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TOPOLOGICAL AMENABILITY IS A
BOREL PROPERTY

JEAN RENAULT

Abstract
We establish that a σ -compact locally compact groupoid possessing a continuous Haar system is
topologically amenable if and only if it is Borel amenable. We give some examples and applica-
tions.

1. Introduction

The notion of topological amenability of a locally compact groupoid G en-
dowed with a Haar system was first introduced in [17, Definition II.3.6] as
a convenient sufficient condition for measurewise amenability. Indeed, it im-
plies both the equality of the reducedC∗-algebraC∗

r (G) and the fullC∗-algebra
C∗(G) of the groupoid and the nuclearity of C∗(G). However, some later res-
ults have given a greater interest to this notion. When G is an étale Hausdorff
locally compact groupoid, one has a direct equivalence between the topological
amenability of G and the nuclearity of C∗

r (G) (see [1] in the case of discrete
group actions and [4, Theorem 5.6.18] in the general étale case). Moreover,
topological amenability has applications to the Baum-Connes conjecture: for
example, J.-L. Tu shows in [22] that topologically amenable Hausdorff locally
compact groupoids with Haar systems admit proper affine actions on Hilbert
bundles, hence satisfy the Baum-Connes conjecture. Section 3.3 of [2] gives
some results relating topological and measurewise amenability; in particular,
it is shown in [2, Theorem 3.3.7] that these properties are equivalent for a large
class of groupoids, including étale groupoids; however, it misses a notion of
Borel amenability analogous to the above notion of topological amenability
which would have made its results more complete and its proofs more transpar-
ent. The adequate notion of Borel amenability appears explicitly shortly later
in Section 2.4 of the comprehensive work [11] by S. Jackson, A. S. Kechris and
A. Louveau about countable Borel equivalence relations. It turns out that for
σ -compact locally compact groupoids with Haar systems, both notions coin-
cide. Although this may be well-known to specialists, it seems useful to present
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here a general proof of this fact. On one hand, it gives a further justification
to the early definition of topological amenability. On the other, it has prac-
tical applications since Borel amenability is easier to check than topological
amenability; this will be illustrated by some examples in the second section.
As in the case of groups, where it essentially amounts to the equivalence of
amenability and Reiter’s properties (P1) and (P ∗

1 ), the crux of the proof is a
classical application of the Hahn-Banach theorem to the closure of a convex
set. Our proof is modelled after the group case (see [3, Theorem G.3.1] for
a recent exposition). The definition of topological amenability given below
could be adapted to arbitrary topological groupoids. However, the proof of
the equivalence makes an essential use of the existence of a continuous Haar
system and of the locally compact topology ofG. Moreover it is not clear how
useful this notion and its Borel counterpart are for non locally compact groups.
Section 1 contains the definitions of topological amenability and Borel amen-
ability. The main result (Theorem 2.14) is the equivalence of these properties
for σ -compact locally compact groupoids endowed with a Haar system. The
earlier result [2, Theorem 3.3.7] about the equivalence of topological amenab-
ility and measurerwise amenability for groupoids with countable orbits is then
given as Corollary 2.16. Section 2 contains applications and examples which
take advantage of the flexibility provided by the equivalence of both notions.
In particular Proposition 3.1 gives the topological amenability of the groupoid
of a singly generated dynamical system. Theorem 3.5 shows the equivalence
of the topological amenability of a groupoid bundle and of each of its fibers.
Corollary 3.17 gives growth conditions which imply Borel (or topological)
amenability.

We use the terminology and the notation of [2]. The unit space of a groupoid
G is denoted by G(0). The elements of G are usually denoted by γ, γ ′, . . .;
those of G(0) are denoted by x, y, . . .. The structure of G is defined by the
inclusion map i : G(0) → G (we shall identify x and i(x)), the range and
source maps r, s : G → G(0), the inverse map γ �→ γ−1 fromG toG and the
multiplication map (γ, γ ′) �→ γ γ ′ from the set of composable pairs

G(2) = {(γ, γ ′) ∈ G×G : s(γ ) = r(γ ′)}

to G. Given A,B ⊂ G(0), we write GA = r−1(A), GB = s−1(B) and GA
B =

GA ∩GB . Similarly, given x, y ∈ G(0), we write Gx = r−1(x), Gy = s−1(y)

and G(x) = Gx
x . A Borel (resp. topological) groupoid is a groupoid endowed

with a compatible Borel (resp. topological) structure: G and G(0) are Borel
(resp. topological) spaces and the above maps are Borel (resp. continuous).
We need to be more precise in the definition of a topological groupoid: we
assume that G(0) ⊂ G and G(2) ⊂ G × G have the subspace topology. We
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also include in the definition of a topological groupoid the assumptions that
the unit space is Hausdorff and that the range and source maps are open but
we do not assume that G is Hausdorff. Foliation theory, where the notion of
amenability is preeminent, provides many examples of non-Hausdorff locally
compact groupoids which should be covered by our discussion. With respect
to amenability, non-Hausdorff groupoids do not present real difficulties but
make the exposition more technical. It may help on a first reading to assume
that groupoids are Hausdorff. The articles [15], [13], [23], [14] contain some
of the technical tools needed in the non-Hausdorff case. As in [14], we do
not include Hausdorffness in the definition of a compact space (our compact
spaces are called quasi-compact in Bourbaki’s terminology). By definition, a
not necessarily Hausdorff locally compact space is a topological space such
that every point admits a compact Hausdorff neighborhood. Equivalently, it is
a topological space which admits a cover by locally compact Hausdorff open
subsets. This second definition provides a convenient bridge from Hausdorff
locally compact spaces to non-Hausdorff locally compact spaces. Given a
locally compact Hausdorff open subsetU of a locally compact spaceX,Cc(U)
denotes the usual space of complex-valued continuous functions on U which
have compact support. When one extends by 0 outside U a function f ∈
Cc(U), the resulting extension f̃ is not necessarily continuous onX. Following
A. Connes, Cc(X) denotes the linear span of these functions. We keep the usual
definition of a Radon measure on X as a linear functional on Cc(X) which is
continuous for the inductive limit topology. As in the Hausdorff case, a Radon
measure ν defines a complex so-called Borel Radon measure, still denoted by
ν, on the Borel subsets contained in compact subsets (see [14]); moreover, a
linear functional on Cc(X) which is positive on positive functions is a Radon
measure. The definition of a σ -compact locally compact space X is the usual
one, namely there exists an increasing sequence (Kn) of compact subsets such
that X = ⋃

Kn. As in the Hausdorff case, second countable locally compact
spaces are σ -compact. We shall also use some results from [2, Chapters 1 and
2] which were given for Hausdorff spaces and Hausdorff groupoids and which
we will adapt to the non-Hausdorff case.

2. Borel versus topological amenability

Let us first give our definitions of amenability for groupoids. The definition
of Borel amenability given below is exactly the definition of 1-amenability of
[11, Definition 2.12] in the case of countable Borel equivalence relations.

Definition 2.1. A Borel groupoid G is said to be Borel amenable if there
exists a Borel approximate invariant mean, i.e. a sequence (mn)n∈N, where each
mn is a family (mxn)x∈G(0) of finite positive measuremxn of mass not greater than
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one on Gx = r−1(x) such that:

(i) for all n ∈ N,mn is Borel in the sense that for all bounded Borel functions
f on G, x �→ ∫

f dmxn is Borel;

(ii) ‖mxn‖1 → 1 for all x ∈ G(0);

(iii)
∥∥γms(γ )n −m

r(γ )
n

∥∥
1 → 0 for all γ ∈ G.

In the above definition as well as in the rest of the paper, ‖ν‖1 designates
the total variation (i.e. the mass of its absolute value |ν|) of a complex bounded
measure ν. If there exists a Borel family m = (mx)x∈G(0) of probability meas-
ures mx on Gx , one can replace condition (ii) by condition:

(ii’) for all n ∈ N and all x,mxn is a probability measure. It suffices to replace
mxn by mxn/‖mxn‖1 if ‖mxn‖1 is non zero and by mx otherwise.

