-Dirac operators on Lie groups and compact quotients

LetGbe a simply connected Lie group and� ⊂ G a uniform discrete subgroup.
Letω denote the volume form ofG defining the Haar measure. Let H ⊂ TG be
a left-invariant oriented distribution and g a left-invariant Riemannian metric
on H . Obviously, there exist left-invariant positively oriented orthonormal
vector fields s1, . . . , sd which span H . In particular, the frame bundle PSO(H )

is trivial and the unique spin structure of H equals PSpin(H ) = G× Spin(d).
Let ∇ be a left-invariant connection on H .
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The triple (H , g,∇) induces a sub-Riemannian structure on � \G, which
we will denote by (Ḣ , ġ, ∇̇). The frame bundle PSO(Ḣ ) can be identified with

PSO(Ḣ ) = G×� SO(d),

where � acts by left multiplication on G and trivially on SO(d). There is a
one-to-one correspondence between homomorphisms ε : � → Z2 = {0, 1}
and spin structures of Ḣ given by

ε 
−→ PSpin,ε(Ḣ ) = G×� Spin(d),

where γ ∈ � acts by multiplication by eiπε(γ ) on Spin(d). Spinor fields are
sections of the associated spinor bundle PSpin,ε(Ḣ )×Spin(d) �d

∼= G×��d or,
equivalently, maps ψ : G → �d that satisfy ψ(γg) = eiπε(γ )ψ(g) for all
γ ∈ �, g ∈ G.

In the left-invariant situation, the symmetry of the sub-Dirac operator D
associated to (H , g, PSpin(H ),ε,∇) or (Ḣ , ġ, PSpin,ε(Ḣ ), ∇̇) can be character-
ized as follows.

Lemma 2.2. The sub-Dirac operator is symmetric with respect to the L2-
norm if and only if

(6) 0 =
d∑
i=1

g(∇si sj , si)

holds for all j .

Proof. If Equation (3) holds true, then (6) follows by choosing X = sj
because the divergence of any left-invariant vector field is zero as G is unim-
odular.

Conversely, (6) implies (3) for all left-invariant X ∈ �(H ). Furthermore,
it holds

div(fX) = X(f )+ f div(X) =
∑
i

(
si(f )g(X, si)+ fg(∇siX, si)

)
=
∑
i

g(∇si (fX), si).

This yields the claim.

Condition (6) is not satisfied in general, see Subsection 4.2.
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3. Sub-Riemannian structures on � \ (Rn
�A R)

3.1. The standard model

Let A(t) = exp(tB) be a one-parameter subgroup of GL(n, R). We consider
the simply-connected solvable Lie group Rn �A R with group law

(x, s)(y, t) = (x + A(s)y, s + t).

In particular, (0, t)(x, 0)(0, t)−1 = (A(t)x, 0). In addition, we assumeA(1) ∈
SL(n, Z) so that the set Zn × Z becomes a uniform discrete subgroup.

A Lie group G is called exponential if the exponential map gives a dif-
feomorphism of its Lie algebra � onto G. Then G is simply connected and
solvable. A simply connected solvable Lie group is exponential if and only if
no operator ad(X) of the adjoint representation of � admits a non-zero purely
imaginary eigenvalues, compare Theorem 1 of [16]. In particular every simply
connected nilpotent Lie group belongs to this class.

The pair (Rn �A R, Zn �A Z) serves as a standard model in the following
sense.

Lemma 3.1. Let G be an exponential Lie group admitting a connected
abelian normal subgroup N of codimension one. Let � be a uniform discrete
subgroup of G such that � ∩ N is uniform in N . Then there exists a one-
parameter subgroup A of GL(n, R), n = dimN , with A(1) ∈ SL(n, Z), and
an isomorphism � of Rn �A R onto G mapping Zn �A Z onto �.

Proof. We fix generators v1, . . . , vn of the lattice�∩N of the vector group
N and consider the linear isomorphismM of Rn ontoN given byM(ej ) = vj .
On the other hand, the assumption on � implies that �N is closed in G and
that �N/N is a discrete subgroup of G/N . Hence there exists b ∈ � with
exp(b) ∈ � and such that exp(b)N is a generator of �N/N .

PutA(t)x = M−1(exp(tb)M(x) exp(tb)−1). Now it follows that�(x, t) =
M(x) exp(tb) is an isomorphism of Rn �A R onto G with �(Zn × Z) = �. In
particular, Zn�AZ is a subgroup of Rn�AR. This means that Zn isA(l)-invariant
for all l ∈ Z so that A(l) ∈ SL(n, Z).

The condition A(1) ∈ SL(n, Z) implies B ∈ ��(n, R) and A(t) ∈ SL(n, R)
for all t ∈ R. This reflects the fact that locally compact groups admitting a
uniform discrete subgroup are unimodular, compare Theorem 7.1.7 of [23].

The Lie algebra of G := Rn �A R is isomorphic to � = Rn �B R, and
B = ad(b)|�, where b = (0, 1) and � = Rn × {0}. Note that G is exponential
if and only if B has no non-zero purely imaginary eigenvalues.
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It is evident that

π(x, t) =

⎛⎜⎜⎝
x1

A(t)
...

xn

0 . . . 0 1

⎞⎟⎟⎠
defines a representation, which is faithful provided that G is exponential and
not abelian.

Example 3.2. Fix r ∈ Z+ and setB =
(

0 r

0 0

)
so thatA(t) = exp(tB) =

I + tB. Since A(l) ∈ SL(2, Z) for l ∈ Z, � = Z2
�A Z is a subgroup of

G = R2
�A R. On the other hand,

π(x1, x2, t) =
( 1 rt x1

0 1 x2

0 0 1

)

gives an isomorphism from G onto the three-dimensional Heisenberg group
H(1) in its standard realisation as a group of matrices mapping � onto

�r =
{( 1 rl k1

0 1 k2

0 0 1

)
: l, k1, k2 ∈ Z

}
.

In particular, the above construction yields all uniform discrete subgroups of
H(1) and hence all three-dimensional Heisenberg manifolds, compare Sec-
tion 2 of [11].

Heisenberg manifolds and certain generalisations of them will be discussed
in Section 4.2 and 4.3 in greater detail.

Define � := Zn �A Z. The spin structures of distributions of T (� \ G)
induced by a left-invariant distribution of T (G) are determined as follows.

Lemma 3.3. A map ε : � → Z2 is a homomorphism if and only if ε(k, l) =
ε′(k) + ε̇(l) for some homomorphism ε̇ : Z → Z2 and a homomorphism
ε′ : Zn → Z2 satisfying

(7)
∑
μ

ε′(eμ)(A(1)− I )μν ∈ 2Z

for all ν. Here we identify Z2 with {0, 1} ⊂ R.

Proof. Any homomorphism ε : � → Z2 defines homomorphisms ε̇ : Z →
Z2, ε̇(l) = ε(0, l), and ε′ : Zn → Z2, ε′(k) = ε(k, 0), where ε′ satisfies

ε′(A(l)k) = ε(A(l)k, 0) = ε((0, l)(k, 0)(0, l)−1) = ε(k, 0) = ε′(k)
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for all l ∈ Z and k ∈ Zn. The latter condition reduces to ε′(A(1)k) = ε′(k) for
all k, and hence to ε′(eν) = ε′(A(1)eν) = ∑

μ Aμν(1)ε
′(eμ) in Z2 for all ν,

which is equivalent to (7). It is easy to check that the converse holds also true.

Since � is uniform and discrete, there exists a unique normalised right G-
invariant Radon measure μ on � \ G which can be obtained as follows: Let
In = [0, 1]n denote the unit cube of Rn. Then

(8)
∫
�\G

ϕ dμ =
∫ 1

0

(∫
In

ϕ(x, s) dx

)
ds

for all ϕ ∈ C(� \ G). This can be proved using that the Haar measure of G
equals the Lebesgue measure of Rn+1 and that F = [0, 1)n+1 is a fundamental
set for � on G.

3.2. Decomposition of the right-regular representation

Let A(t) be a one-parameter subgroup of GL(n, R) such that G = Rn �A R is
exponential and � = Zn �A Z is a subgroup of G. Let ε : � → Z2 be a group
homomorphism. Our aim is to decompose the right regular representation of
G on L2(G, ε).

Let C(G, ε) denote the space of all continuous C-valued functions ϕ on G
satisfying ϕ(gy) = eiπε(g)ϕ(y) for all g ∈ � and y ∈ G, and L2(G, ε) the
completion of C(G, ε) with respect to the Hilbert space norm

(9) |ϕ|2L2
=
∫
�\G

|ϕ|2 dμ.

Now right translation (ρ(x)ϕ)(y) = ϕ(yx) gives rise to a unitary representa-
tion of G on L2(G, ε). This is precisely the definition of the induced repres-
entation ρ = indG� e

iπε of the unitary character eiπε of �. By Theorem 7.2.5
of [23], ρ can be written as a countable orthogonal sum of irreducible sub-
representations with finite multiplicity. We will give such a decomposition
explicitly, generalizing the results of [2] for the three-dimensional Heisenberg
group, which motivated this article.

To this end, we consider partial Fourier transformation with respect to the
first n variables: If ϕ ∈ C(G, ε), then

ϕ((k, l)(x, t)) = ϕ(k + A(l)x, l + t) = eiπε(k,l)ϕ(x, t)

for all (k, l) ∈ �. In particular, ϕ(2k + x, t) = eiπε(2k,0)ϕ(x, t) = ϕ(x, t)

which shows that x 
→ ϕ(x, t) is 2Zn-invariant. For such functions it is natural
to consider

ϕ̂(ξ, t) =
∫
In

ϕ(2x, t)e−2πi〈ξ,x〉 dx
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for ξ ∈ Zn. Clearly ϕ is uniquely determined by its Fourier coefficient func-
tions.

It follows from (8) that the restriction of ϕ ∈ L2(G, ε) to 2In× [0, 1] is L2-
and hence L1-integrable with respect to the Lebesgue measure. In particular,
the integral in the definition of (Tξ · ϕ)(t) := ϕ̂(ξ, t) makes sense for almost
all t .

Proposition 3.4. For ϕ ∈ L2(G, ε) there holds the Plancherel formula

|ϕ|2L2 =
∑
ξ∈Zn

∫ 1

0
|ϕ̂(ξ, t)|2 dt.

Proof. By the Plancherel theorem forL2-functions on the torus, we obtain
from (8) and (9) that

|ϕ|2L2 =
∫ 1

0

(∫
In

|ϕ(x, t)|2 dx
)
dt =

∫ 1

0

∑
ξ∈Zn

|ϕ̂(ξ, t)|2 dt,

where summation and integration can be interchanged.

Taking into account ∫
In

g(Mx) dx =
∫
In

g(x) dx

for integrable Zn-invariant functions g on Rn andM ∈ SL(n, Z), one can prove
that the ε-equivariance of ϕ entails the following conditions on its Fourier
transform.

