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SOME REMARKS ON CLOSE-TO-CONVEX AND
STRONGLY CONVEX FUNCTIONS

MAMORU NUNOKAWA, JANUSZ SOKÓŁ, KATARZYNA TRA̧BKA-WIȨCŁAW

Abstract
We consider questions of the following kind: When does boundedness of |arg{1 + zp′(z)/p(z)}|,
for a given analytic function p, imply boundedness of |arg{p(z)}|? The paper determines the
order of strong close-to-convexity in the class of strongly convex functions. Also, we consider
conditions that are sufficient for a function to be a Bazilevic̆ function.

1. Introduction

Let H be the class of analytic functions in the disc U = {z : |z| < 1} in
the complex plane C. Let A be the subclass of H consisting of functions f

of the form f (z) = z + ∑∞
n=2 anz

n . Moreover, by S , S ∗, K and C we
denote the subclasses of A which consist of univalent, starlike, convex and
close-to-convex functions, respectively.

Robertson introduced in [12] the classes S ∗
α , Kα of starlike and convex

functions of order α which are defined by

S ∗
α =

{
f ∈ A : ��

zf ′(z)
f (z)

> α, z ∈ U

}
, α < 1,

Kα =
{
f ∈ A : ��

(
1 + zf ′′(z)

f ′(z)

)
> α, z ∈ U

}

= {
f ∈ A : zf ′(z) ∈ S ∗

α

}
, α < 1.

If α ∈ [0, 1), then a function in either of these sets is univalent, if α < 0 it
may fail to be univalent. In particular, we have S ∗

0 = S ∗ and K0 = K .
Let SS ∗

(β) denote the class of strongly starlike functions of order β

SS ∗
(β) =

{
f ∈ S :

∣∣∣∣arg
zf ′(z)
f (z)

∣∣∣∣ <
βπ

2
, z ∈ U

}
, β ∈ (0, 1],

which was introduced in [13] and [3]. Furthermore,

SK (β) = {
f ∈ S : zf ′(z) ∈ SS ∗

(β)
}
, β ∈ (0, 1]
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denotes the class of strongly convex functions of order β. Recall also that
an analytic function f is said to be a close-to-convex function of order β,
β ∈ [0, 1), if and only if there exists a number ϕ ∈ R and a function g ∈ K ,
such that

(1) ��

{
eiϕ f ′(z)

g′(z)

}
> β for z ∈ U.

Reade [11] introduced the class of strongly close-to-convex functions of order
β, β < 1, which is defined by

(2)

∣∣∣∣arg

{
eiϕ f ′(z)

g′(z)

}∣∣∣∣ <
πβ

2
for z ∈ U,

instead of (1). Kaplan [5] investigated the class of functions satisfying the
condition (1) in which g ∈ Kα . He denoted this class by Cα(β). Let S Cα(β)

denote the class of strongly close-to-convex functions of order β with respect
to a convex function of order α, i.e. the class of functions f ∈ A satisfying
(2) for some g ∈ Kα and ϕ ∈ R. Functions defined by (1) with ϕ = 0 were
discussed by Ozaki [10] (see also Umezawa [15], [16]). Moreover, Biernacki
[2] defined the class of functions f ∈ A for which the complement of f (U)

with respect to the complex plane is a linearly accessible domain in a broad
sense. Lewandowski [6], [7] observed that the class C0(0) of close-to-convex
functions is the same as the class of linearly accessible functions.

Many classes can be defined using the notion of subordination. Recall that
for f, g ∈ H , we write f ≺ g and say that f is subordinate to g in U, if
and only if there exists an analytic function w ∈ H satisfying w(0) = 0 and
|w(z)| < 1 such that f (z) = g(w(z)) for z ∈ U. Therefore, f ≺ g implies
f (U) ⊂ g(U). In particular, if g is univalent in U, then

f ≺ g ⇐⇒ [
f (0) = g(0) and f (U) ⊂ g(U)

]
.

The class S ∗[A, B]

S ∗[A, B] =
{
f ∈ A :

zf ′(z)
f (z)

≺ 1 + Az

1 + Bz
, z ∈ U

}
, −1 ≤ B < A ≤ 1,

was investigated in [4]. For −1 ≤ B < A ≤ 1 the function w(z) = (1 +
Az)/(1 + Bz) maps the unit disc onto a disc in the right half plane, therefore
the class S ∗[A, B] is a subclass of S ∗ so if f ∈ S ∗[A, B], then f is univalent
in the unit disc.
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2. Preliminaries

To prove the main results, we need the following generalization of the Nun-
okawa Lemmas from [8].