Remark 2.2. This definition makes sense for arbitrary Borel groupoids and,
in particular, for non locally compact groups. However, in the case of a non
locally compact topological group G, it is strictly stronger than the classical
definition, which is the existence of a left invariant mean on the Banach space
UCB(G) of all left uniformly continuous bounded functions on G. I owe the
following example to V. Pestov (see [3, Remark G.3.7] for references). The
unitary groupU(H ) of an infinite-dimensional Hilbert space H , endowed with
the weak operator topology, is amenable in the classical sense. However it is
not Borel amenable in the above sense. Indeed Borel amenability is inherited
by virtual subgroups while U(H ) contains the free group F2 as a discrete
subgroup.

A Borel Haar system λ for a Borel groupoid G is a family (λx)x∈G(0) of
non-zero measures on the fibers Gx such that

• it is Borel in the sense that for all non-negative Borel functions f on G,
x �→ ∫

f dλx is Borel;

• it is left invariant in the sense that for all γ ∈ G, γ λs(γ ) = λr(γ );

• it is proper in the sense that G is the union of an increasing sequence
(An)n∈N of Borel subsets such that for all n ∈ N, the functions x �→ λx(An)

are bounded on G(0).

As it is well-known, locally compact groups have a Borel Haar system (in
that case, a single measure) and the converse is essentially true. Therefore, the
groupoids of a Borel action of a locally compact group on a Borel space have
a Borel Haar system. Another important class of Borel groupoids with Borel
Haar systems are the countable standard Borel groupoids, i.e. such that the
Borel structure is standard and the range map is countable to-one. Then the
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counting measures λx on the fibers Gx form a Borel Haar system. The count-
able standard Borel groupoids include the countable discrete groups and the
countable standard Borel equivalence relations. In presence of a Haar system,
it is known that the approximate invariant means of the above definition can
be chosen with a density with respect to the Haar system. We recall this fact
below.

Definition 2.3. Let G be a Borel groupoid equipped with a Borel Haar
system λ. A Borel approximate invariant density is a sequence (gn)n∈N of
non-negative Borel functions on G such that

(i)
∫
gn dλ

x ≤ 1, ∀x ∈ G(0), ∀n ∈ N;

(ii)
∫
gn dλ

x → 1 for all x ∈ G(0);

(iii)
∫ |gn(γ−1γ1)− gn(γ1)| dλr(γ )(γ1) → 0 for all γ ∈ G.

Thus one has the following proposition (essentially [2, Proposition 2.2.6]).

Proposition 2.4. A Borel groupoidG equipped with a Borel Haar system
λ is Borel amenable if and only if it has a Borel approximate invariant density.

Proof. Given a Borel approximate invariant density (gn), one defines the
measures mxn = gnλ

x . Since

‖mxn‖1 =
∫
gn dλ

x

and
‖γms(γ )n −mr(γ )n ‖1 =

∫
|gn(γ−1γ1)− gn(γ1)| dλr(γ )(γ1)

(mn) is a Borel approximate invariant mean. Conversely, let (mn) be a Borel
approximate invariant mean. According to [6, Lemma I.3], there exists a non-
negative Borel function f such that

∫
f dλx = 1 for all x ∈ G(0). Define the

non-negative Borel function gn on G by

gn(γ ) =
∫
f (γ ′−1

γ ) dmr(γ )n (γ ′).

Using Fubini’s theorem and changes of variable, one obtains∫
gn dλ

x = ‖mxn‖1

and ∫
|gn(γ−1γ1)− gn(γ1)| dλr(γ )(γ1) ≤ ‖γms(γ )n −m

r(γ )

i ‖1.

This shows that (gn) is a Borel approximate invariant density.
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With an abuse of language, we shall also call (gn) a Borel approximate
invariant mean.

Remark 2.5. Various definitions of amenability for countable Borel equi-
valence relations are given by Jackson, Kechris and Louveau in [11] as well as
relations between them. Our definition of Borel amenability is 1-amenability
of [11, Definition 2.12]. Replacing the sequence by a net, these authors define
a hierarchy of amenability properties according to the nature of the net and
the more general notion of Fréchet-amenability. A countable Borel equival-
ence relation E on a standard Borel space X is called hyperfinite if it is an
increasing union of a sequence of Borel sub-equivalence relations En which
are finite (meaning that the range map is finite-to-one). Following [11, Defini-
tion 2.7], it is called measure-amenable if there exists a universally measurable
invariant mean, i.e. a family (mx)x∈X, where for all x ∈ X, mx is a mean on
L∞(Ex, λx) = �∞([x]), mx = my if (x, y) ∈ E, such that for every stand-
ard Borel space Z and every bounded Borel function f on X × Z, the map
(x, z) �→ ∫

f (y, z) dmx(y) is universally measurable on X × Z. Finally, a
countable Borel equivalence relation (E,X) is called measurewise amenable
if for all measuresμ, the measured equivalence relation (E,X,μ) is amenable
in the sense of Zimmer. Here are some of the implications for countable stand-
ard Borel equivalence relations established in [11, Section 2]): hyperfiniteness
⇒ 1-amenability ⇒ Fréchet-amenability. Under the continuum hypothesis,
Fréchet-amenability ⇒ measure-amenability. It is also known [12] that under
the continuum hypothesis, measure-amenability is equivalent to measurewise
amenability.

Let us turn now to the topological setting.

Definition 2.6. A locally compact groupoid G is said to be topologic-
ally amenable if there exists a topological approximate invariant mean, i.e.
a sequence (mn)n∈N, where each mn is a family (mxn)x∈G(0) , mxn being a finite
positive measure of mass not greater than one on Gx = r−1(x) such that

(i) for all n ∈ N, mn is continuous in the sense that for all f ∈ Cc(G),
x �→ ∫

f dmxn is continuous;

(ii) ‖mxn‖1 → 1 uniformly on the compact subsets of G(0);

(iii) ‖γms(γ )n −m
r(γ )
n ‖1 → 0 uniformly on the compact subsets of G.

Let us compare this definition and [2, Definition 2.2.2]. There, one has a net
(mi)i∈I rather than a sequence (mn)n∈N and the measuresmxi are required to be
probability measures. IfG is σ -compact, the net can be replaced by a sequence.
In the other direction, as in the Borel case, one can normalize the families mn
of the above definition to obtain continuous families of probability measures
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m′
n satisfying the approximate invariance property (iii). Thus both definitions

give the same notion of topological amenability when G is σ -compact.
We recall that a (continuous) Haar system is a family (λx)x∈G(0) of Radon

measures on the fibersGx (which are locally compact and Hausdorff according
to [22]) satisfying the above continuity assumption and the left invariance
property γ λs(γ ) = λr(γ ) for all γ ∈ G. We have seen that in presence of
a Haar system, we can assume that the approximate invariant means have a
density with respect to the Haar system. Our stronger assumptions lead to the
following definition:

Definition 2.7. Let G be a locally compact groupoid equipped with a
continuous Haar system λ. A topological approximate invariant density is a
sequence (gn) in Cc(G)

+ such that

(i)
∫
gn(x) dλ

x ≤ 1, ∀x ∈ G(0), ∀i;
(ii)

∫
gn(x) dλ

x → 1 uniformly on every compact subset of G(0);

(iii)
∫ |gn(γ−1γ1)−gn(γ1)| dλr(γ )(γ1) tends to 0 uniformly on every compact
subset of G.

The same proof as in the Borel case gives:

Proposition 2.8 ([2, Proposition 2.2.13]). A locally compact groupoid G
equipped with a continuous Haar system λ is topologically amenable if and
only if it has a topological approximate invariant density.