Lemma 3.5. For ϕ ∈ L2(G, ε) and (k, l) ∈ � it holds

eiπε(k,l) ϕ̂(ξ, t) = eπi〈A(−l)
�ξ,k〉 ϕ̂( A(−l)�ξ, l + t),

where A(l)� denotes the transpose of the operator A(l) with respect to the
standard inner product on Rn.

The one-parameter subgroupA represents the restriction of the adjoint rep-
resentation of the subgroup R ∼= {0} × R of G to the ideal Rn × {0} of �.
Identifying the linear dual of this Lie algebra with Rn by means of the standard
inner product, we see that t 
→ A(t)� is the coadjoint representation. The
preceding lemma reveals the importance of this group action in the present
context. Any ξ ∈ Rn has a Z-orbit θ = {A(l)�ξ : l ∈ Z} and an R-orbit
ω = {A(t)�ξ : t ∈ R}.
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Let ϕ ∈ L2(G, ε) and ξ ∈ Zn. The equality ϕ̂(A(l)�ξ, t) = eiπε(0,−l)ϕ̂(ξ,
l+t) shows that ϕ̂(ξ, ·)determines ϕ̂(η, ·) for allη ∈ θ . In particular, supp ϕ̂ :=
{ξ ∈ Zn : ϕ̂(ξ, ·) �= 0} is a Z-invariant subset.

Lemma 3.6. The set

�ε′ := {
ξ ∈ Zn : ξν ∈ 2Z + ε′(eν) for all 1 ≤ ν ≤ n

}
is Z-invariant and contains supp ϕ̂ for every ϕ ∈ L2(G, ε).

Proof. Let ξ ∈ �ε′ and l ∈ Z. Since ε′(A(l)�eν) = ε′(eν) and 〈ξ, k〉 ∈
2Z+ε′(k) for all k ∈ Zn, it follows 〈A(l)�ξ, eν〉 = 〈ξ, A(l)eν〉 ∈ 2Z+ε′(eν) and
A(l)�ξ ∈ �ε′ . This proves�ε′ to be Z-invariant. Letϕ ∈ L2(G, ε) and ξ �∈ �ε′ .
Then there is 1 ≤ ν ≤ n such that ξν �∈ 2Z + ε′(eν) and hence eπiε

′(eν ) �=
eπi〈ξ,eν 〉. On the other hand, by Lemma 3.5 we have eiπε(k,0)ϕ̂(ξ, t) =
eπi〈ξ,k〉ϕ̂(ξ, t) for all k. This implies ϕ̂(ξ, ·) = 0.

Note that ξ ∈ �ε′ implies eiπε(k,0) = eiπ〈ξ,k〉 for all k ∈ Zn.
Let Z \ �ε′ denote the set of all Z-orbits in �ε′ . For θ ∈ Z \ �ε′ , it follows

that
Uθ :=

⋂
ξ �∈θ

ker Tξ = {
ϕ ∈ L2(G, ε) : supp ϕ̂ ⊂ θ

} �= 0

is a closed subspace of L2(G, ε). It will be shown below that Uθ is ρ(G)-
invariant.

Proposition 3.7. These subspaces form an orthogonal decomposition

L2(G, ε) =
⊕

θ∈Z\�ε′
Uθ .

Proof. Let θ1, θ2 ∈ Z \ �ε′ be distinct orbits. By Proposition 3.4 and the
polarisation identity, we obtain

〈ϕ1, ϕ2〉L2 =
∑
ξ∈Zn

∫ 1

0
ϕ̂1(ξ, t)ϕ̂2(ξ, t) dt = 0

for ϕ1 ∈ Uθ1 and ϕ2 ∈ Uθ2 . Hence Uθ1 and Uθ2 are orthogonal. It remains
to be shown that the direct sum of the Uθ is dense. Since C∞(G, ε) is dense
in L2(G, ε), it suffices to prove that every smooth ε-equivariant function can
be approximated by a finite sum of functions in the Uθ . By the decay of the
Fourier transform of ϕ ∈ C∞(G, ε), it follows that

ϕθ(x, t) =
∑
ξ∈θ

ϕ̂(ξ, t)eπi〈ξ,x〉
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is a smooth function in Uθ and that ϕ = ∑
θ∈Z\�ε′ ϕθ converges uniformly on

Rn × [0, 1]. In particular,
∣∣ϕ − ∑

θ∈J ϕθ
∣∣
L2 → 0 for J ⊂ Z \ �ε′ finite and

increasing. (This also proves that Uθ ∩ C∞(G, ε) is dense in Uθ .)

The right regular representation ρ(x, s)ϕ(y, t) = ϕ(y + A(t)x, t + s) on
L2(G, ε) is compatible with partial Fourier transform in the sense that

(10) (ρ(x, s)ϕ)̂ (ξ, t) = eπi〈A(t)
�ξ,x〉 ϕ̂(ξ, t + s).

In particular, ϕ̂(ξ, ·) = 0 implies (ρ(x, s)ϕ)̂ (ξ, ·) = 0 for all (x, s) ∈ G

which proves Uθ to be ρ(G)-invariant. We define ρθ = ρ|Uθ .
Let L2(R, ε̇) denote the L2-completion of the vector space C(R, ε̇) of all

continuous functions satisfying f (t + k) = eπiε̇(k)f (t) for all k ∈ Z. Here
ε̇ : Z → Z2

∼= {0, 1} is defined as in Lemma 3.3. Put (Tξ · ϕ)(t) = ϕ̂(ξ, t).
From Lemma 3.5 we get

(Tξ · ϕ)(l + t) = ϕ̂(ξ, l + t) = ϕ̂(A(−l)�ξ, l + t)

= eiπε̇(l)ϕ̂(ξ, t) = eiπε̇(l)(Tξ · ϕ)(t)

for all ϕ ∈ L2(G, ε). Furthermore, Proposition 3.4 implies |Tξ · ϕ|L2 ≤ |ϕ|L2

for all ϕ. This shows that Tξ : L2(G, ε̇) → L2(R, ε̇) is a continuous linear
operator.

Let θ ⊂ �ε′ be a Z-orbit. We claim that the restriction of Tξ gives a unitary
isomorphism ofUθ ontoL2(R, ε̇). To prove this we must distinguish two cases.

Let ω be the unique R-orbit containing θ . The stabilizer Ḣω := {t ∈ R :
A(t)�ξ = ξ} does not depend on the choice of the point ξ ∈ ω. Since t 
→
A(t)� is the coadjoint representation of an exponential Lie group, we know
that the closed subgroup Ḣω is connected, see p. 49 of [16]. Thus there are
only two possibilities, either Ḣω = R or Ḣω = {0}.

First we consider the case Ḣω = R. This implies that ω = θ = {ξ} is a fixed
point. We obtain

|Tξ · ϕ|2L2 =
∫ 1

0
|ϕ̂(ξ, t)|2 dt = |ϕ|2L2

by Proposition 3.4. If ψ ∈ C(R, ε̇), then ϕ(x, t) = ψ(t)eπi〈ξ,x〉 is in C(G, ε)
by Lemma 3.6, and Tξ · ϕ = ψ . Thus Tξ is a unitary isomorphism of Uθ onto
L2(R, ε̇). From Equation (10) it follows that the representation ρξ (x, s) =
Tξρθ (x, s)T

∗
ξ on L2(R, ε̇) is given by

ρξ (x, s)ψ(t) = eπi〈ξ,x〉ψ(t + s).



78 ines kath and oliver ungermann

Define ε�(t) = eπiε̇(1)t for t ∈ R. Then ε� is a unitary character of R extending
l 
→ eπiε̇(l). Any such extension has the form t 
→ ε�(t)e2πimt for somem ∈ Z.
By means of the unitary isomorphism (U · ψ)(t) = ε�(−t)ψ(t) of L2(R, ε̇)
onto L2(Z \ R), we see that ρξ is unitarily equivalent to

(11) ρ̃ξ (x, s)ψ(t) = eπi〈ξ,x〉ε�(s)ψ(t + s)

on L2(Z \ R). For m ∈ Z we consider the unitary character of G given by

χε�,ω,m(x, s) = eπi〈ξ,x〉e2πimsε�(s).

Finally, using the Fourier transformation and the Plancherel theorem for L2-
functions on the torus, we conclude that ρθ is unitarily equivalent to an ortho-
gonal sum

ρθ ∼=
⊕
m∈Z

χε�,ω,m

of 1-dimensional subrepresentations. Note that up to isomorphism this decom-
position does not depend on the choice of the extension ε�.

Now we consider the second case where Ḣω = {0}. Then ω is not relatively
compact and the Z-orbit θ is an infinite set.

Lemma 3.8. For every η ∈ ω there exists a unitary isomorphism Tη of Uθ
onto L2(R) which intertwines ρθ and

(12) ρη(x, s)ψ(t) = eπi〈A(t)
�η,x〉ψ(t + s).

Proof. Let ξ ∈ θ and r ∈ R such that η = A(r)�ξ . We claim that
(Tηϕ)(t) = ϕ̂(ξ, t + r) is a unitary isomorphism satisfying our needs: First of
all, Proposition 3.4 implies

|Tηϕ|2L2 =
∫ +∞

−∞
|ϕ̂(ξ, t + r)|2 dt =

∫ +∞

−∞
|ϕ̂(ξ, t)|2 dt

=
∑
l∈Z

∫ 1

0
|ϕ̂(ξ, l + t)|2 dt =

∑
l∈Z

∫ 1

0
|ϕ̂(A(l)�ξ, t)|2 dt = |ϕ|2L2

which shows that Tηϕ ∈ L2(R) is well-defined and that Tη is isometric. If
ψ ∈ C0(R), then the sum

ϕ(x, t) =
∑
l∈Z

e−iπε̇(l)ψ(l + t − r)eπi〈A(l)
�ξ,x〉
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is locally finite in t and ϕ ∈ C(G, ε) by Lemma 3.6. Using A(l)�ξ �= ξ for
l �= 0, we conclude Tηϕ = ψ . This proves Tη to be surjective. Finally, we
observe that (12) is a consequence of (10).

Let X∞
ε′ denote the set of all R-orbits which intersect the subset �ε′ of Zn

and which are not relatively compact. Let X0
ε′ be the set of all orbits of the

form ω = { ξ } for a fixed point ξ ∈ �ε′ . If ω ∈ X∞
ε′ , η ∈ ω is arbitrary, and

θ1, θ2 are Z-orbits contained in ω ∩ �ε′ , then ρθ1
∼= ρη ∼= ρθ2 by Lemma 3.8.