Lemma 2.1 ([8]). Let p(z) = 1+∑∞
n=m cnz

n, cm �= 0 be an analytic function
in U with p(z) �= 0. If there exists a point z0, |z0| < 1, such that

|arg{p(z)}| <
πβ

2
for |z| < |z0|

and
|arg{p(z0)}| = πβ

2

for some β > 0, then we have

z0p
′(z0)

p(z0)
= 2ik arg{p(z0)}

π
,

for some k ≥ m(a + a−1)/2 > m, where

{p(z0)}1/β = ±ia, and a > 0.

Lemma 2.2. [9]Let p(z) = 1 + ∑∞
n=1 cnz

n be an analytic function in U. If
there exists a point z0, z0 ∈ U, such that

��{p(z)} > c, for |z| < |z0|
and

��{p(z0)} = c, p(z0) �= c

for some c ∈ (0, 1), then we have

��
z0p

′(z0)

p(z0)
≤ γ (c),

where

(3) γ (c) =
{

c/(2c − 2) when c ∈ (0, 1/2],

(c − 1)/(2c) when c ∈ (1/2, 1).

3. Main result

Theorem 3.1. Suppose that a function f ∈ A of the form

f (z) = z + amzm + am+1z
m+1 + · · · , am �= 0
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satisfies the conditions f ′(z) �= 0 in U and

(4)

∣∣∣∣arg

{
1 + zf ′′(z)

f ′(z)

}∣∣∣∣ < tan−1 λ for z ∈ U,

where λ > 0. Then we have

(5) |arg{f ′(z)}| <
πλ

2(m − 1)
for z ∈ U.

Proof. First, we note that from (4) it follows that ��{1+zf ′′(z)/f ′(z)} > 0
and f is convex univalent in the unit disc, since f ′(z) �= 0 and arg{f ′(z)} is
well defined. If f ′(z) = p(z), then

(6) p(z) = 1 + mamzm−1 + · · · , p(z) �= 0, for z ∈ U.

For this function p, we suppose that there exists a point z0 ∈ U such that

|arg{p(z)}| <
πλ

2(m − 1)
for |z| < |z0|

and
|arg{p(z0)}| = πλ

2(m − 1)
.

By Nunokawa’s Lemma 2.1 and by (6), for all β ∈ (0, 1) there exists a real
k ≥ (m − 1)(a + a−1)/2 > (m − 1) such that

z0p
′(z0)

p(z0)
= 2ik arg{p(z0)}

π
,

where
{p(z0)}(m−1)/λ = ±ia, and a > 0.

From (6) we get
f ′′(z)
f ′(z)

= p′(z)
p(z)

.

If arg{p(z0)} = πλ/(2m − 2) > 0, then we have

arg

{
1 + z0f

′′(z0)

f ′(z0)

}
= arg

{
1 + z0p

′(z0)

p(z0)

}
= arg

{
1 + 2ik arg{p(z0)}

π

}

= arg

{
1 + iλk

m − 1

}
≥ arg{1 + iλ} ≥ tan−1 λ.
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This contradicts assumption (4). If arg{p(z0)} = −πλ/(2m−2), then applying
the same method we get

arg

{
1 + z0f

′′(z0)

f ′(z0)

}
≤ − tan−1 λ,

which also contradicts assumption (4). Thus, there is no z0 ∈ U such that

|arg{p(z)}| <
πλ

2(m − 1)
for |z| < |z0|

and
|arg{p(z0)}| = πλ

2(m − 1)
.

Because arg{p(0)} = arg{1} = 0 this implies that

|arg{p(z)}| <
πλ

2(m − 1)
for all z ∈ U.

Corollary 3.2. Suppose that a function p ∈ H of the form

p(z) = 1 + cnz
n + cn+1z

n+1 + · · · , cn �= 0

satisfies the conditions p(z) �= 0 and

(7)

∣∣∣∣arg

{
1 + zp′(z)

p(z)

}∣∣∣∣ < tan−1 λ for z ∈ U,

where λ > 0. Then we have

(8) |arg{p(z)}| <
πλ

2n
for z ∈ U.

Proof. Consider a function f , f (z) = z + · · · such that p(z) = f ′(z).
Then we have

f (z) = z + cn

n + 1
zn+1 + · · · , cn �= 0.