Again, we shall also call (gn) as above a topological approximate invariant
mean. Proposition 2.2.13 of [2] gives the equivalence of the notion of topolo-
gical amenability used in the present article and the original definition which
appears after Definition 2.3.6, p. 92, of [17] (in the case whenG is σ -compact
since we consider sequences only).

Let G be a locally compact groupoid endowed with a continuous Haar
system λ. We define the Banach space E as the completion of the linear space
Cc(G) with respect to the norm

‖f ‖ = sup
x∈G(0)

∫
|f (γ )| dλx(γ ).

It is useful to view E as the space of continuous sections vanishing at infin-
ity of a Banach bundle over G(0). We denote by L1(G, λ) the Banach bundle
which has L1(Gx, λx) as fiber above x ∈ G(0) and Cc(G) as total space of
continuous sections. Given f ∈ Cc(G) and x ∈ G(0), we denote by f|x its re-
striction to Gx . The Banach bundle L1(G, λ) is upper semi-continuous in the
sense that the functions x �→ ‖f|x‖x = ∫ |f | dλx are upper semi-continuous
for all f ∈ Cc(G) (see [13, Lemma 1.4]). We denote by C0(G

(0), L1(G, λ))
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the space of continuous sections vanishing at infinity endowed with the norm
‖f ‖ = supx∈G(0) ‖f|x‖x . Since it is complete and has Cc(G) as a dense sub-
space, the Banach spaces E and C0(G

(0), L1(G, λ)) are identical. We need a
description of the dual Banach space E ∗. This description could be derived
from the appendix of [8], where the general case of an upper semi-continuous
Banach bundlep : E → X is studied. We prefer to give a direct proof adapting
to the non-Hausdorff case the results of Chapter 1 of [2]. As in Section 1.1 of
[2], we consider two locally compact (but not necessarily Hausdorff) spaces
X, Y , a surjective continuous map π : Y → X and a family α = (αx)x∈X
of positive Radon measures αx on π−1(x) of full support such that for every
f ∈ Cc(Y ), the function α(f ) : x �→ ∫

f dαx belongs to Cc(X). We call
α a full continuous π -system. The following proposition extends [2, Propos-
ition 1.1.5] to the case when the space Y is not necessarily Hausdorff. The
proof is by reduction to the Hausdorff case

Proposition 2.9. Let π : Y → X and α be as above. We assume that Y is
σ -compact, locally compact but not necessarily Hausdorff and thatX and the
fibers π−1(x) are Hausdorff. We define C0(X,L

1(Y, α)) as the completion of
Cc(Y ) for the norm ‖f ‖ = supX

∫ |f | dαx . Then the elements of its dual space
are complex Borel Radon measures on Y of the form ν = ϕ(μ ◦ α) where μ is
a finite positive measure on X and ϕ ∈ L∞(Y, μ ◦ α). The norm of ν is given
by

‖ν‖ = inf ‖μ‖1‖ϕ‖∞,

where the infimum is taken over all the representations ν = ϕ(μ ◦ α).
Proof. Recall from [13], [14] that if f belongs to Cc(Y ), |f | does not

necessarily belong to Cc(Y ). However |f | is a Borel function and the function
x �→ ∫ |f | dαx is upper semi-continuous ([13, Lemma 1.4]). Just as in [13],
we fix a cover of Y U = (Ui)i∈I by open Hausdorff subets Ui and form the
disjoint union YU = �i∈IUi , which is a locally compact Hausdorff space. The
identification map πU : YU → Y is a local homeomorphism. The system of
counting measures along the fibers ofπU is a full continuousπU-systemβ in the
above sense. The corresponding mapβ : Cc(YU) → Cc(Y ) satisfies ‖β(F )‖ ≤
supX

∫ |F | d(α ◦ β)x where (α ◦ β)x = ∫
βy dαx(y). Therefore, it extends to

a norm-decreasing map β : C0(X,L
1(YU, α ◦ β)) → C0(X,L

1(Y, α)). Let φ
be a continuous linear form on C0(X,L

1(Y, α)). Then φ ◦ β is a continuous
linear form on C0(X,L

1(YU, α ◦ β)). As in the Hausdorff case, the restriction
of φ to Cc(Y ) is a Radon measure; we denote by ν the associated Borel Radon
measure on Y . The Borel Radon measure defined by the restriction of φ ◦ β to
Cc(YU) is ν ◦ β. Since YU is Hausdorff, we can apply [2, Proposition 1.1.5] to
conclude that ν ◦ β is (α ◦ β)-bounded, which means the existence of a finite
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positive measure μ on X such that |ν ◦ β| ≤ μ ◦ α ◦ β and ‖μ‖1 ≤ ‖φ ◦ β‖.
Since |ν ◦β| = |ν| ◦β and every bounded Borel function f on Y with support
contained in a compact subset can be written as β(F ) where F is a bounded
Borel function on YU with support contained in a compact subset, we obtain
|ν| ≤ μ ◦ α. Moreover ‖μ‖1 ≤ ‖φ‖. Since Y is σ -compact, |ν| is σ -finite.
According to the Radon-Nikodym theorem, there exists ϕ ∈ L∞(Y, μ ◦ α)
such that ν = ϕ(μ ◦ α) and ‖ϕ‖∞ ≤ 1.

Note that in this identification of the dual, positivity is respected: as men-
tioned earlier, a linear functional φ on Cc(Y )which is positive in the sense that
φ(f ) ≥ 0 for all f ∈ Cc(Y )

+ defines a positive Borel Radon measure on Y .
It is well known that the convolution product of f, g ∈ Cc(G) defined by

(f ∗ g)(γ1) =
∫
f (γ )g(γ−1γ1) dλ

r(γ1)(γ )

turns Cc(G) into an algebra and that ‖f ∗g‖ ≤ ‖f ‖‖g‖. Therefore, this product
extends to E and turns it into a Banach algebra. Alternatively, by introducing
for γ ∈ G the isometry

L(γ ) : L1(Gs(γ ), λs(γ )) → L1(Gr(γ ), λr(γ ))

defined by L(γ )gs(γ )(γ1) = gs(γ )(γ
−1γ1), we may write the convolution

product as a left action of Cc(G) on C0(G
(0), L1(G, λ)):

(L(f )g)|x := (f ∗ g)|x =
∫
f (γ )[L(γ )g|s(γ )] dλx(γ )

For shorthand, we use the following notation: given f ∈ Cc(G), we define
for (γ, γ1) ∈ G(2)

r,r := {(γ, γ1) ∈ G×G : r(γ ) = r(γ1)}:
f ′(γ, γ1) = f (γ−1γ1)− f (γ1).

Alternatively, we may view f ′ as a section of the pull-back bundle r∗L1(G, λ):

f ′
|γ = L(γ )f|s(γ ) − f|r(γ ).

Given f ∈ Cc(G) andm ∈ E ∗∗, we define f ∗m ∈ E ∗∗ by bitransposition.

Definition 2.10 ([2, Definition 3.3.4]). Let (G, λ) be a locally compact
groupoid with a continuous Haar system. A topological invariant mean is an
element m of the bidual E ∗∗ of the Banach space E = C0(G

(0), L1(G, λ))

such that

(i) ‖m‖ ≤ 1 and ν ≥ 0 ⇒ m(ν) ≥ 0;



14 jean renault

(ii) for any probability measure μ on G(0), m(μ ◦ λ) = 1;

(iii) for any f ∈ Cc(G), we have f ∗m = (λ(f ) ◦ r)m.

We introduce the convex set

�+
1 = Cc(G)

+
1 =

{
f ∈ Cc(G) : f ≥ 0,∀x ∈ G(0)

∫
f dλx ≤ 1

}

and we recall the following result from [2].

Lemma 2.11 ([2, Lemma 1.2.7]). The image of �+
1 by the canonical em-

bedding of E into its bidual E ∗∗ is dense in the positive part of the unit ball of
E ∗∗ with respect to the weak*-topology.