This implies ⊕
θ∈Z\(ω∩�ε′ )

ρθ ∼= mε,ωρω

where mε,ω is the number of Z-orbits contained in ω ∩ �ε′ , which is apriori
known to be finite, and ρω is the common unitary equivalence class of the
representations ρθ for θ ∈ Z \ (ω ∩�ε′).

Summing up the preceding conclusions, we obtain

Theorem 3.9. LetA(t) be a one-parameter group of GL(n, R)withA(1) ∈
SL(n, Z) and such that G = Rn �A R is exponential. Let ε : � → Z2 be a
homomorphism. Then the right regular representation ρ of G in L2(G, ε)

decomposes as follows:

ρ ∼=
⊕

θ∈Z\�ε′
ρθ ∼=

(⊕
ω∈X0

ε′

⊕
m∈Z

χε̇,ω,m

)
⊕
(⊕
ω∈X∞

ε′

mε,ωρω

)

where the multiplicities mε,ω = #Z \ (ω ∩�ε′) are finite, the

χε̇,ω,m(x, s) = eπi〈ξ,x〉eπi(2m+ε̇(1))s

are characters of G, and the ρω are irreducible on L2(R). For every η ∈ ω,

ρη(x, s)ψ(t) = eπi〈A(t)
�η,x〉ψ(t + s)

is a representative for the unitary equivalence class of ρω. Moreover, the rep-
resentations {χε̇,ω,m : ω ∈ X0

ε′ ,m ∈ Z} ∪ {ρω : ω ∈ X∞
ε′ } are mutually

inequivalent.

Proof. It remains to verify the last assertion and the irreducibility of ρω.
Clearly characters are unitarily equivalent if and only if they are equal, and not
unitarily equivalent to a representation onL2(R). LetC∗(N) be the enveloping
C∗-algebra of the group algebra L1(N) of N = Rn × {0}. Recall that C∗(N)
is isomorphic to C∞(N̂) via Fourier transformation. The above formula for
ρη shows that the C∗-kernel of the integrated form of ρω|N consists of all
g ∈ C∗(N) whose Fourier transform vanishes on ω. Since the R-orbits are
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locally closed, it follows that ρω1 and ρω2 are inequivalent whenever ω1 �=
ω2. If U is a closed ρη(G)-invariant subspace of L2(R), then U is invariant
under translations and multiplication by bounded continuous functions. Thus
it follows U = {0} or U = L2(R).

Lemma 3.10. Suppose that G = Rn �A R is a nilpotent Lie group. Let
ω ∈ X∞

ε′ and θ ∈ Z\(ω∩�ε′). For η ∈ ω letTη denote the unitary isomorphism
of Uθ onto L2(R) defined in the proof of Lemma 3.8. Then for every Schwartz
function ψ ∈ S (R) there exists a (unique) ϕ ∈ Uθ ∩ C∞(G, ε) such that
Tηϕ = ψ .

Proof. Given ψ ∈ S (R) we consider

ϕ(x, t) =
∑
l∈Z

e−iπε̇(l)ψ(l + t − r)eπi〈A(l)
�ξ,x〉

whose formal derivatives are

(∂αt ∂
β
x ϕ)(x, t) =

∑
l∈Z

e−iπε̇(l)(πi)|β|(A(l)�ξ)β(∂αt ψ)(l + t − r)eπi〈A(l)
�ξ,x〉.

Since B is nilpotent, the expression A(l)�ξ = exp(lB)�ξ is polynomial in l.
Hence for each multi-index β there exist constants N ∈ N and C0 > 0 such
that |(A(l)�ξ)β | ≤ C0(1 + l2)N .

for all l ∈ Z. On the other hand, since ψ ∈ S (R), for each α there are
C1, C2 > 0 such that

|(∂αt ψ)(l + t − r)| ≤ C1|1 + (l + t − r)2|−(N+1) ≤ C2|1 + l2|−(N+1)

for all l, and for t ranging over a compact subset K of R. This implies that
the above series converge absolutely and uniformly on Rn × K so that ϕ ∈
C∞(G, ε) is well-defined. Clearly ϕ ∈ Uθ and Tηϕ = ψ .

3.3. Operators with discrete spectrum

Let (H, 〈·,·〉) be a real vector space with inner product and (�, 〈·,·〉) a complex
vector space with a hermitian inner product. Suppose that� carries a C l(H)-
module structure such that 〈x ·v,w〉 = −〈v, x ·w〉 for all x ∈ H ⊂ C l(H) and
v,w ∈ �. Let s1, . . . , sd be an orthonormal basis of H and a ∈ H a non-zero
multiple of sd . Furthermore, let� : R → span{s1, . . . , sd−1} be a non-constant
polynomial function. We consider the operator

P = a∂t + i�(t)
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on the domain S (R,�). Here a,�(t) ∈ C l(H) are understood as operators
acting by pointwise multiplication. Clearly P is symmetric with respect to the
L2-inner product and densely defined in the Hilbert space L2(R,�). Thus P
is closable. The closure P̄ of P is again a symmetric operator. Let P ∗ denote
the adjoint of P . On its domain

dom(P ∗) = {
ψ ∈ L2(R,�) :

ϕ 
→ 〈Pϕ,ψ〉L2 is continuous w.r.t. to the L2-norm
}

we consider the norm | · |P given by |ψ |2P = |ψ |2
L2 + |P ∗ψ |2

L2 . Our aim is to
prove the following result.

Proposition 3.11. The closure P̄ of P is self-adjoint and has discrete
spectrum.

Proof. We can assume |a| = 1 what will simplify the estimates below.
To prove the first assertion, we imitate the proof of the essential selfadjoint-

ness of the Dirac operator, compare Theorem 5.7 of [15] and Proposition 1.3.5
of [10]. As a basic fact we know that it suffices to verify ker(P ∗ ± iI ) = {0}.
Moreover, since P̄ is symmetric, it is enough to show that ker(P ∗ ± iI ) ⊂
dom(P̄ ). To begin with, we note that, if f ∈ S (R) and ψ ∈ dom(P ∗), then
fψ ∈ dom(P ∗) and

P ∗(fψ) = f (P ∗ψ)+ (∂tf )a · ψ.
Let ψ ∈ ker(P ∗ ± iI ). If P̂ denotes the extension of P to tempered distribu-
tions, then we get, as P is symmetric, (P̂ ± iI )ψ = P ∗ψ± iψ = 0. Since the
principal symbol p(ξ) = ξ a of P̂ ± iI is invertible for ξ �= 0, the regularity
theorem for elliptic differential operators implies that ψ is a smooth function.
Choose h ∈ C∞

0 (R) satisfying 0 ≤ h ≤ 1 and h(0) = 1, and put hk(t) =
h(t/k) for k ≥ 1. By definition hk → 1 and hkψ ∈ C∞

0 (R,�) ⊂ dom(P ).
Since ∣∣(∂thk)a · ψ∣∣

L2 ≤ |∂thk|∞|a||ψ |L2 ≤ 1
k
|∂th|∞|ψ |L2 ,

it follows that

|ψ − hkψ |2P = |ψ − hkψ |2L2 + |P ∗ψ − P ∗(hkψ)|2L2

≤ |ψ − hkψ |2L2 + (|P ∗ψ − hk(P
∗ψ)|L2 + |(∂thk)a · ψ |L2

)2

converges to 0 for k → ∞ by dominated convergence. Hence ψ ∈ dom(P̄ ).
This establishes the essential selfadjointness of P .

To prove that the spectrum of P̄ is discrete, we need the following two
lemmata.
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Lemma 3.12. Let (�, 〈·,·〉) be a C l(H)-module as above and � : R → H

a continuous function satisfying |�(t)| → ∞ for |t | → ∞. Then

X := {ϕ ∈ L2(R,�) : ∂tϕ ∈ L2(R,�) and � · ϕ ∈ L2(R,�)}
becomes a Hilbert space when endowed with the norm‖ϕ‖2 = |ϕ|2

L2+|∂tϕ|2
L2+

|� · ϕ|2
L2 , and the inclusion X → L2(R,�) is a compact operator.

Proof. The first assertion is obvious. Let (ϕm) be a bounded sequence in
X. We prove that (ϕm) has a subsequence which is Cauchy in L2(R,�). For
every n ∈ N \ {0} there exists rn > 0 such that |�(t)| ≥ n for |t | ≥ rn.
We can assume rn < rn+1 and rn → ∞ for n → ∞. Using |�(t) · ϕ(t)| =
|�(t)||ϕ(t)| ≥ n|ϕ(t)|, we obtain∫

|t |≥rn
|ϕ(t)|2 dt ≤ 1

n2

∫
|t |≥rn

|�(t) · ϕ(t)|2 dt ≤ 1

n2
|� · ϕ|2L2

for ϕ ∈ X. For the moment, we fix the parameter n. Let χ ∈ C∞
0 (R) be such

that 0 ≤ χ ≤ 1 and χ(t) = 1 for |t | ≤ rn. By Rellich’s theorem, applied
to the bounded sequence χϕm in H 1(R,�), we conclude that there exists a
subsequence (ϕmn,k ) such that∫ rn

−rn
|ϕmn,k (t)− ϕmn,l (t)|2 dt → 0

for k, l → ∞. Proceeding by induction, we establish {mn+1,k : k ∈ N} ⊂
{mn,k : k ∈ N} for all n. We definemk = mk,k . Now it is easy to see that (ϕmk )
is Cauchy w.r.t. the L2-norm.

Lemma 3.13. The domain of P̄ is contained in X and the inclusion
dom(P̄ ) → X is continuous.

Proof. Since dom(P ) = S (R,�) is contained inX and dense in dom(P̄ )
w.r.t. the norm |−|P , it suffices to prove that there exists K > 0 such that
‖ϕ‖ ≤ K|ϕ|P for all ϕ ∈ S (R,�). Using a ·(∂tϕ) = ∂t (a ·ϕ) and�a = −a�
in C l(H), we compute

〈a · (∂tϕ), i� · ϕ〉L2 = −〈a · ϕ, i∂t (� · ϕ)〉L2

and
〈i� · ϕ, a · (∂tϕ)〉L2 = 〈a · ϕ, i� · (∂tϕ)〉L2 .