Moreover, (7) becomes (4). By Theorem 3.1, we then have (8).

Theorem 3.3. Suppose that a function f of the form

(9) f (z) = z + amzm + am+1z
m+1 + · · · , am �= 0
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is in the class SK (γ ), where γ = γ (α, β) = 2
π

tan−1 β(m−1)

1−α
, α, β ∈ (0, 1).

Then there exists a function g ∈ K1−α ∩ SK (γ ) such that

(10)

∣∣∣∣arg
f ′(z)
g′(z)

∣∣∣∣ <
πβ

2
for z ∈ U,

or f ∈ S C1−α(β).

Proof. If f ∈ SK (γ ), then f is univalent and f ′(z) �= 0 in the unit disc.
Let a function g ∈ A be defined by

(11) g′(z) = (f ′(z))α.

This implies that
zg′′(z)
g′(z)

= α
zf ′′(z)
f ′(z)

.

Furthermore, f ∈ SK (γ ) follows that ��{1 + zf ′′(z)/f ′(z)} > 0. Therefore

��

{
1 + zg′′(z)

g′(z)

}
= ��

{
1 + α

zf ′′(z)
f ′(z)

}

= ��

{
1 − α + α

(
1 + zf ′′(z)

f ′(z)

)}
> 1 − α,

which means that g ∈ K1−α . Moreover,∣∣∣∣arg

{
1 + zg′′(z)

g′(z)

}∣∣∣∣ =
∣∣∣∣arg

{
1 + α

zf ′′(z)
f ′(z)

}∣∣∣∣
=

∣∣∣∣arg

{
1 − α

α
+

(
1 + zf ′′(z)

f ′(z)

)}∣∣∣∣
<

∣∣∣∣arg

{
1 + zf ′′(z)

f ′(z)

}∣∣∣∣ <
γπ

2
.

This means that g ∈ SK (γ ), thus g ∈ K1−α ∩ SK (γ ).
From assumption f ∈ SK (γ ) we have

(12)

∣∣∣∣arg

{
1 + zf ′′(z)

f ′(z)

}∣∣∣∣ < tan−1 β(m − 1)

1 − α
for z ∈ U,

thus by Theorem 3.1 we obtain

(13) |arg{f ′(z)}| <
π

2(m − 1)

β(m − 1)

1 − α
= πβ

2(1 − α)
for z ∈ U.
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By (13) we have∣∣∣∣arg

{
f ′(z)
g′(z)

}∣∣∣∣ =
∣∣∣∣arg

{
f ′(z)

(f ′(z))α

}∣∣∣∣ = (1 − α)|arg{f ′(z)}|

< (1 − α)
πβ

2(1 − α)
= πβ

2
,

which proves (10).

Condition (10) means that f is a strongly close-to-convex function of order
β with respect to a function g which is convex of order 1 − α. Moreover,
g ∈ K1−α ∩ SK (γ ). We can rewrite Theorem 3.3 in the following form.

Corollary 3.4. Assume that α, β ∈ (0, 1) and a function f (z) = z +
amzm + am+1z

m+1 + · · ·, am �= 0 satisfies the condition f ′(z) �= 0 in U. Then[ ∣∣∣∣arg

{
1 + zf ′′(z)

f ′(z)

}∣∣∣∣ < tan−1 β(m − 1)

1 − α

]
�⇒

[ ∣∣∣∣arg
f ′(z)
g′(z)

∣∣∣∣ <
πβ

2

]

for z ∈ U and for some g ∈ K1−α ∩ SK (γ ), where γ = γ (α, β) =
2
π

tan−1 β(m−1)

1−α
.

Theorem 3.5. Assume that α ∈ [1/2, 1), β ≥ 1 and c ∈ (0, 1). Further-
more, let f ∈ Kα and let a function g ∈ A satisfy the conditions

(14) ��
zg′(z)
g(z)

≤ α − γ (c) + (β − 1)δ(α)

β
, g(z) �= 0,

for z ∈ U \ {0}, where γ (c) is given by (3) and

(15) δ(α) =
{

(1 − 2α)/(22−2α − 2) for α �= 1/2,

1/(2 log 2) for α = 1/2.

Then we have

��
zf ′(z)

f 1−β(z)gβ(z)
> c for z ∈ U.