We shall also use two basic results [5] about the strict topology of the
multiplier algebra Cb(X) of the commutative C∗-algebra C0(X) without a
unit. Although we only need the commutative case, we might as well give the
second result for an arbitrary C∗-algebra.

Lemma 2.12 ([5, Theorem 1]). LetX be a locally compact Hausdorff space.
The strict topology on the space Cb(X) of bounded continuous functions on
X agrees on norm-bounded subsets of Cb(X) with the the topology of uniform
convergence on compact sets.

Lemma 2.13 ([5, Theorem 2]). Let A be a C∗-algebra. The inclusion map
i of A into its multiplier algebra M(A) identifies the dual of M(A) equipped
with the strict topology and the dual of A.

Proof (due to C.Anantharaman). The restriction map i∗ : M(A)∗strict → A∗
is well defined because i is continuous and it is injective becauseA is dense in
M(A)strict. Its surjectivity is immediate from Cohen’s factorization theorem:
given ϕ ∈ A∗, there exist ψ ∈ A∗ and a ∈ A such that ϕ = ψa. Therefore,
we can define the extension ϕ̃ by ϕ̃(T ) = ψ(aT ) for T ∈ M(A).

We can now state and prove our main theorem.

Theorem 2.14. Let (G, λ) be a σ -compact locally compact groupoid with
Haar system. The following conditions are equivalent:

(i) there exists a Borel approximate invariant mean;

(ii) there exists a topological invariant mean;

(iii) there exists a topological approximate invariant mean.

Proof. The proof is constructed along the same lines as in the classical
case of a locally compact group (see [3, Theorem G.3.1]). The structure of the
proof is (i) ⇒ (ii) ⇒ (iii) ⇒ (i). The last implication is trivial.
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(i) ⇒ (ii). First note that any Borel function g on G such that
∫ |g| dλx is

bounded defines a bounded linear form mg on E ∗ according to the formula

〈mg, ϕ(μ ◦ λ)〉 =
∫
gϕ d(μ ◦ λ)

where μ is a bounded positive measure on X and ϕ ∈ L∞(G,μ ◦ α) as
in Proposition 2.9. Indeed, according to Fubini’s theorem, the integral is
well-defined and depends only on the measure ν = ϕ(μ ◦ λ). Moreover,
‖mg‖ = supx

∫ |g| dλx . Let (gn) be a Borel approximate invariant mean. We
have ‖mgn‖ ≤ 1. Let m be a cluster point of the sequence (mn = mgn) in E ∗∗
endowed with the weak* topology. We claim that m is a topological invariant
mean. Condition (i) of Definition 2.10 clearly holds. Let us check (ii). We have

m(μ ◦ λ) = lim
n

∫ (∫
gn dλ

x

)
dμ(x) = 1

by Lebesgue dominated convergence theorem. Let us check (iii). Let f ∈
Cc(G). For ν = ϕ(μ ◦ λ) in E ∗,

〈f ∗mn − (λ(f ) ◦ r)mn, ν〉
= 〈ν, f ∗ gn − (λ(f ) ◦ r)gn〉
=

∫
f (γ )

(∫
ϕ(γ1)g

′
n(γ, γ1) dλ

r(γ )(γ1)

)
d(μ ◦ λ)(γ )

The integrand goes to 0 pointwise and is majorized by the integrable function
2‖ϕ‖∞|f |. Therefore, this quantity goes to zero, which gives (iii).

(ii) ⇒ (iii). Let us denote by f �→ mf the canonical embedding of E into
E ∗∗. Let m be a topological invariant mean. Since, according to Lemma 2.11,
the image of �+

1 is weak* dense in the positive part of the unit ball of E ∗∗,
there exists a net (gi) in �+

1 such that (mi = mgi ) tends to m in the weak*
topology. By construction, the net (gi) satisfies:

(2.1) ∀x ∈ G(0), gi ≥ 0 and
∫
gi dλ

x ≤ 1

It also satisfies:

(2.2) λ(gi) → 1 in the topology σ(Cb(G
(0)), C0(G

(0))∗)

Indeed, letμ be a probability measureμ onG(0). Then
∫
λ(gi) dμ = mi(μ◦λ)

goes to m(μ ◦ λ) = 1.
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Finally, let us show that the net (gi) satisfies

(2.3) ∀f ∈ Cc(G), f ∗ gi − (λ(f ) ◦ r)gi → 0 in σ(E , E ∗)

Indeed, let ν ∈ E ∗. Then

〈f ∗ gi − (λ(f ) ◦ r)gi, ν〉 = 〈f ∗mi − (λ(f ) ◦ r)mi, ν〉
tends to 〈f ∗m− (λ(f ) ◦ r)m, ν〉 = 0.

We endow E0 := Cb(G
(0))with the strict topology and for each f ∈ Cc(G),

we define Ef := E and equip it with the norm topology. We equip the product
space

F = E0 ×
∏

f∈Cc(G)

Ef

with the product topology. Then F is a locally convex space. We also consider
the product space

Fw = E0,w ×
∏

f∈Cc(G)

Ef,w

where E0,w is equipped with the topology σ(Cb(G(0)), C0(G
(0))∗) and Ef,w :=

Ew is equipped with the weak topology. Consider the following convex subset
of F :

C = {(λ(g), (f ∗ g − (λ(f ) ◦ r)g)f∈Cc(G)), g ∈ �+
1 }.

Properties (2.1), (2.2) and (2.3) say that the element (1, (0)f∈Cc(G)) belongs
to the closure of C in Fw. According to Lemma 2.13, the locally convex
spaces E0 and E0,w have the same continuous linear functionals. This also
holds classically for the spaces E and Ew. This remains true for the product
spaces F and Fw. Therefore, according to a corollary of the Hahn-Banach
theorem, the closure of the convex set C is the same in both spaces. This
implies the existence of a net, which we still call (gi), in �+

1 such that λ(gi)
tends to 1 in the strict topology of Cb(G(0)) and such that for every f ∈
Cc(G), supx

∫ |f ∗ gi − λ(f ) ◦ r)gi | dλx goes to 0. Since, as we have seen
in Lemma 2.12, the strict topology coincides with the topology of uniform
convergence on compact sets, the first condition may be written as:

(2.4)
∫
gi dλ

x → 1 uniformly on compact subsets of G(0)

We may write the second condition as

(2.5) ∀f ∈ Cc(G),

∥∥∥∥
∫
f (γ1)g

′
i |γ1
dλx(γ1)

∥∥∥∥
x

→ 0 uniformly on G(0)



topological amenability 17

where ‖.‖x is the norm of L1(Gx, λx). Let us show that (2.5) implies an ap-
parently stronger condition:

(2.6) ∀F ∈ Cc(G
(2)
r,r ),∥∥∥∥

∫
F(γ, γ1)g

′
i |γ1
dλr(γ )(γ1)

∥∥∥∥
r(γ )

→ 0 uniformly on G

This is clear when F is of the form f1 ⊗ f2, where f1, f2 ∈ Cc(G). Let
F ∈ Cc(U1 ∗U2), whereU1, U2 are relatively compact open Hausdorff subsets
of G and U1 ∗ U2 = (U1 × U2) ∩G(2)

r,r . Given ε > 0, according to the Stone-
Weierstrass theorem, there exists a function F ∈ Cc(U1 ∗ U2) of the form∑n

k=1 f1,k ⊗ f2,k , where fi,k ∈ Cc(Ui) such that, for all (γ, γ1) ∈ U1 ∗ U2,
|F(γ, γ1)− F(γ, γ1)| ≤ ε. We have for all γ ∈ U1:
∥∥∥∥
∫
(F (γ, γ1)− F(γ, γ1))g

′
i |γ1
dλr(γ )(γ1)

∥∥∥∥
r(γ )

≤ ε

∫
U2

‖g′
i |γ1

‖r(γ ) dλr(γ )(γ1)

≤ 2ελr(γ )(U2)

≤ 2Mε

where M = supx∈r(U1)
λx(U2) is finite because of the continuity of the Haar

system and the relative compactness of U2 and r(U1). This inequality holds
for all γ ∈ G when we replace F (resp. F ) by its extension F̃ (resp. F̃ ) by
0 outside U1 ∗ U2. Combining this inequality with the convergence result for
F̃ , we obtain the desired convergence for F̃ . Since an arbitrary element of
Cc(G

(2)
r,r ) is a linear combination of such functions F̃ , we obtain (2.6).