As ∂t (� · ϕ) = (∂t�) · ϕ +� · (∂tϕ), it follows

|Pϕ|2L2 = |a · (∂tϕ)+ i� · ϕ|2L2 = |∂tϕ|2L2 − 〈a · ϕ, i(∂t�) · ϕ〉L2 + |� · ϕ|2L2
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for all Schwartz functions. Since � is a polynomial function, there exists
r > 0 such that |(∂t�)(t)| ≤ |�(t)| for all |t | ≥ r . Fix C > 1 such that
|(∂t�)(t)| ≤ C for |t | ≤ r . From

|〈a · ϕ, i(∂t�) · ϕ〉L2 | ≤
∫ r

−r
|(∂t�)(t)||ϕ(t)|2 dt +

∫
|t |≥r

|(∂t�)(t)||ϕ(t)|2 dt

≤ C

∫ r

−r
|ϕ(t)|2 dt +

∫
|t |≥r

|ϕ(t)||�(t) · ϕ(t)| dt

≤ C|ϕ|2L2 + |ϕ|L2 |� · ϕ|L2

it then follows

|ϕ|2P = |ϕ|2L2 + |Pϕ|2L2 ≥ 1

2C

(
C|ϕ|2L2 + 1

4 |ϕ|2L2 + |Pϕ|2L2

)
≥ 1

2C

(
1
4 |ϕ|2L2 + |∂tϕ|2L2 + |� · ϕ|2L2 − |ϕ|L2 |� · ϕ|L2

)
≥ 1

2C
|∂tϕ|2L2

for ϕ ∈ S (R,�). Moreover, i� · ϕ = Pϕ − a · (∂tϕ) gives

|� · ϕ|L2 ≤ |Pϕ|L2 + |∂tϕ|L2 ≤ (
1 + √

2C
)|ϕ|P .

Altogether, we obtain

‖ϕ‖2 = |ϕ|2L2 + |∂tϕ|2L2 + |� · ϕ|2L2 ≤ (
1 + 2C + (

1 + √
2C

)2)|ϕ|2P
proving the lemma.

Now we can prove the second assertion of Proposition 3.11. As σ(P̄ ) ⊂ R,
we know that P̄ − iI is bijective. Put R := (P̄ − iI )−1. Since P̄ − iI is
continuous w.r.t. the complete norm | · |P on dom(P̄ ) and the L2-norm, the
open-mapping theorem implies that R : L2(R,�) → dom(P̄ ) is continu-
ous. Moreover, since the inclusion dom(P̄ ) → X → L2(R,�) is compact
by Lemma 3.12 and 3.13, it follows that R is a compact normal operator on
L2(R,�) with kerR = {0}. By the spectral theorem there exists an orthonor-
mal basis {ϕn : n ∈ N} ofL2(R,�)withRϕn = μnϕn for suitable 0 �= μn ∈ C.
This implies P̄ ϕn = (

λ + 1
μn

)
ϕn for all n. If {μn : n ∈ N} happens to be an

infinite set, then μn → 0 and hence
∣∣λ+ 1

μn

∣∣ → ∞ for n → ∞. This proves

the spectrum of P̄ to be discrete.

Now we resume the assumptions of Section 3.1: Let A(t) = exp(tB) be a
one-parameter group of GL(n, R) with A(1) ∈ SL(n, Z). Suppose that B does
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not possess any purely imaginary eigenvalues. Let � denote the Lie algebra
of G, and � the Lie algebra of N = Rn × {0}. As before we identify � with
the tangent space at the identity element e = (0, 0) of G and denote by b the
(n+ 1)th basis vector of � ∼= Rn �B R.

Let H be a left-invariant oriented distribution on G such that b ∈ He.
Suppose that H carries a left-invariant Riemannian metric g such that b is
orthogonal to He∩� w.r.t. the inner product 〈·,·〉 := ge on He. We assume that
H is bracket-generating. With C0(He) = He and Ck(He) = [He, C

k−1(He)]
for k ≥ 1, this means H = ∑n

k=0 C
k(He). In particular, it follows

(13) [�, �] =
n∑
k=1

Ck(He).

The latter condition is crucial for the proof of Theorem 3.14 but we do not claim
that (13) has significance for left-invariant distributions H on Lie groups G
which do not have the form G = Rn �A R.

Let ∇ be a left-invariant metric connection on H satisfying condition (3) of
Lemma 2.1, which guarantees the symmetry of the sub-Dirac operator. Here the
divergence in (3) is defined w.r.t. the left-invariant volume form corresponding
to the Haar measure ofG. If Ḣ is the distribution on � \G defined by H , then
the Riemannian metric on Ḣ induced by g is denoted by ġ, and the connection
on Ḣ by ∇̇. Let ε : � → Z2 be a homomorphism defining a spin structure
PSpin,ε(Ḣ ) ∼= G×� Spin(d) of (Ḣ , ġ), where d = dim H .

We fix a positively oriented orthonormal basis s1, . . . , sd of He with
s1, . . . , sd−1 ∈ He∩� and such that sd is a positive multiple of b. Denoting the
corresponding left-invariant vector fields again by s1, . . . , sd , the sub-Dirac
operator, as acting on smooth sections of the spinor bundle S(Ḣ , ε), is given
by D = ∑

i si · ∇̇S
si

.
Let � be the representation space of the complex spinor representation of

Spin(He). Identifying �(S(Ḣ , ε))withC∞(G, ε)⊗�, we see thatD is given
by

(14) D =
∑
i

dρ(si)⊗ si + 1

4

∑
i,j,k

�kij I ⊗ sisj sk =: P +W

where the si’s in the second factor of the tensor products are understood as
operators on �. Furthermore, the constants �kij = g(∇si sj , sk) are the Chris-
toffel symbols of ∇ w.r.t. the orthonormal frame s1, . . . , sd of H , and dρ is the
derivative of the right regular representation ρ of G on L2(G, ε). By (3) the
second sum in (14) reduces to a sum over all pairwise distinct indices i, j, k.
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Theorem 3.14. If, in addition to the above assumptions, G = Rn �A R
is nilpotent, then the closure of the operator D on � \ G has a pure point
spectrum.

Proof. By Proposition 3.7 we know that L2(G, ε)⊗� is a direct sum of
the orthogonal subspaces {Uθ ⊗ � : θ ∈ Z \ �ε′ } which are invariant under
the action of ρ(G)⊗ C l(He). Let U∞

θ := Uθ ∩ C∞(G, ε). Then U∞
θ ⊗� is

D-invariant. To prove that D̄ has a pure point spectrum, it suffices to prove
that the closure of Dθ := D|U∞

θ ⊗ � has a pure point spectrum for all θ . If
θ = {ξ} is a fixed point, then, according to Equation (11), the subspace Uθ is
an orthogonal sum of one-dimensional ρ(G)-invariant subspaces ofU∞

θ . Thus
Uθ ⊗ � is an orthogonal sum of two-dimensional Dθ -invariant subspaces of
dom(Dθ)which shows thatDθ has a pure point spectrum. Thus we are left with
the case where θ is an infinite set and Uθ is isomorphic to L2(R). Fix ξ ∈ θ .
Lemma 3.8 implies that there exists a unitary isomorphism Tξ : Uθ → L2(R)
such that ρξ := TξρθT

∗
ξ is given by

(15) ρξ (x, s)ψ(t) = eπi〈A(t)
�ξ,x〉ψ(t + s).

By Lemma 3.10 we may define Dξ = (Tξ ⊗ I )Dθ(T
∗
ξ ⊗ I ) | S (R,�). Since

dρξ (sj ) = πi〈A(t)�ξ, sj 〉 for 1 ≤ j ≤ d − 1 and dρξ (sd) = |b|∂t , it follows
that the operator Pξ := ∑d

j=1 dρξ (sj )⊗ sj on S (R,�) has the form

(16) Pξ = a∂t + i�ξ (t)

with a = |b|−1sd and �ξ(t) = π
∑d−1
j=1 〈A(t)�ξ, sj 〉 sj ∈ He ⊂ C l(He). Note

that 〈A(t)�ξ, sj 〉 = 〈ξ, exp(tB)sj 〉 is a polynomial in t because B is nilpotent.
Since

[�, �] =
n∑
k=1

Bk(He ∩ �) =
n∑
k=1

d−1∑
j=1

R · (Bksj )

by (13) and 〈ξ, [�, �]〉 �= 0 for non-fixed points, it follows that at least one of
the components of �ξ is not constant. Thus Proposition 3.11 implies that P̄ξ
has discrete spectrum. In other words, the essential spectrum of P̄ξ is empty.

The operator Wξ := 1
4

∑
i,j,k �

k
ij sisj sk is bounded on L2(R,�). In par-

ticular, Wξ is relatively P̄ξ -compact in the sense that dom(P̄ξ ) ⊂ dom(Wξ )

and Wξ(P̄ξ − iI )−1 is compact. By the Kato-Rellich theorem we know that
D̄ξ = P̄ξ + Wξ is selfadjoint. Moreover, Weyl’s theorem which asserts the
stability of the essential spectrum under relatively compact perturbations, and
for which we refer to Theorem 14.6 of [12], implies that the essential spectrum
of D̄ξ = P̄ξ +Wξ is empty. This shows that D̄ξ and hence D̄θ have discrete
spectrum. The proof of the theorem is complete.
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Remark 3.15. In general, the eigenvalues of the sub-Dirac operator D do
not have finite multiplicity and the spectrum ofD is not a discrete subset of R.
A relevant example is given in Section 4.3.

3.4. Two- and three-dimensional distributions

In this subsection we will compute the spectra of the operators Dθ arising in
the proof of Theorem 3.14 provided that G = Rn �A R is 2-step nilpotent
and dim H = 2 or 3. The explicit formulas that will be given below in the
non-fixed point case are a consequence of the following result.

Proposition 3.16. Let α, β ∈ R and ω(t) = aω1t + ω0 where a > 0,
ω0, ω1 ∈ C and |ω1| = 1. Then the spectrum of the operator

(17) D = αI + β

(
i∂t ω̄

ω −i∂t
)

on S (R, C2) is discrete. More precisely, σ(D) = {λ0} ∪ {λ±
k : k ∈ N \ {0}},

where

λ0 := α + β Im(ω0ω̄1) and λ±
k := α ± β

(
2ak + Im(ω0ω̄1)

2
)1/2

.

If λ0 and the λ±
k are pairwise distinct, then all eigenvalues are simple.

Proof. We can assume α = 0 and β = 1. Instead of D, we consider the
operator S := Q∗DQ, where Q is the unitary matrix

Q = 1√
2

(
1 −iω̄1

−iω1 1

)
,

which diagonalizes D2 and does not depend on t . Obviously the spectra of D
and S coincide. We have

S =
(

Im(ω1ω̄) ω̄1(∂t + Re(ω1ω̄))

ω1(−∂t + Re(ω1ω̄)) − Im(ω1ω̄)

)

=
( − Im(ω0ω̄1) ω̄1(∂t + a t + Re(ω0ω̄1))

ω1(−∂t + a t + Re(ω0ω̄1)) Im(ω0ω̄1)

)
.