Proof. From [17] it follows that if f ∈ Kα , then f ∈ S ∗
δ(α). Because

β ≥ 1, so

(16) ��

{
(1 − β)

zf ′(z)
f (z)

}
≤ (1 − β)δ(α).
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If f, g satisfy (16) and (14), respectively, then f is univalent in U, f (z) �= 0
and g(z) �= 0 for z ∈ U \ {0}. If we put

(17) p(z) = f ′(z)
{

z

f (z)

}1−β{
z

g(z)

}β

= zf ′(z)
f 1−β(z)gβ(z)

,

then p is an analytic function in U and p(0) = 1. From (17) we get

(18) 1 + zf ′′(z)
f ′(z)

= zp′(z)
p(z)

+ (1 − β)
zf ′(z)
f (z)

+ β
zg′(z)
g(z)

.

For this function p, we suppose that there exists a point z0 ∈ U such that

��{p(z)} > c, for |z| < |z0|
and

��{p(z0)} = c, p(z0) �= c.

Hence, Lemma 2.2 gives us

(19) ��
z0p

′(z0)

p(z0)
≤ γ (c),

where γ (c) is given by (3).
Taking into account (14), (16), (18) and (19), we get

��

{
1 + z0f

′′(z0)

f ′(z0)

}
= ��

{
z0p

′(z0)

p(z0)
+ (1 − β)

z0f
′(z0)

f (z0)
+ β

z0g
′(z0)

g(z0)

}

≤ γ (c) + (1 − β)δ(α) + β
α − γ (c) + (β − 1)δ(α)

β

= α.

This contradicts the hypothesis that f ∈ Kα . Thus, there is no z0 ∈ U such
that

��{p(z)} > c for |z| < |z0|
and

��{p(z0)} = c, p(z0) �= c.

Because p(0) = 1 > c, this implies that ��{p(z)} > c in the unit disc, which
completes the proof.

For β = 1, Theorem 3.5 gives us the following corollary.
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Corollary 3.6. Assume that α ∈ [1/2, 1). Moreover, let f ∈ Kα and let a
function g ∈ A satisfy the conditions

��
zg′(z)
g(z)

≤ α − γ (c), g(z) �= 0, for z ∈ U \ {0},

where γ (c) is given by (3) and c ∈ (0, 1) is such that α − γ (c) > 1. Then we
have

��
zf ′(z)
g(z)

> c for z ∈ U.

Remark 3.7. If β > 1, α and f satisfy the conditions of Theorem 3.5, then
f is a Bazilevic̆ function of order c, c ∈ (0, 1), see [14, p. 353].

If g ∈ S ∗[A, B], then

1 + A

1 + B
≤ ��

zg′(z)
g(z)

≤ 1 − A

1 − B

Therefore, applying the same method as in the proof of Theorem 3.5, we obtain
the following theorem.

Theorem 3.8. Suppose that α ∈ [1/2, 1), β > 1 and c ∈ (0, 1). Assume
also that f ∈ Kα and that g ∈ S ∗[A, B] with

1 − A

1 − B
≤ α − γ (c) + (β − 1)δ(α)

β
,

where γ (c) and δ(α) are given by (3) and (15), respectively. Then we have

��
zf ′(z)

f 1−β(z)gβ(z)
> c for z ∈ U.

Remark 3.9. If f satisfies the conditions of Theorem 3.8, then f is a
Bazilevic̆ function.

If we take that α = 3/4, β = 5/4 and c = 1/2, then γ (1/2) = −1/2,
δ(3/4) = (2+√

2 )/4, therefore Theorem 3.5 becomes the following corollary.

Corollary 3.10. Suppose that f ∈ K3/4 and that for g ∈ A we have

��
zg′(z)
g(z)

≤ 22 + √
2

20
= 1.17 . . . , g(z) �= 0, for z ∈ U \ {0}.

Then we get

��
zf ′(z) 4

√
f (z)

g(z) 4
√

g(z)
>

1

2
for z ∈ U.
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If g ∈ S ∗(qc), c ∈ (0, 1], where the class

S ∗(qc) =
{
g ∈ A :

zg′(z)
g(z)

≺ qc(z), g(z) �= 0, z ∈ U \ {0}
}
,

qc(z) = √
1 + cz, was introduced in [1], then ��

{
zg′(z)/g(z)

}
<

√
1 + c.

Therefore, if

c <
43 + 22

√
2

200
= 0.37 . . . ,

then Corollary 3.10 becomes

[
f ∈ K3/4 and g ∈ S ∗(qc)

] �⇒
[

��
zf ′(z) 4

√
f (z)

g(z) 4
√

g(z)
>

1

2

]
.
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