Next, we would like to show the following property:

(2.7) ∀f ∈ Cc(G),

∥∥∥∥
∫
f (γ−1γ1)g

′
i |γ1
dλr(γ )(γ1)

∥∥∥∥
r(γ )

→ 0

uniformly on compact subsets of G. This cannot be derived directly from
(2.6) because the function sending (γ, γ1) in G(2)

r,r to f (γ−1γ1) does not have
compact support. However, one can proceed as follows. Let K be a compact
subset ofG. Since every element ofG has an open neighborhood contained in a
compact set having a Hausdorff neighborhood,K is contained in a finite union
of compact subsets K1,K2, . . . , Kl having Hausdorff open neighborhoods
U1, U2, . . . , Ul . There exists for each j = 1, . . . , l a function hj ∈ Cc(Uj )

such that 0 ≤ hj ≤ 1 and hj (γ ) = 1 for all γ ∈ Kj . Then h = ∑l
j=1 h̃j

belongs to Cc(G) and we can define F onG(2)
r,r by F(γ, γ1) = h(γ )f (γ−1γ1).

It belongs to Cc(G
(2)
r,r ) because h⊗ f does and the map (γ, γ1) �→ (γ, γ−1γ1)
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is a homeomorphism of G(2)
r,r onto itself. For γ ∈ ⋃l

j=1Kj , we have

∥∥∥∥
∫
f (γ−1γ1)g

′
i |γ1
dλr(γ )(γ1)

∥∥∥∥
r(γ )

≤
∥∥∥∥
∫
F(γ, γ1)g

′
i |γ1
dλr(γ )(γ1)

∥∥∥∥
r(γ )

and by (2.6), the left hand side tends to 0 uniformly. This gives (2.7).
Suppose that we are given a compact subset L ofG(0), a compact subsetK

of G and ε > 0. We are going to construct g ∈ �+
1 such that

∀x ∈ L, 1 − ‖g|x‖x ≤ ε(2.8)

∀γ ∈ K, ‖g′
|γ ‖r(γ ) ≤ ε(2.9)

We choose f ∈ Cc(G)
+ such that

∫
f dλx = 1 for all x in the compact subset

L′ = L ∪ s(K) ∪ r(K).
According to (2.4), there exists i0 such that for i ≥ i0,

‖gi |x‖x ≥ 1 − ε, ∀x ∈ s(supp f ).

According to (2.7), there exists i ≥ i0 such that for all γ ∈ K ,

max

(∥∥∥∥
∫
f (γ−1γ1)g

′
i |γ1
dλr(γ )(γ1)

∥∥∥∥
r(γ )

,

∥∥∥∥
∫
f (γ1)g

′
i |γ1
dλr(γ )(γ1)

∥∥∥∥
r(γ )

)

≤ ε/2

Pick such an i and consider the function g = f ∗ gi . Then g ∈ �+
1 and for

all x ∈ L,

‖g|x‖x =
∫
g(γ1) dλ

x(γ1) =
∫∫

f (γ )gi(γ
−1γ1) dλ

r(γ1)(γ ) dλx(γ1)

=
∫
f (γ )

∫
gi(γ

−1γ1) dλ
r(γ )(γ1) dλ

x(γ )

=
∫
f (γ )

∫
gi(γ1) dλ

s(γ )(γ1) dλ
x(γ )

≥ (1 − ε)

∫
f (γ ) dλx(γ ) = 1 − ε

Thus, (2.8) is realized. On the other hand, we have the following equality: for
all γ ∈ GL′

L′ ,

g′
|γ =

∫
f (γ−1γ1)gi

′
|γ1
dλr(γ )(γ1)−

∫
f (γ1)gi

′
|γ1
dλr(γ )(γ1).
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Thus, if γ ∈ K , we have ‖g′
|γ ‖r(γ ) ≤ ε. Therefore (2.9) is also realized.

Since G (resp. G(0)) is locally compact and σ -compact, there exists an
increasing sequence (Kn)n∈N (resp. (Ln)n∈N) of compact subsets of G (resp.
G(0)) such that G = ⋃

n∈NKn (resp. G(0) = ⋃
n∈N Ln). We also choose a

sequence (εn)n∈N decreasing to 0. For every n ∈ N, there exists gn in Cc(G)
+
1

such that 1 − ‖gn|x‖x ≤ εn for all x ∈ Ln and ‖gn′
|γ ‖r(γ ) ≤ εn for all γ ∈ Kn.

Then (gn)n∈N is a topological approximate invariant mean.

The above theorem can be rephrased as:

Corollary 2.15. Let (G, λ) be a σ -compact locally compact groupoid
with Haar system. Then G is topologically amenable if and only if it is Borel
amenable.

It is also possible to deduce [2, Theorem 3.3.7] from Theorem 2.14 and
some auxiliary results from [2]. Let us recall ([2, Definition 3.3.1]) that a Borel
groupoid with Borel Haar system (G, λ) is said to be measurewise amenable if
the measured groupoid (G, λ, μ) is amenable for every quasi-invariant measure
μ.

Corollary 2.16 ([2, Theorem 3.3.7]). Let (G, λ) be a σ -compact locally
compact groupoid with Haar system and countable orbits. Then G is topolo-
gically amenable if and only if it is measurewise amenable.

Proof. Let us assume that G is measurewise amenable. It is shown in [2,
Proposition 3.3.5] that this implies the existence of m ∈ E ∗∗ satisfying the
properties (i), (ii) of the Definition 2.10 of a topological invariant mean and
where the property (iii) is partially fullfilled: the equality f ∗m = (λ(f )◦ r)m
holds only on the elements of E ∗ of the form ϕ(μ ◦ λ) where μ is a quasi-
invariant probability measure. However, since the orbits are countable, every
probability measure μ on G(0) is absolutely continuous with respect to the
quasi-invariant measure [μ], pseudo-image of μ ◦ λ by the source map s.
Therefore, the equality holds for an arbitrary probability measure μ. In other
words, m is a topological invariant mean. According to Theorem 2.14, G is
topologically amenable.

Remark 2.17. Let us apply this last result to the countable Borel equi-
valence relations studied in [11]. It shows that the notions of 1-amenability,
Fréchet amenability and measurewise amenability all agree on a countable
Borel equivalence relation which admits a compatible σ -compact locally com-
pact topology which turns it into an étale groupoid. This is the case in particular
if the Borel equivalence relation comes from a free action of a countable group
by homeomorphisms on a σ -compact locally compact Hausdorff space.
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3. Examples and applications

3.1. Applications

Applications of amenability to operator algebras are well-known. The main
results are that the full and the reduced C∗-algebras of a locally compact
groupoid G endowed with a Haar system, denoted respectively C∗(G) and
C∗
r (G), coincide when the groupoid is amenable and that C∗(G) is nuclear.