To detect S-invariant subspaces, we start with the orthonormal basis {hk : k ∈
N} of L2(R) given by the (normalized) Hermite functions

hk(x) = (2kπ1/2k!)−1/2Hk(x)e
−x2/2.
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Here Hk(x) = (−1)kex
2
∂kx [e−x2

] is the kth Hermite polynomial. Put b =
2a Re(ω0ω̄1). Using the unitary isomorphism

(U · w)(t) := a1/4w

(
a1/2

(
t + b

2a2

))
of L2(R), we then define uk = U · hk . Recall that the creation operator
�+ = −∂x + x and the annihilation operator �− = ∂x + x satisfy �+(hk) =√

2(k + 1) hk+1 and �−(hk) = √
2khk−1. Since

U�±U ∗ = a−1/2

(
∓∂t + a t + b

2a

)
,

we thus obtain(
−∂t + at + b

2a

)
uk = √

2a(k + 1)uk+1 for k ≥ 0,(
∂t + at + b

2a

)
uk = √

2akuk−1 for k ≥ 1,(
∂t + at + b

2a

)
u0 = 0.

This shows

S ·
(

0

u0

)
=
(
ω̄1(∂t + at + Re(ω0ω̄1))u0

Im(ω0ω̄1)u0

)
= Im(ω0ω̄1)

(
0

u0

)
,

S ·
(
uk−1

0

)
=
( − Im(ω0ω̄1)uk−1

ω1(−∂t + a t + Re(ω0ω̄1))uk−1

)
=
(− Im(ω0ω̄1)uk−1√

2ak ω1uk

)
,

S ·
(

0

uk

)
=
(
ω̄1(∂t + at + Re(ω0ω̄1))uk

Im(ω0ω̄1)uk

)
=
(√

2ak ω̄1uk−1

Im(ω0ω̄1)uk

)
.

In particular, the subspaces

V0 := C

(
0
u0

)
and

Vk := span

{
ϕk :=

(
uk−1

0

)
, ψk :=

(
0
uk

)}
, k ≥ 1,
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are S-invariant, and the restriction of S to Vk , k ≥ 1, is given by the matrix(− Im(ω0ω̄1)
√

2ak ω̄1√
2ak ω1 Im(ω0ω̄1)

)
with respect to the basis ϕk, ψk . Since L2(R, C2) is the direct sum of the Vk ,
k ≥ 0, the assertion follows.

Assume that G = Rn �A R is 2-step nilpotent. Let (H , g,∇) be as in
the preceding subsection with 2 ≤ dim H ≤ 3. First we will determine the
spectrum of Dθ := D|U∞

θ ⊗� when θ does not consist of a single point.
Suppose that dim H = 2. Let s1 ∈ He ∩ � and s2 ∈ He be a positive

multiple of b such that s1, s2 is a positively oriented orthonormal basis of He.
In particular, s2 = |b|−1b. By (3) we have �1

11 + �2
21 = 0 and �1

12 + �2
22 = 0

which implies that all Christoffel symbols of ∇ vanish. Up to isomorphism,
there exists only one simple C l(He)-module. Let� = C2 be the one such that
s1 and s2, represented as operators on �, are given by

s1 =
(

0 −1
1 0

)
and s2 =

(
i 0
0 −i

)
.

Let θ ∈ Z\�ε′ and ξ ∈ θ be a non-fixed point. If Tξ : Uθ → L2(R) is a unitary
isomorphim as in the proof of Theorem 3.14 and Dξ = (Tξ ⊗ I )Dθ(T

∗
ξ ⊗

I )|S (R,�), then we know by (16) that Dξ has the form

Dξ = |b|−1

(
i∂t ω̄ξ
ωξ −i∂t

)
with ωξ(t) = πi|b|〈A(t)�ξ, s1〉. Since B2 = 0, we have A(t) = I + tB so
that

ωξ(t) = πi|b|(〈B�ξ, s1〉t + 〈ξ, s1〉
)

is a non-constant affine-linear function. Thus Proposition 3.16 implies that D̄ξ

has discrete spectrum. Moreover, the eigenvalues of Dξ can be computed as
follows: Put α = 0, β = |b|−1, a = π |b||〈B�ξ, s1〉|, ω1 = i sgn〈B�ξ, s1〉 and
ω0 = πi〈ξ, s1〉. Note that Im(ω0ω̄1) = 0. Hence it follows that

(18) λ0(ξ) = 0 and λ±
k (ξ) = ±(2π |b|−1|〈B�ξ, s1〉|k

)1/2

with k ∈ N\{0} are the eigenvalues ofDξ . This completes the case dim H = 2.
Suppose that dim H = 3. Choose s1, s2 ∈ He ∩ � and s3 = |b|−1b such

that s1, s2, s3 becomes a positively oriented orthonormal basis of He. Up to
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isomorphism, there exist two simple C l(He)-modules. Let� = C2 be the one
given by the representation

s1 =
(

0 i

i 0

)
, s2 =

(
0 −1
1 0

)
, s3 =

(
i 0
0 −i

)
.

Note that s1s2 = s3 and sisj + sj si = −2δij for all 1 ≤ i, j ≤ 3, as operators
on�. Using this and that ∇ is metric, we conclude that the second sum in (14)
simplifies to W = − 1

2 (�
3
12 + �1

23 + �2
31)I ⊗ I .

Let θ ∈ Z\�ε′ and ξ ∈ θ be a non-fixed point. If Tξ is a unitary isomorphism
of Uθ onto L2(R) such that ρξ = TξρθT

∗
ξ is given by Equation (10), then the

restrictionDξ of (Tξ ⊗ I )Dθ(T
∗
ξ ⊗ I ), when realized in L2(R,�), to Schwartz

functions has the form

Dξ = −1

2
(�3

12 + �1
23 + �2

31)I + |b|−1

(
i∂t ω̄ξ
ωξ −i∂t

)
where ωξ , as G is 2-step nilpotent, is a non-constant affine linear function
given by

ωξ(t) = πi|b|(i〈A(t)�ξ, s1〉 + 〈A(t)�ξ, s2〉
)

= −π |b|((〈B�ξ, s1〉 − i〈B�ξ, s2〉
)
t + 〈ξ, s1〉 − i〈ξ, s2, 〉

)
.

Hence Proposition 3.16 implies that the eigenvalues of Dξ are

(19) λ0(ξ) = −1

2
(�3

12 +�1
23 +�2

31)−π
〈B�ξ, s1〉〈ξ, s2〉 − 〈ξ, s1〉〈B�ξ, s2〉(〈B�ξ, s1〉2 + 〈B�ξ, s2〉2

)1/2

and

(20) λ±
k (ξ)

= −1

2
(�3

12 + �1
23 + �2

31)±
(

2πk|b|−1
(〈B�ξ, s1〉2 + 〈B�ξ, s2〉2

)1/2

+ π2

(〈B�ξ, s1〉〈ξ, s2〉 − 〈ξ, s1〉〈B�ξ, s2〉
)2

〈B�ξ, s1〉2 + 〈B�ξ, s2〉2

)1/2

.

In (18)–(20) we rediscover the fact that the eigenvalues λk(ξ) do not depend
on the choice of the point ξ on the orbit. More precisely, since B2 = 0 and
A(t)B = B, it follows, in accordance with Lemma 3.8, that λ±

k (A(t)
�ξ) =

λ±
k (ξ) for all t ∈ R and ξ ∈ Rn \ [�, �]⊥. This completes the case dim H = 3.

Finally we compute the spectrum of Dθ when θ = {ξ} is a fixed point. For
this purpose, we can drop the assumption that G is nilpotent.
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By (11) we know that Uθ is an orthogonal sum of 1-dimensional subspaces
{Uθ,k : k ∈ Z} of Uθ ∩ C∞(G, ε) on which (x, s) ∈ G acts by multiplication
with

χε�,θ,k(x, s) = eπi〈ξ,x〉eπi(2k+ε̇(1))s .

Suppose that dim H = 2. Let s1, s2 and � be as above. In this case the sub-
Dirac operator reads D = dρ(s1) ⊗ s1 + dρ(s2) ⊗ s2. Since dχε�,θ,k(s1) =
πi〈ξ, s1〉 and dχε�,θ,k(s2) = πi|b|−1 (2k + ε̇(1)), it follows that Dθ,k :=
Dθ |Uθ,k ⊗ C2 is unitarily equivalent to

(21) Dξ,k := αI + β

(
2k + ε̇(1) ω̄ξ

ωξ −2k − ε̇(1)

)
on C2, where α = 0, β = −π |b|−1 and ωξ = −i|b|〈ξ, s1〉 are constants.
Obviously, Dξ,k admits the eigenvalues

(22) μ±
k (ξ) = ±π (|b|−2(2k + ε̇(1))2 + 〈ξ, s1〉2

)1/2
, k ∈ Z.

Suppose that dim H = 3. Let s1, s2, s3 and�be as above. In this caseD = P+
W whereW = α I ⊗ I and α = − 1

2 (�
3
12 +�1

23 +�2
31). HenceDθ,k is unitarily

equivalent toDξ,k as in (21) withβ = −π |b|−1 andωξ = |b|(〈ξ, s1〉−i〈ξ, s2〉).
Thus Dξ,k has the eigenvalues

(23) μ±
k (ξ) = −1

2
(�3

12 + �1
23 + �2

31)

± π
(|b|−2(2k + ε̇(1))2 + 〈ξ, s1〉2 + 〈ξ, s2〉2

)1/2
.

This shows that Dθ has discrete spectrum in the fixed point case.

4. Examples of spectra of sub-Dirac operators

4.1. A preliminary remark

To compute the spectrum of the sub-Dirac operator D, it remains, by the
results in the preceding section for the spectra of theDθ , to determine a set of
representatives for the set of all Z-orbits contained in �ε′ . More precisely, in
view of Theorem 3.9, we carry out the following steps:

(1) Describe all homomorphisms ε : � → Z2.

(2) Find a set of representatives Rε′ for all R-orbits ω intersecting �ε′ .

(3) Compute the number of Z-orbits contained in ω ∩�ε′ .

(4) Determine the spectrum of Dξ for some ξ ∈ ω.

This requires a detailed knowledge of the orbit picture of the coadjoint repres-
entation. In the following examples, the eigenvalues of the sub-Dirac operator
including their multiplicities will be determined completely.
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4.2. Three-dimensional Heisenberg manifolds

As we will see next, the results of this section comprise Theorem 3.1 of [2] con-
cerning the spectrum of the Dirac operator on three-dimensional Heisenberg
manifolds.

LetG = R2
�A R be the Heisenberg group as discussed in Example 3.2 and

� = Z2
�A Z. Then � = span{e1, e2, b} with [b, e2] = re1. For positive real

numbers d and T we consider the orientation and the Riemannian metric g on
H := TG such that s1 = 1

T
e1, s2 = −de2 and s3 = d

r
b becomes a positively

oriented orthonormal frame. The constants are chosen in accordance with [2],
where the collapse of Heisenberg manifoldsM(r, d, T ) for T → 0 is studied.
Let ∇ be the Levi-Civita connection of g. In particular, ∇ satisfies (3) and
−�3

12 = �1
23 = �2

31 = d2T
2 . Let ε′ : Z2 → Z2 be a homomorphism. We

abbreviate ε′(eμ) to εμ. Then (7) is satisfied if and only if ε1r is even. It is easy
to see that the disjoint union Rε′ of

R
(1)
ε′ = {ξ ∈ �ε′ : ξ1 = 0} and R

(2)
ε′ = {ξ ∈ �ε′ : ξ1 �= 0 and ξ2 = ε2}

is a set of representatives for the set of all R-orbits intersecting �ε′ . The set
R
(1)
ε′ consists of all fixed points in �ε′ . If ω is the R-orbit represented by

(ξ1, ε2) ∈ R
(2)
ε′ , then ω ∩�ε′ contains |ξ1r|/2 distinct Z-orbits.

We compute |b| = r2

d2 , 〈ξ, s1〉 = 1
T
ξ1, 〈ξ, s2〉 = −dξ2, 〈B�ξ, s1〉 = 0 and

〈B�ξ, s2〉 = −drξ1. Inserting this into (23) gives

(24) μ±
k (0, ξ2) = −d

2T

4
± π

(
(2k + ε̇(1))2

d2

r2
+ d2ξ 2

2

)1/2

.

Similarly, for ξ ∈ �ε′ with ξ1 �= 0, Equations (19) and (20) yield

(25) λ0(ξ1, ε2) = −d
2T

4
− π

T
|ξ1|

and

(26) λ±
k (ξ1, ε2) = −d

2T

4
±
(

2πd2k|ξ1| + π2

T 2
ξ 2

1

)1/2

.

We will use the following notation for the description of the spectrum of
the Dirac operator D on � \G. We define the spectral multiplicity function

m(D) : R → N ∪ {|N|}, m(D)(λ) = dim ker(D − λI).

Moreover, δ = δ(λ) denotes the function that takes the value 1 in λ and that is
zero on R \ {λ}.
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Suppose we are given a spin structure corresponding to a homomorphism
ε : Z2

�A Z → Z2 with ε1 = 0. Summation of (24), (25) and (26) over
ξν ∈ 2Z + εν gives

m(D) = m+
1 (D)+m−

1 (D)+m+
2 (D)+m0

2(D)+m−
2 (D),

where

m±
1 (D) =

∑
k∈Z

∑
l∈Z

δ

(
−d

2T

4
± πd

r

(
(2k + ε̇(1))2 + r2(2l + ε2)

2
)1/2

)
,

m0
2(D) =

∞∑
l=1

2rlδ

(
−d

2T

4
− 2πl

T

)
,

m±
2 (D) =

∞∑
l=1

2rl
∞∑
k=1

δ

(
−d

2T

4
±
(

4πd2kl + 4π2l2

T 2

)1/2)
.

Now assume ε1 = 1, which is only possible if r is even. Then R
(1)
ε′ = ∅ and

we obtain
m(D) = m+

2 (D)+m0
2(D)+m−

2 (D),

where now

m0
2(D) =

∞∑
l=0

(2l + 1)rδ

(
−d

2T

4
− π(2l + 1)

T

)
,

m±
2 (D) =

∞∑
l=0

(2l + 1)r
∞∑
k=1

δ

(
−d

2T

4

±
(

2πd2k(2l + 1)+ π2(2l + 1)2

T 2

)1/2)
.

Now let us turn to the sub-Riemannian case and suppose H = span{s2, s3},
where again s2 and s3 are orthonormal. Let∇ be defined by (2) for a leftinvariant
complement V := R · u, u ∈ �, of H . Since we wish to get a symmetric sub-
Dirac operator, the only possible choice is V := R · s1. Indeed, otherwise
[�(H ), u] �⊂ �(H ), thus D is not symmetric by Lemma 2.1. We proceed as
above, now using Equations (22) and (18).

For a spin structure that corresponds to a homomorphism ε : Z2
�A Z → Z2

with ε1 = 0 we obtain

m(D) = |N| · δ(0)+m+
1 (D)+m−

1 (D)+m+
2 (D)+m−

2 (D),
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where

m±
1 (D) =

∑
k∈Z

∑
l∈Z

δ

(
±πd
r

(
(2k + ε̇(1))2 + r2(2l + ε2)

2
)1/2

)
,

m±
2 (D) =

∞∑
l=1

2rl
∞∑
k=1

δ
(±(4πd2kl)1/2

)
.

If ε1 = 1, then

m(D) = |N| · δ(0)
+

∞∑
l=0

(2l + 1)r
∞∑
k=1

(
δ
(
(2πd2k(2l + 1))1/2

)+ δ
(−(2πd2k(2l + 1))1/2

))
.

4.3. A five-dimensional two-step nilpotent example

We start by considering 2-step nilpotent Lie groups which are isomorphic to
a standard model G = R2p

�A R as described in Lemma 4.1 and therefore
generalise the example from the preceding subsection. We will describe the
orbits of R and Z acting on R2p by A�. Then we will specialise to dimG = 5
for the computation of the spectrum of the sub-Dirac operator on � \G.

Lemma 4.1. Let G be a simply connected Lie group satisfying [G,G] =
Z(G) and admitting a connected abelian normal subgroup N of codimension
1. Let � be a uniform discrete subgroup ofG such that �∩N is uniform inN .
Then there exist p ≥ 1, a one-parameter subgroup of GL(2p, R) of the form

A(t) =
(
I tR

0 I

)
with R = diag(r1, . . . , rp) and positive integers rν such that rν+1|rν for ν =
1, . . . , p − 1, and an isomorphism � of G onto R2p

�A R such that �(�) =
Z2p ×A Z.

Proof. Put p = dimZ(G) = 1
2 dimN . Since � ∩ Z(G) is uniform in

Z(G), we find generators v1, . . . , v2p of � ∩N such that � ∩ Z(G) = Zv1 +
· · · + Zvp. As in the proof of Lemma 3.1, we consider the linear isomorphism
M : R2p → N given by M(eν) = vν , choose b ∈ � such that exp(b) ∈
� and exp(b)N generates �N/N , and define A0(t) ∈ GL(2p, R) such that
�0(x, t) = M(x) exp(tb) becomes an isomorphism of G onto R2p

�A0 R.
Since �0(Z(G)) = Rp × {0} × {0}, we have

A0(t) =
(
I tR0

0 I

)
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with R0 ∈ GL(p, Z). Recall that R0 can be brought into Smith normal form,
i.e., there exist Q1,Q2 ∈ GL(p, Z) such that R := Q1R0Q

−1
2 =

diag(r1, . . . , rp) is diagonal with positive integers rν such that rν+1|rν . Clearly
�(x ′, x ′′, t) := (Q1x

′,Q2x
′′, t) gives an isomorphism of R2p

�A0 R onto
R2p

�A R with A(t)(x ′, x ′′) = (x ′ + tRx ′′, x ′′). Finally, it follows that the
assertion of the lemma holds for � := ��0.

Let G = R2p
�A R be as in Lemma 4.1 with uniform discrete subgroup

� = Z2p
�A Z. In particular, A(t)eν = eν and A(t)ep+ν = ep+ν + rνt eν for

all 1 ≤ ν ≤ p.
Let ε̇ : Z → Z2 and ε′ : Z2p → Z2 be homomorphisms. As before, we

put εν = ε′(eν) for ν = 1, . . . , 2p. By Lemma 3.3 it follows that ε(k, l) :=
ε′(k)+ ε̇(l) is a homomorphism of � if and only if rνεν ∈ 2Z for 1 ≤ ν ≤ p.
Note that the latter condition implies εν = 0 whenever rν is odd.

Next we will describe the coadjoint orbits. First of all,

(27) 〈A(t)�ξ, eν〉 = ξν and 〈A(t)�ξ, ep+ν〉 = ξp+ν + rνξνt

for 1 ≤ ν ≤ p. To formulate the subsequent result, a little more notation is
needed. If ξ ∈ Z2p, then ξ̄ ∈ Zp denotes the projection of ξ onto the first p
variables. For η ∈ Zp, the subset {ξ ∈ Z2p : ξ̄ = η} is Z-invariant. In particular,
{ξ : ξ̄ = 0} is the set of all points remaining fixed under the coadjoint action.
Put Jη = {ν : ην �= 0}. For η �= 0, let dη > 0 be the greatest common
divisor of the integers |r1 η1|, . . . , |rpηp|. We choose jη = min Jη and set
qη = |rjηηjη |/dη.

Let �̄ε′ be the image of �ε′ under projection. If η ∈ �̄ε′ \ {0}, then dη is
even because ην is even whenever rν is odd. Furthermore, we define Rε′,0 =
{ξ ∈ �ε′ : ξ̄ = 0} and Rε′,η = {ξ ∈ �ε′ : ξ̄ = η and 0 ≤ ξp+jη ≤ 2qη − 1} for
η ∈ �̄ε′ non-zero. Note that Rε′,0 is empty if εν = 1 for some 1 ≤ ν ≤ p.

Lemma 4.2. In this situation, the following holds true:

(i) The disjoint union Rε′ := ⋃
η∈�̄ε′ Rε′,η is a set of representatives for the

set of all R-orbits intersecting �ε′ .

(ii) Let ω be an R-orbit which intersects �ε′ . Then η := ξ̄ does not depend
on the choice of ξ ∈ ω ∩ �ε′ . If ω is not a fixed point, then ω ∩ �ε′

consists of dη/2 distinct Z-orbits.

Proof. Let ξ ∈ �ε′ such that ξ̄ �= 0. By (27) we know that A(t)�ξ ∈ �ε′

if and only if rνξνt ∈ 2Z for all ν ∈ Jξ̄ . This proves

(28) {t ∈ R : A(t)�ξ ∈ �ε′ } =
⋂
ν∈Jξ̄

2

|rνξν |Z = 2

dξ̄
Z
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To prove (i), let ω be an R-orbit and ξ ∈ ω ∩ �ε′ . Clearly η := ξ̄ does not
depend on the choice of ξ . We can assume ξ̄ �= 0. Define dη and j = jη as
above. Since 〈A(t)�ξ, ep+j 〉 = ep+j + rj ξj t , it follows from (28) that there
exists t ∈ 2

dη
Z such that A(t)�ξ ∈ �ε′ and 0 ≤ 〈A(t)�ξ, ep+j 〉 ≤ 2qη − 1.

This proves A(t)�ξ ∈ ω∩ Rε′,η because A(t)�ξ = ξ̄ . We claim that ω∩ Rε′,η
consists of a single point: If ξ, ξ ∗ ∈ ω∩ Rε′,η, then, again by (28), there exists
a t ∈ 2

dη
Z such that ξ ∗ = A(t)�ξ . In particular ξ ∗

p+j = ξp+j + rj ξj t . Since
0 ≤ ξp+j , ξ ∗

p+j ≤ 2qη − 1, it follows t = 0 and hence ξ ∗ = ξ . This proves
Rε′ to be a set of representatives.