In [2, Chapter 4], these results are established for second countable Hausdorff
locally compact groupoids and use only Borel amenability (in fact, the weaker
condition of measurewise amenability suffices); they rely on a theorem of dis-
integration of representations. They are valid along with their proofs for non-
Hausdorff groupoids as well. On the other hand, topological amenability ofG
provides an alternative proof of these results, at least in the Hausdorff case. In-
deed it can then be expressed as the existence of a sequence (hn) of continuous
positive type functions with compact support on G, with hn|G(0) ≤ 1, which
converges to 1 uniformly on compact subsets (see [2, Proposition 2.2.13]).
Since pointwise multiplication by a bounded continuous positive type func-
tion h defines a completely positive linear map mh on C∗(G) (resp. C∗

r (G))
to itself (see [16, Theorem 4.1]), one gets a sequence (mhn) of completely
positive linear maps completely bounded by 1 converging to the identity in
the point-norm topology. this provides an approximation property which im-
plies both the equality of the full and the reduced norms and the nuclearity of
C∗(G) (see [1, Théorème 4.9] and [4, Theorem 5.6.18]). As shown by J.-L. Tu
in [22], topological amenability as expressed in Definition 2.7 gives directly
the fact that an amenable locally compact σ -compact groupoidG with a Haar
system acts properly on a continuous field of affine euclidean spaces. This has
two important consequences: G satisfies the Baum-Connes conjecture [22,
Théorème 9.3] and C∗(G) satisfies the Universal Coefficient Theorem [22,
Proposition 10.7].

3.2. Orbit equivalence

One of the main properties of Borel (resp. topological) amenability is its in-
variance under Borel (resp. topological) equivalence of groupoids. The defin-
ition of Borel equivalence is given in [2, Definition A.1.11]. Invariance under
topological equivalence is established in [2, Theorem 2.2.17]. The proof is
easily adapted to the Borel case. In their work on Cantor minimal systems,
Giordano, Putnam and Skau have introduced a notion of topological orbit
equivalence which we recall. Let us denote by (X,R) an equivalence relation
R on a set X; we view an equivalence relation as a groupoid R ⊂ X × X.
We assume that X is a second countable locally compact space, that R is a
Borel subset ofX×X and that equivalence classes are countable. Equivalence
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relations (X,R) and (X,R) are said to be topologically orbit equivalent if
there exists a homeomorphism ϕ(0) : X → X such that ϕ(R) = R, where
ϕ(x, y) = (ϕ(0)(x), ϕ(0)(y)). Since ϕ is an isomorphism of Borel groupoids,
topological orbit equivalence preserves Borel amenability. This remains true
for Kakutani equivalence as defined in [9]. As shown in [10], an equivalence
relation (X,R)may have several topologies which turn R into an étale locally
compact groupoid. However, the underlying Borel structure is always the Borel
structure inherited from X × X. Therefore, if one of these étale groupoids is
topologically amenable, then according to Theorem 2.14, so are the others. In
particular, an affable equivalence relation (this means that it is topologically or-
bit equivalent to an AF equivalence relation) is necessarily amenable. Since for
étale Hausdorff locally compact groupoids, topological amenability is equival-
ent to the nuclearity of the (reduced) C∗-algebra ([4, Theorem 5.6.18]), either
all the associated C∗-algebras are nuclear or none is nuclear.

3.3. Singly generated dynamical systems

We define a singly generated dynamical system (SGDS) as in [18, Defini-
tion 2.3]. It is a pair (X, T ) where X is a topological space and T is a local
homeomorphism from an open subset dom(T ) ofX onto an open subset ran(T )
ofX. They are quite common dynamical systems, which appear either directly
(e.g. one-sided subshifts of finite type) or as canonical extensions (see [21],
[7]). The case where both the domain and the range of T are strictly included
inX is found in graph and higher-rank graphs algebras (see for example [19]).
The semi-direct product groupoid of a SGDS (X, T ) is defined ([18, Defini-
tion 2.4]) as:

G(X, T ) = {(x,m− n, y)

: m, n ∈ N, x ∈ dom(T m), y ∈ dom(T n), T mx = T ny}

with the groupoid structure induced by the product structure of the trivial
groupoidX×X and of the group Z and the topology defined by the basic open
sets

U(U ;m, n;V ) = {(x,m− n, y) : (x, y) ∈ U × V, T m(x) = T n(y)}

where U (resp. V ) is an open subset of the domain of T m (resp. T n) on which
T m (resp. T n) is injective.

Proposition 3.1 (cf. [18, Proposition 2.9.(i)]). Let (X, T ) be a SGDS where
X is locally compact, second countable and Hausdorff. Then its semi-direct
groupoid G(X, T ) is topologically amenable.
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Proof. As observed by D.Williams, the proof given in [18, Proposition 2.4]
is not valid when ran(T ) is strictly contained inX. Using the same idea and tak-
ing advantage of our main theorem, we will establish topological amenability
in the general case. There are two groupoids associated with the fundamental
cocycle c : G(X, T ) → Z, given by c(x, k, y) = k. Namely, its kernel c−1(0),
which is a closed subgroupoid of G = G(X, T ) and the skew-product G(c).
We use here the convention of [17, Definition I.1.6]). Thus G(c) is defined as
G × Z with unit space is X × Z. The range and source maps are respectively
given by r(γ, a) = (r(γ ), a) and s(γ, a) = (s(γ ), a + c(γ ). Two elements
(γ, a) and (γ ′, b) ofG(c) are composable if and only if γ and γ ′ are compos-
able and b = a + c(γ ); then their product is (γ, a)(γ ′, b) = (γ γ ′, a). Let us
introduce the subspace Y = {(s(γ ), c(γ )) : γ ∈ G} of the unit space X × Z
of G(c). It is open, because for all k ∈ Z, c−1(k) is open and the source map
is open, and invariant under G(c). Let H be the reduction of G(c) to Y . Then
H and c−1(0) are topologically equivalent. The equivalence is implemented
byG, endowed with the natural left action of c−1(0) and the right action ofH
given by z(γ, c(z)) = zγ . The kernel c−1(0) is Borel amenable because it is an
increasing union of proper Borel groupoids. According to [2, Theorem 2.2.17]
(or rather, a Borel version of it),H is also Borel amenable. Then we proceed as
in [17, Proposition II.3.8] to show thatG(X, T ) is Borel amenable. The spaceY
is endowed with the left action ofG defined by the first projection p : Y → X

as anchor map and the formula γ (s(γ ), a+ c(γ )) = (r(γ ), a). TheG-map p
is Borel amenable in the sense of [2, Definition 2.2.2], or rather a Borel version
of this definition. This means the existence of a sequence (μj )j∈N, where each
μj is a family (μxj )x∈X of probability measures μxj on c(Gx) such that for all
bounded Borel functions f on Y , x �→ ∫

f (x, a) dμxj (a) is Borel and for all

γ ∈ G, ‖γμs(γ )j − μ
r(γ )

j ‖1 tends to 0. Explicitly, we can take

μxj = 1

|c(Gx) ∩ {−j, . . . , j}|
∑

a∈c(Gx)∩{−j,...,j}
δa

because the subsets c(Gx) are either Z, semi-infinite intervals {a(x), . . .} or
finite intervals {a(x), . . . , b(x)}. The Borel amenability of H is exactly the
Borel amenability of the G-map r : H → Y , where the action of G on H is
given by γ (γ ′, a+c(γ )) = (γ γ ′, a). A Borel version of [2, Proposition 2.2.4]
gives the Borel amenability of the G-map p ◦ r : H → X. Since H is a
principal G-space, a Borel version of [2, Corollary 2.2.10] gives the Borel
amenability of G. One can also prove the result directly: let (m(x,a)i )(x,a)∈Y be
a Borel approximate invariant mean forH . By identifyingH(x,a) andGx , one
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can define the measures

mxij =
∫
m
(x,a)
i dμxj (a).

It is routine to check that (mij ) is a Borel approximate invariant mean for
G(X, T ).

Remark 3.2. As pointed out in [19], there is an alternative proof of this
result: it is an immediate consequence of [20, Proposition 9.3]. The above
proof is more elementary in the sense that it does not use C∗-algebras.