Let ξ ∈ ω ∩ �ε′ be an arbitary non-fixed point. Then f : R → ω, f (t) =
A(t)�ξ , is bijective and R-equivariant. By (28) it holds f −1(ω ∩�ε′) = 2

dη
Z.

Since dη/2 is an integer, it follows

# Z \ ω ∩�ε′ = # Z \ 2

dη
Z = dη

2
.

More precisely, the points
{
A
(

2k
dη

)�
ξ : 0 ≤ k <

dη
2

}
are representatives for the

set of all Z-orbits in ω ∩�ε′ .

We point out that the choice of the set Rε′ is in no way canonical. For
example, any choice of indices jη ∈ Jη leads to a set of representatives.

Now let us restrict ourselves to p = 2. Then canonical basis e1, . . . , e4, b

of the Lie algebra � ∼= R4
�B R of G satisfies the relations [b, e3] = r1e1 and

[b, e4] = r2e2.
Put s1 = e3, s2 = e4 and s3 = b. As before, the corresponding left-invariant

vector fields are denoted by the same symbol. The left-invariant distribution
H := span{s1, s2, s3} is given the orientation and Riemannian metric g such
that s1, s2, s3 becomes a positively oriented, orthonormal frame. In particular,
|b| = 1. Note that H is bracket-generating.

Remark 4.3. In general, when H is a left-invariant 3-dimensional distribu-
tion on a Lie group G, the affine space of all left-invariant metric connections
in H satisfying (3) has dimension 6. However, in the present example, the
left-invariant connections which are defined by a left-invariant projection pr
onto H and the Koszul formula (2) and which satisfy (3) form a 3-dimensional
space.

Let ∇ be a left-invariant metric connection in H satisfying (3). For ex-
ample, we could take the connection given by projection onto H along V :=
span{e1, e2}, which, according to (2), satisfies �kij = 0 for all i, j, k because
[�, �] ⊂ V . Let ε : � → Z2 be a homomorphism giving a spin structure
of Ḣ . By Lemma 2.1 the sub-Dirac operator D defined by (H , g,∇, ε) is
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symmetric. We compute its spectrum. To this end, we note that the coadjoint
representation is given by

B�ξ =
⎛⎜⎝

0
0
r1ξ1

r2ξ2

⎞⎟⎠ and A(t)�ξ =
⎛⎜⎝

ξ1

ξ2

ξ3 + r1ξ1t

ξ4 + r2ξ2t

⎞⎟⎠ .
In particular, we get 〈ξ, sν〉 = 〈ξ, e2+ν〉 = ξ2+ν and 〈B�ξ, sν〉 = rνξν for
ν = 1, 2. Putα = − 1

2 (�
3
12+�1

23+�2
31). By (23), (19) and (20), the eigenvalues

of Dξ are of the form

μ±
k (ξ) = α ± π

(
(2k + ε̇(1))2 + ξ 2

3 + ξ 2
4

)1/2

for fixed points, and

λ0(ξ) = α − π
r1ξ1ξ4 − r2ξ2ξ3

(r2
1 ξ

2
1 + r2

2 ξ
2
2 )

1/2

or

λ±
k (ξ) = α ±

(
2πk(r2

1 ξ
2
1 + r2

2 ξ
2
2 )

1/2 + π2 (r1ξ1ξ4 − r2ξ2ξ3)
2

r2
1 ξ

2
1 + r2

2 ξ
2
2

)1/2

else. We want to decompose the set Rε′ of representatives into a disjoint union
of sets that we can describe explicitly. To this end, consider η = ξ̄ ∈ �̄ε′

and assume η �= 0. If η1 �= 0 and η2 = 0, then jη = 1, dη = |r1η1| and
qη = 1. Similarly, if η1 = 0 and η2 �= 0, then jη = 2, dη = |r2η2| and
qη = 1. For η1η2 �= 0 we get jη = 1, and obtain dη = gcd(| r1η1|, |r2η2| )
and qη = |r1η1| / dη. This leads to a decomposition of Rε′ into the following
subsets:

R
(1)
ε′ = Rε′,0,

R
(2)
ε′ = {

ξ ∈ �ε′ : ξ1 �= 0, ξ2 = 0, ξ3 = ε3
}
,

R
(3)
ε′ = {

ξ ∈ �ε′ : ξ1 = 0, ξ2 �= 0, ξ4 = ε4
}
,

R
(4)
ε′ = {

ξ ∈ �ε′ : ξ1 �= 0, ξ2 �= 0, 0 ≤ ξ3 ≤ 2q(ξ1,ξ2) − 1
}
.

We have R
(1)
ε′ = ∅ if ε1 = 1 or ε2 = 1, R

(2)
ε′ = ∅ if ε2 = 1, and R

(3)
ε′ = ∅ if

ε1 = 1. Recall that for ν = 1, 2 the case εν = 1 can occur only if rν is even.
The spectrum of D depends on the spin structure given by ε. It holds

m(D) = ∑4
i=1mi wheremi = ∑

ξ∈R
(i)

ε′
m(Dξ). Note thatmi = 0 if R

(i)
ε′ = ∅.
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Otherwise, mi is given as follows, where the sums are meant to be taken over
ξν ∈ 2Z + εν and ξ5 ∈ 2Z + ε̇(1).

m1 =
∑
ξ3,ξ4,ξ5

δ(α + π(ξ 2
3 + ξ 2

4 + ξ 2
5 )

1/2)+ δ(α − π(ξ 2
3 + ξ 2

4 + ξ 2
5 )

1/2)

m2 =
∑
ξ1 �=0

|r1ξ1|
2

∑
ξ4

(
δ(α − π sgn(r1ξ1)ξ4)

+
∞∑
k=1

(
δ(α + (2πk|r1ξ1| + π2ξ 2

4 )
1/2)+ δ(α − (2πk|r1ξ1| + π2ξ 2

4 )
1/2)

))

m3 =
∑
ξ2 �=0

|r2ξ2|
2

∑
ξ3

(
δ(α + π sgn(r2ξ2)ξ3)

+
∞∑
k=1

(
δ(α + (2πk|r2ξ2| + π2ξ 2

3 )
1/2)+ δ(α − (2πk|r2ξ2| + π2ξ 2

3 )
1/2)

))

m4 =
∑
ξ1 �=0

∑
ξ2 �=0

gcd(|r1ξ1|, |r2ξ2|)
2

·
∑

0≤ξ3≤2q(ξ1 ,ξ2)−1

∑
ξ4

(
δ(λ0(ξ))+

∞∑
k=1

(
δ(λ+

k (ξ))+ δ(λ−
k (ξ))

))

In particular, if εν = 0 for ν = 1 or 2, then the numbers {α + (2k + ε2+ν)π :
k ∈ Z} are eigenvalues of D and each of them has infinite multiplicity.

In this example, the spectrum of D is a non-discrete subset of R, no matter
which homomorphism ε : � → Z2 defining the underlying spin structure is
chosen. Indeed, α∗ := α + π sgn(r2)ε3 is an accumulation point of σ(D).
To see this, we consider the sequence ξn ∈ R

(4)
ε′ given by ξn1 = 2 + ε1,

ξn2 = 2n+ ε2, ξn3 = ε3 and ξn4 = sgn(r1r2)(2 + ε4). Then λ0(ξn) �= α∗ and
λ0(ξn) → α∗ for n → +∞.

4.4. A three-step nilpotent example

Let r1, r2 ∈ Z \ {0} be such that r1r2 is even. Define a Lie algebra structure on
� := span{e1, e2, e3, b} such that � := span{e1, e2, e3} is an abelian ideal and
[b,X] = B(X) for X ∈ �, where B : � → � is given by

B =
⎛⎝ 0 r1 0

0 0 r2

0 0 0

⎞⎠
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with respect to the basis e1, e2, e3 of �. Let G be the simply-connected Lie
group with Lie algebra �. Then G = R3

�A R with

A(t) = exp tB =
⎛⎝ 1 tr1 t2r1r2/2

0 1 tr2

0 0 1

⎞⎠ .
SinceA(1) is in SL(2, Z), the subset� := Z3

�AZ a uniform discrete subgroup
of G. Let (H , g) be the oriented sub-Riemannian structure having s1 := e3,
s2 := b as a positively oriented orthonormal frame. Then H is bracket gener-
ating.

The spin structures of Ḣ correspond to homomorphisms ε : � → Z2.
As above we write ε(k, l) = ε′(k) · ε̇(l), where ε̇ : Z → Z2 is an arbitrary
homomorphism and ε′ : Z3 → Z2 is a homomorphism satisfying (7), which,
in this example, means that r1ε1 and r1r2ε1/2 + r2ε2 are both even. More
precisely, this shows: If r1 and r2 are both even, then ε1 and ε2 are arbitrary. If
r1 is odd and r2 is even, then ε1 = 0 and ε2 is arbitrary. Now suppose that r2 is
odd. If, in addition, r1 is odd, then ε1 = ε2 = 0. If r1 is even but not divisble
by 4, then either ε1 = ε2 = 0 or ε1 = ε2 = 1. Finally, if r1 is divisible by 4,
then ε2 = 0.

Clearly V := span{e1, e2} is a complement of H in the tangent bundle TG.
Using the projection onto H along V , we define a left-invariant connection ∇
in H by the Koszul formula (3). Since pr[s1, s2] = 0, all Christoffel symbols
�kij vanish. In particular, the sub-Dirac operator is symmetric and equals

D = s1 · ∂s1 + s2 · ∂s2 ,
where we use the simple C l(He)-module structure on C2 defined by

s1 
→
(

0 −1
1 0

)
, s2 
→

(
i 0
0 −i

)
.

On the other hand, we have

(29) A�(t)ξ =
⎛⎝ ξ1

ξ2 + tr1ξ1

ξ3 + tr2ξ2 + t2r1r2ξ1/2

⎞⎠ .
In particular, the sets

R(1) := {
ξ ∈ R3 | ξ1 = ξ2 = 0

}
,

R(2) := {
ξ ∈ R3 | ξ1 = 0, ξ2 �= 0

}
,

R(3) := {
ξ ∈ R3 | ξ1 �= 0

}
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are invariant under A�(t) for all t ∈ R.
Let us first considerDθ for the orbit θ = {ξ} of an element ξ ∈ R(1). Then,

according to (22), the spectrum of Dθ consists of the eigenvalues

μ±
k (ξ) = ±π((2k + ε̇(1))2 + ξ 2

3

)1/2
, k ∈ Z.

Now consider ξ ∈ R(2). Then Dξ has the form

(30)

(
i∂t ω̄

ω −i∂t
)

with ω(t) = aω1t + ω0, where

a = π |r2ξ2|, ω1 = sgn(r2ξ2) · i, ω0 = πiξ3.

According to (18) the spectrum of Dξ consists of the eigenvalues λ0 = 0 and

λ±
k = ±(2π |r2ξ2|k)1/2, k ∈ N \ {0}.

Finally, take ξ ∈ R(3). Then Dξ is of the form (30) where ω(t) =
iπ(ξ1r1r2t

2/2 + ξ2r2t + ξ3). Hence

D2
ξ =

(−∂2
t − ω(t)2 −iω′(t)
−iω′(t) −∂2

t − ω(t)2

)
.

Obviously, D2
ξ is time-independent diagonalisable. More exactly, D2

ξ is con-
jugate to (−∂2

t − ω(t)2 − iω′(t) 0

0 −∂2
t − ω(t)2 + iω′(t)

)
.

The operators −∂2
t − ω(t)2 ∓ iω′(t) are of the form

P±
a,b,c := ∂2

t + (at2 + bt + c)2 ± (2at + b)

for
a = πξ1r1r2 �= 0, b = πξ2r2, c = πξ3.

We consider the bijection

L2(R) −→ L2(R), ϕ 
−→ ϕ̃, ϕ̃(t) = 1

x2
ϕ(xt + y),

where x = a1/3, y = ba−2/3/2.
We define P±

c := P±
1,0,c.
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Claim. The equation P±
a,b,cϕ̃ = λ̃ϕ̃ is equivalent to P±

c1
ϕ = λϕ, where

c1 = −b2a−4/3/2 + ca−1/3, λ̃ = a2/3λ.

Indeed, assume that P±
c1
ϕ = λϕ. Then ϕ′′(t) = (

(t2 + c1)
2 ± 2t − λ

)
ϕ(t)

holds. Hence

(P±
a,b,cϕ̃)(t) = −(∂2

t ϕ̃)(t)+ (
(at2 + bt + c)2 ± (2at + b)

)
ϕ̃(t)

= (−x2
(
((xt + y)2 + c1)

2 ± 2(xt + y)− λ
)

+ (at2 + bt + c)2 ± (2at + b)
)
ϕ̃(t)

= x2λϕ̃(t) = a2/3λϕ̃.

The converse can be proven similarly using ϕ(t) = x2ϕ̃(t/x − y/x).
It is well known that the Schrödinger operator P±

c having a polynomial
potential of degree 4 has the following properties [7], [22]. The spectrum of
P±
c is discrete. All eigenvalues are real and simple. They can be arranged into

an increasing sequence λ0 < λ1 < · · · → ∞ and satisfy

λk ∼
(√

π�(7/4) · k
�(5/4)

)4/3

.

Obviously, P+
c and P−

c have the same eigenvalues. We will denote these ei-
genvalues by λk(c), k ∈ N.

Since dim H is even the spectrum of Dξ is symmetric. We conclude that
spec(Dξ ) consists of the eigenvalues

±(a2/3λk(−4b2a−4/3 + ca−1/3)
)1/2

, k ∈ N,

where a = πξ1r1r2/2, b = πξ2r2, c = πξ3.
Next we determine a set of representatives of the R-orbits in R3 that intersect

�ε′ and the number of Z-orbits that are contained in them. Obviously,

R(1) := R(1) ∩�ε′

is the set of fixed points in �ε′ and

R(2) := {
ξ ∈ �ε′ | ξ1 = 0, ξ2 �= 0, ξ3 = ε3

}
is a set of representatives of the R-orbits in R(2) that interset �ε′ . For ξ ∈
R(2) the R-orbit through ξ contains |r2ξ2|/2 Z-orbits. Now we turn to orbits
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contained in R(3). For a given number k ∈ Z \ {0} let p, q ∈ Z, q > 0 be such
that

|r2|
|r1k| = p

q
, (p, q) = 1

and put q(k) := q. Moreover, for l, q ∈ N, q > 0 we define

M(l, q) := {(m1,m2) | m1,m2 ∈ N \ {0},m1 +m2 = l, q|m1m2}.

We will show:

(1) The set

R(3) := {
ξ ∈ �ε′ | 0 ≤ ξ2 < |r1ξ1|,M(ξ2, q(ξ1)) = ∅}

is a set of representatives of R-orbits in R(3) that intersect �ε′ .

(2) For ξ ∈ R(3) the number of Z-orbits contained in the R-orbit of ξ equals

m(ξ1, ξ2) := #
{
k ∈ N | ξ2 + 2k < |r1ξ1|, q(ξ1)|k(k + ξ2)

}
.

Take ξ ∈ R(3) ∩ �ε′ and denote by θ the R-orbit of ξ . Using (29) we see that
A�(t)ξ is in�ε′ if and only if tr1ξ1 and t2r1r2ξ1/2+ tr2ξ2 are in 2Z. The latter
condition is equivalent to

(31) t = 2k

r1ξ1
, q(ξ1)|k(k + ξ2)

for some k ∈ Z. Obviously, we may choose ξ̂ = (ξ1, ξ̂2, ξ̂3) ∈ θ such that
0 ≤ ξ̂2 < |r1ξ1|. Now we want to choose ξ̂ is such a way that ξ̂2 ≥ 0 is minimal,
which ensures the uniqueness of the representative. By (31), ξ̂2 is minimal if
and only if there does not exist an integer k, −[ξ̂2/2] ≤ k ≤ −1, such that
q(ξ1)|k(k+ ξ̂2). The latter condition is equivalent to q(ξ1)|(−k)(k+ ξ̂2). Hence
ξ̂2 is minimal if and only if ξ̂2 does not decompose as a sum ξ̂2 = m1 + m2

with m1,m2 ∈ N \ {0} and q(ξ1)|m1m2. This proves the first assertion. The
second one follows from (31).

Now we can give an expression for m(D). In the following sums are taken
over ξi ∈ ε1 + 2Z, i = 1, 2, 3. Moreover, we will take another index of
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summation, namely ξ4 ∈ ε̇(1)+ 2Z. Furthermore, κ ∈ {1,−1}. Then

m(D)

=
∑
ξ3,ξ4

∑
κ

δ
(
κπ(ξ 2

3 + ξ 2
4 )

1/2
)

+
∑
ξ2>0

|r2ξ2|
(
δ(0)+

∞∑
k=1

∑
κ

δ(κ(2πk|r2ξ2|)1/2)
)

+
∑

ξ1 �=0,ξ2,ξ3

m(ξ1, ξ2)

·
∞∑
k=0

∑
κ

δ

(
κ

(
πξ1

r1r2

2

)1/3

λk

((
πξ1

r1r2

2

)−1/3

π

(
ξ3 − 8ξ 2

2 r2

ξ1r1

))1/2)
.

4.5. Non-hypoellipticity of sub-Dirac operators

The aim of this subsection is to combine the results of the preceding two
subsections. In particular, we discuss the consequences for the hypoellipticity
of the sub-Dirac operatorD acting on sections of the spinor bundle S(Ḣ ) over
� \G.

Let S(Ḣ )∗ denote the dual vector bundle of S(Ḣ ). Elements of the locally
convex space �(S(Ḣ )∗)′ of all continuous linear functionals on �(S(Ḣ )∗)
are called distributions with values in S(Ḣ ). Smooth sections of S(Ḣ ) can be
considered as elements of �(S(Ḣ )∗)′ in a natural way.

We say thatD is hypoelliptic if the following condition is satisfied for every
open subset W of � \ G: If u ∈ �(S(Ḣ )∗)′ such that (Du)|W is given by a
smooth section of S(Ḣ )|W , then u|W is smooth.

Identifying�(S(Ḣ ))withC∞(G, ε,�) as before, the above property trans-
lates to the following: If W is an ε-invariant open subset of G and u ∈
C∞(G, ε,�∗)′ such that (Du)|W ∈ C∞(W, ε,�), then u|W ∈ C∞(W, ε,�).

A sub-Riemannian structure (H , g, PSpin,∇, μ) endowed with a spin struc-
ture PSpin, a connection ∇ and volume form μ on Lie group G is called left-
invariant if H , g, ∇ are left-invariant in the obvious sense and μ is the volume
form defining the Haar measure of G.

Now we can formulate the following theorem, which comprises the results
of the preceding sections.

Theorem 4.4. There exists a uniform discrete subgroup � and a left-
invariant sub-Riemannian structure (H , g, PSpin,∇, μ) on a simply connected
two-step nilpotent Lie group G with a distribution of codimension two in the
tangent bundle of G such that the associated sub-Dirac operator D on � \G
is symmetric but neither hypoelliptic nor Fredholm.
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Proof. As in the end of Section 4.3, we chooseG = R4
�A R, � = R4

�B R
where A(t) = exp(tB) and B ∈ End(R4) is given by Be1 = B2 = 0, Be3 =
e1 and Be4 = e2. Put s1 = e3, s2 = e4 and s3 = b. The corresponding
left-invariant vector fields span the distribution H := span{s1, s2, s3} of TG
which is endowed with the orientation and the Riemannian metric g such
that s1, s2, s3 is a positively oriented, orthonormal frame. We choose the left-
invariant connection ∇ such that �3

12 = �1
23 = �2

31 = 0 and a spin structure
given by a homomorphism ε : Z4

�A Z → Z2 satisfying ε3 = ε4 = 0.
We consider the sequence ηm ∈ Rε′ given by ηm1 = 2m+ ε1, ηm2 = 2 + ε2

and ηm3 = ηm4 = 0 for m ≥ 1. Note that ηm and ηn lie on different R-orbits
provided thatm �= n. Clearly λ0(ηm) = 0 for allm. This means that the kernel
of D is of infinite dimension. In particular, D is not a Fredholm operator.

Suppose that the operator D acting on sections of S(Ḣ ) is hypoelliptic.
As before, the extension of D to distributions is again denoted by D. By the
hypoellipticity of D, it follows that X := kerD is contained in the subspace
C∞(G, ε,�) of L2(G, ε,�).

The C∞-topology τC∞ of C∞(G, ε,�) is given by the sequence of norms
pN(u) = ∑

|μ|≤N |Eμ1
1 . . . E

μ5
5 u|∞ where Ej = ∑n

i=1 Aij (t)∂xi and E5 = ∂t
are the left-invariant vector fields corresponding to e1, . . . , e5. By the Arzelà-
Ascoli theorem and a diagonal sequence argument it follows that (C∞(G,ε,�),
τC∞) has the Heine-Borel property. SinceX is complete in both topologies τL2

and τC∞ , the open mapping theorem implies (X, τL2) = (X, τC∞). Thus X
is locally compact and hence finite-dimensional. This contradiction proves
the theorem. Note that this argument can be applied to arbitrary hypoelliptic
operators on compact manifolds.

Since hypoellipticity is a local property, Theorem 4.4 yields:

Corollary 4.5. In the situation of the preceding theorem, the sub-Dirac
operator D0 acting on sections of the spinor bundle S(H ) over G is not
hypoelliptic either.
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