3.4. Groupoid bundles

Definition 3.3. A locally compact groupoid G over G(0) = X is a groupoid
bundle over a locally compact Hausdorff space T if there exists a continuous
open surjection p : X → T which is invariant in the sense that p ◦ r = p ◦ s.

Then for all t ∈ T , X(t) = p−1(t) is a closed invariant subset. We define
here the groupoid G(t) as the reduction G|X(t).

Let (G, λ) be a σ -compact locally compact groupoid with Haar system. We
recall that G is topologically amenable if and only if given a compact subset
L of G(0), a compact subset K of G and ε > 0, there exists g ∈ Cc(G)

+ such
that

(i) ‖g‖x ≤ 1 for all x ∈ G(0);

(ii) ‖g‖x ≥ 1 − ε for all x ∈ L;

(iii) ‖g′
|γ ‖r(γ ) ≤ ε for all γ ∈ K .

We shall say that a function g is (L,K, ε)-invariant if it satisfies (i), (ii) and
(iii).

The proof of the theorem below relies essentially on the Tietze extension
theorem. The version of this theorem for non-Hausdorff locally compact spaces
which we need can be found in [23]. It is deduced from the classical Hausdorff
case by using the same technique as in Proposition 2.9.

Lemma 3.4 ([23, Lemma 4.5]). LetZ be a closed subset of a non-Hausdorff
locally space Y . Given g ∈ Cc(Z)

+, there exists f ∈ Cc(Y )
+ such that g =

f|Z .

Theorem 3.5. Let G be a σ -compact locally compact groupoid with con-
tinuous Haar system. Assume that p : G → T is a groupoid bundle over a
locally compact Hausdorff space T . Then the following conditions are equi-
valent:

(i) G is topologically amenable;



24 jean renault

(ii) for all t ∈ T , G(t) is topologically amenable.

Proof. (i) ⇒ (ii). Let (mn) be a topological approximate invariant mean
forG. Fix t ∈ T . Then (mxn)x∈X(t) is a topological approximate invariant mean
for G(t).

(ii) ⇒ (i). Let L compact subset of X = G(0), K compact subset of G
and ε > 0 be given. Fix t ∈ p(L). Since G(t) is amenable, there exists
g|t ∈ Cc(G(t))

+ satisfying the (L∩X(t),K∩G(t), ε/2)-condition. According
to Lemma 3.4, there exists g ∈ Cc(G)

+ which extends g|t . Because of the
continuity of x �→ ∫

g dλx , we may scale g so that
∫
g dλx ≤ 1 for all x ∈ X

and
∫
g dλx ≥ 1 − ε for all x ∈ L. Since the function γ �→ ‖g′

|γ ‖r(γ ) is
upper semi-continuous (as we have seen earlier, the bundle E = L1(G, λ) is
upper semi-continuous and so is the pull-back bundle r∗E above G), the set
U = {γ ∈ G : ‖g|γ ‖r(γ ) < ε} is open. Since K \U is compact, p ◦ r(K \U)
is also compact hence closed in T . Moreover, this closed set does not contain
t . Its complement is an open neighborhood Vt of t such that ‖g|γ ‖r(γ ) <
ε for all γ ∈ K ∩ (p ◦ r)−1(Vt ). In summary, for every t ∈ p(L), there
exists an open neighborhood Vt of t and a function gt ∈ Cc(G)

+ which is
(L,K ∩ (p ◦ r)−1(Vt ), ε)-invariant.

By compactness of p(L), we obtain a finite open cover (Vi)i=1,...,n and
for each i = 1, . . . , n an (L,K ∩ (p ◦ r)−1(Vi), ε)-invariant function gi ∈
Cc(G)

+. Let (h1, . . . , hn) be a partition of unity subordinate to the cover.
Define g = ∑n

i=1(hi ◦p ◦ r)gi . Then g belongs to Cc(G)+. It satisfies (i) and
(ii). Since g′

|γ = ∑n
i=1(hi ◦p ◦ r)(γ )g′

i|γ , we have ‖g′
|γ ‖r(γ ) ≤ ∑n

i=1(hi ◦p ◦
r)(γ )‖g′

i|γ ‖|r(γ ). If γ ∈ K , we have ‖g′
i|γ ‖|r(γ ) ≤ ε for all i such that p ◦ r(γ )

belongs to Vi , hence ‖g′
|γ ‖r(γ ) ≤ ε. Therefore, g is (L,K, ε)-invariant.

Remark 3.6. It would be interesting to have a Borel version of this theorem:
a decomposition provided by a Borel invariant map p : G(0) → T is closer to
the usual ergodic decomposition for measured groupoids than our topological
version.

3.5. Følner sets and growth conditions

Since [2, Section 3.2.c] deals with measured groupoids rather than Borel or
topological groupoids, the following complements may be useful.

Definition 3.7. Let (G, λ) be a Borel groupoid endowed with a Borel
Haar system. A Følner sequence is a sequence (Fn) of Borel subsets ofG such
that

(i) for all n and for all x ∈ G(0), 0 < λx(Fn) < ∞;

(ii) for all γ ∈ G, lim
n

λr(γ )(γ Fn�Fn)

λs(γ )(Fn)
= 0.
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Remark 3.8. Just as in the case of groups, condition (ii) can be replaced

by (ii bis) for all γ ∈ G, lim
n

λr(γ )(γ Fn ∩ Fn)
λs(γ )(Fn)

= 1.

Note that both conditions (ii) and (ii bis) imply that lim
n

λr(γ )(Fn)

λs(γ )(Fn)
= 1 for

all γ ∈ G.

Lemma 3.9. Let (G, λ) be a Borel groupoid endowed with a Borel Haar
system. Let F be a Borel subset of G such that for all x ∈ G(0), 0 < λx(F ) <

∞. Then the normalized characteristic function gF defined by gF (γ ) = 1F (γ )
λr(γ )(F )

satisfies for all γ ∈ G the inequality

∫
|gF (γ−1γ1)− gF (γ1)| dλr(γ )(γ1) ≤ 2

λr(γ )(γ F�F)

λs(γ )(F )
.

Proof. The proof is an easy computation:

g(γ−1γ1)− g(γ1) = λr(γ )(F )1F (γ−1γ1)− λs(γ )(F )1F (γ1)

λr(γ )(F )λs(γ )(F )
.

Adding and subtracting λr(γ )(F )1F (γ1), one gets:

|g(γ−1γ1)− g(γ1)| ≤ λr(γ )(F )1γF�F (γ1)+ |λr(γ )(F )− λs(γ )(F )|1F (γ1)

λr(γ )(F )λs(γ )(F )
.

Moreover, one has

|λr(γ )(F )− λs(γ )(F )| =
∣∣∣∣
∫
(1F − 1γF ) dλr(γ )

∣∣∣∣ ≤ λr(γ )(γ F�F).

Thus, by integrating over γ1, one obtains the inequality

∫
|g(γ−1γ1)− g(γ1)| dλr(γ )(γ1) ≤ 2

λr(γ )(γ F�F)

λs(γ )(F )
.

Proposition 3.10. Let (G, λ) be a Borel groupoid endowed with a Borel
Haar system. If there exists a Følner sequence, then G is Borel amenable.

Proof. We check that the sequence (gn) of normalized characteristic func-
tions of the Fn’s satisfies Definition 2.3. It is clear that gn is a non-negative
Borel function and that for all x ∈ G(0),

∫
gn dλ

x = 1. The approximate
invariance is given by the above lemma.
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Corollary 3.11. Let (G, λ) be a Borel groupoid endowed with a Borel
Haar system. Let (En)n∈N be an increasing and exhausting sequence of Borel
subsets of G such that

(i) for all n ∈ N and for all x ∈ G(0), 0 < λx(En) < ∞;

(ii) for all m, n ∈ N, EmEn ⊂ Em+n;

(iii) for all x ∈ G(0),
λx(En+1)

λx(En)
tends to 1.

Then (En) is a Følner sequence; therefore G is Borel amenable.

Proof. Assuming that γ ∈ Ek and k ≤ n, we have:

γEn−k ⊂ γEn ∩ En.
Using the relation λs(γ )(En−k) = λr(γ )(γEn−k), we deduce the inequality

(3.1)
λs(γ )(En−k)
λs(γ )(En)

≤ λr(γ )(γEn ∩ En)
λs(γ )(En)

≤ 1

Our assumption (iii) implies that the left handside goes to 1 when n goes to
infinity. Therefore, (En) satisfies condition (ii bis) of Remark 3.8.

In our next result, we replace the d’Alembert ratio
λx(En+1)

λx(En)
by the Cauchy

exponent λx(En)
1/n. However, we shall need stronger hypotheses to obtain

amenability. We first adapt to the Borel setting our definition of (L,K, ε)-
invariance.

Definition 3.12. Let (G, λ) be a Borel groupoid endowed with a Borel
Haar system. Given a Borel subsetL ofG(0), a Borel subsetK ofG and ε > 0,
we say that a non-negative Borel function g on G is (L,K, ε)-invariant if

(i)
∫
g dλx ≤ 1 for all x ∈ G(0);

(ii)
∫
g dλx = 1 for all x ∈ L;

(iii)
∫ |g(γ−1γ1)− g(γ1)| dλr(γ )(γ1) ≤ ε for all γ ∈ K .

Lemma 3.13. Let (G, λ) be a Borel groupoid endowed with a Borel Haar
system. Let L be a Borel subset of G(0), K a Borel subset of G and ε > 0. Let
(Li)i∈I be a locally finite Borel cover of L. Suppose that for each i ∈ I , there
exists a non-negative Borel function gi on G which is (Li,KLi , ε)-invariant.
Then there exists a non-negative Borel function g on G which is (L,KL, ε)-
invariant.

Proof. Let (hi)i∈I be a Borel partition of unity subordinate to (Li)i∈I : hi is
Borel, 0 ≤ hi ≤ 1, hi(x) = 0 if x /∈ Li and for all x ∈ G(0),

∑
i∈I hi(x) = 1.
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Then g = ∑
i∈I (hi ◦ r)gi is a well-defined, non-negative, Borel function on

G. For all x ∈ G(0),
∫
g dλx = ∑

I hi(x)
∫
gi dλ

x ≤ 1. For all x ∈ L,∫
g dλx = ∑

I hi(x)
∫
gi dλ

x = 1. If γ ∈ KL, then∫
|g(γ−1γ1)− g(γ1)| dλr(γ )

≤
∑
I

hi(r(γ ))

∫
|gi(γ−1γ1)− gi(γ1)| dλr(γ )(γ1) ≤ ε.

Lemma 3.14. Let (G, λ) be a Borel groupoid endowed with a Borel Haar
system. If there exist (Ln) increasing and exhausting sequence of Borel sub-
sets of G(0), (Kn) increasing and exhausting sequence of Borel subsets of G
and (εn) a sequence of positive numbers decreasing to 0 and for each n a
(Ln,K

Ln
n , εn)-invariant non-negative Borel function gn on G. Then (gn) is a

Borel approximate invariant density and G is Borel amenable.

Proof. It is clear that the sequence (gn) satisfies the conditions of Defini-
tion 2.3.

Corollary 3.15. Let (G, λ) be a Borel groupoid endowed with a Borel
Haar system. Suppose that there exists an increasing and exhausting sequence
(En)n∈N of Borel subsets of G such that

(i) for all n ∈ N and for all x ∈ G(0), 1 ≤ λx(En) < ∞;

(ii) for all m, n ∈ N, EmEn ⊂ Em+n;
(iii) λx(En)

1/n tends to 1 uniformly on G(0) when n goes to infinity;

(iv)
λr(γ )(En)

λs(γ )(En)
tends to 1 uniformly on G when n goes to infinity.

Then G is Borel amenable.

Proof. Let k ∈ N∗ and ε > 0 be given. Choose ρ > 1 such that 1 + ρ −
2/ρ4 ≤ ε/2. Because of (iv), there exists N1 ≥ k such that for j ≥ N1 and
for all γ ∈ G,

(3.2) (1/ρ)λs(γ )(Ekj ) ≤ λr(γ )(Ekj ) ≤ ρλs(γ )(Ekj )

Because of (iii), there exists N ≥ 2N1 such that for all x ∈ G(0),

(λx(EkN))
1/N ≤ ρ

We write an(x) = λx(Ekn),An(x) = log an(x) andBn(x) = An(x)−An−1(x).
Then we have

∑N
j=1 Bj(x) = AN(x)− A0(x) ≤ AN(x). Therefore

1

N −N1

N∑
j=N1+1

Bj(x) ≤ 2

N

N∑
j=1

Bj(x) ≤ 2 log ρ
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This implies that for eachx ∈ G(0), there exists at least one j ∈ {N1+1, . . . , N}
such that Bj(x) ≤ 2 log ρ. For each j ∈ {N1 + 1, . . . , N}, we define Lj as the
set of x’s such that Bj(x) ≤ 2 log ρ. Then (Lj )j=N1+1,...,N is a Borel cover of
G(0) and

(3.3) ∀x ∈ Lj , λx(Ekj )

λx(Ek(j−1))
≤ ρ2

Therefore, for j ∈ {N1 + 1, . . . , N} and γ ∈ E
Lj
k , we obtain by using the

inequalities (3.1), (3.2) and (3.3):

λr(γ )(γEkj�Ekj )

λs(γ )(Ekj )

= 1 + λr(γ )(Ekj )

λs(γ )(Ekj )
− 2

λr(γ )(γEkj ∩ Ekj )
λs(γ )(Ekj )

≤ 1 + λr(γ )(Ekj )

λs(γ )(Ekj )
− 2

λs(γ )(Ek(j−1))

λs(γ )(Ekj )

≤ 1 + λr(γ )(Ekj )

λs(γ )(Ekj )
− 2

λs(γ )(Ek(j−1))

λr(γ )(Ek(j−1))

λr(γ )(Ek(j−1))

λr(γ )(Ekj )

λr(γ )(Ekj )

λs(γ )(Ekj )

≤ 1 + ρ − 2(1/ρ)(1/ρ2)(1/ρ)

≤ ε/2

Applying Lemma 3.9 with F = Ekj , we obtain a non-negative Borel func-

tion gj which is (Lj , E
Lj
k , ε)-invariant. Applying Lemma 3.13, we obtain

a non-negative Borel function g which is (G(0), Ek, ε)-invariant. Applying
Lemma 3.14 with Ln = G(0), Kn = En and a sequence (εn) of real positive
numbers decreasing to 0, we obtain that G is Borel amenable.

Definition 3.16. Let G be a Borel groupoid. A length function is a Borel
map l : G → R+ such that l(G(0)) = {0} and

(a) l(γ−1) = l(γ ) for all γ ∈ G;

(b) l(γ1γ2) ≤ l(γ1)+ l(γ2) when s(γ1) = r(γ2).

If G is endowed with a Haar system λ, we say that the length function l is
proper if for all 1 ≤ c < ∞ and all x ∈ G(0), 0 < λx(B(c)) < ∞, where
B(c) is the ball {γ ∈ G : l(γ ) ≤ c}.

Corollary 3.17. Let (G, λ) be a Borel groupoid with a Borel Haar system
and let l : G → R+ be a proper length function. Let B(n) denote the ball of
radius n. Assume one of the following conditions
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(i) as n goes to ∞,
λx(B(n+ 1))

λx(B(n))
goes to 1 pointwise ;

(ii) asn goes to ∞, λx(B(n))1/n goes to 1 uniformly onG(0) and
λr(γ )(B(n))

λs(γ )(B(n))
goes to 1 uniformly on G.

Then G is Borel amenable.
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