SOME REMARKS ON CLOSE-TO-CONVEX AND STRONGLY CONVEX FUNCTIONS

MAMORU NUNOKAWA, JANUSZ SOKÓŁ, KATARZYNA TRA̧BKA-WIȨCŁAW

Abstract

We consider questions of the following kind: When does boundedness of $\left|\arg \left\{1+z p^{\prime}(z) / p(z)\right\}\right|$, for a given analytic function p, imply boundedness of $|\arg \{p(z)\}|$? The paper determines the order of strong close-to-convexity in the class of strongly convex functions. Also, we consider conditions that are sufficient for a function to be a Bazilevič function.

1. Introduction

Let \mathscr{H} be the class of analytic functions in the disc $U=\{z:|z|<1\}$ in the complex plane C . Let \mathscr{A} be the subclass of \mathscr{H} consisting of functions f of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$. Moreover, by $\mathscr{S}, \mathscr{S}^{*}, \mathscr{K}$ and \mathscr{C} we denote the subclasses of \mathscr{A} which consist of univalent, starlike, convex and close-to-convex functions, respectively.

Robertson introduced in [12] the classes $\mathscr{S}_{\alpha}^{*}, \mathscr{K}_{\alpha}$ of starlike and convex functions of order α which are defined by

$$
\begin{aligned}
\mathscr{S}_{\alpha}^{*} & =\left\{f \in \mathscr{A}: \mathfrak{R e} \frac{z f^{\prime}(z)}{f(z)}>\alpha, z \in \mathrm{U}\right\}, \quad \alpha<1, \\
\mathscr{K}_{\alpha} & =\left\{f \in \mathscr{A}: \mathfrak{R e}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathrm{U}\right\} \\
& =\left\{f \in \mathscr{A}: z f^{\prime}(z) \in \mathscr{S}_{\alpha}^{*}\right\}, \quad \alpha<1 .
\end{aligned}
$$

If $\alpha \in[0,1)$, then a function in either of these sets is univalent, if $\alpha<0$ it may fail to be univalent. In particular, we have $\mathscr{S}_{0}^{*}=\mathscr{S}^{*}$ and $\mathscr{K}_{0}=\mathscr{K}$.

Let $\mathscr{S} \mathscr{S}^{*}(\beta)$ denote the class of strongly starlike functions of order β

$$
\mathscr{S} \mathscr{S}^{*}(\beta)=\left\{f \in \mathscr{S}:\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\beta \pi}{2}, z \in \mathrm{U}\right\}, \quad \beta \in(0,1],
$$

which was introduced in [13] and [3]. Furthermore,

$$
\mathscr{S} \mathscr{K}(\beta)=\left\{f \in \mathscr{S}: z f^{\prime}(z) \in \mathscr{S} \mathscr{S}^{*}(\beta)\right\}, \quad \beta \in(0,1]
$$

denotes the class of strongly convex functions of order β. Recall also that an analytic function f is said to be a close-to-convex function of order β, $\beta \in[0,1)$, if and only if there exists a number $\varphi \in \mathrm{R}$ and a function $g \in \mathscr{K}$, such that

$$
\begin{equation*}
\mathfrak{R e}\left\{e^{i \varphi} \frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}>\beta \quad \text { for } \quad z \in \mathrm{U} \tag{1}
\end{equation*}
$$

Reade [11] introduced the class of strongly close-to-convex functions of order $\beta, \beta<1$, which is defined by

$$
\begin{equation*}
\left|\arg \left\{e^{i \varphi} \frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}\right|<\frac{\pi \beta}{2} \quad \text { for } \quad z \in \mathrm{U}, \tag{2}
\end{equation*}
$$

instead of (1). Kaplan [5] investigated the class of functions satisfying the condition (1) in which $g \in \mathscr{K}_{\alpha}$. He denoted this class by $\mathscr{C}_{\alpha}(\beta)$. Let $\mathscr{S} \mathscr{C}_{\alpha}(\beta)$ denote the class of strongly close-to-convex functions of order β with respect to a convex function of order α, i.e. the class of functions $f \in \mathscr{A}$ satisfying (2) for some $g \in \mathscr{K}_{\alpha}$ and $\varphi \in$ R. Functions defined by (1) with $\varphi=0$ were discussed by Ozaki [10] (see also Umezawa [15], [16]). Moreover, Biernacki [2] defined the class of functions $f \in \mathscr{A}$ for which the complement of $f(\mathrm{U})$ with respect to the complex plane is a linearly accessible domain in a broad sense. Lewandowski [6], [7] observed that the class $\mathscr{C}_{0}(0)$ of close-to-convex functions is the same as the class of linearly accessible functions.

Many classes can be defined using the notion of subordination. Recall that for $f, g \in \mathscr{H}$, we write $f \prec g$ and say that f is subordinate to g in U , if and only if there exists an analytic function $w \in \mathscr{H}$ satisfying $w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z))$ for $z \in \mathrm{U}$. Therefore, $f \prec g$ implies $f(\mathrm{U}) \subset g(\mathrm{U})$. In particular, if g is univalent in U , then

$$
f \prec g \Longleftrightarrow[f(0)=g(0) \text { and } f(\mathrm{U}) \subset g(\mathrm{U})]
$$

The class $\mathscr{S}^{*}[A, B]$

$$
\mathscr{S}^{*}[A, B]=\left\{f \in \mathscr{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z}, z \in \mathrm{U}\right\}, \quad-1 \leq B<A \leq 1,
$$

was investigated in [4]. For $-1 \leq B<A \leq 1$ the function $w(z)=(1+$ $A z) /(1+B z)$ maps the unit disc onto a disc in the right half plane, therefore the class $\mathscr{S}^{*}[A, B]$ is a subclass of \mathscr{S}^{*} so if $f \in \mathscr{S}^{*}[A, B]$, then f is univalent in the unit disc.

2. Preliminaries

To prove the main results, we need the following generalization of the Nunokawa Lemmas from [8].

Lemma 2.1 ([8]). Let $p(z)=1+\sum_{n=m}^{\infty} c_{n} z^{n}, c_{m} \neq 0$ be an analytic function in U with $p(z) \neq 0$. If there exists a point $z_{0},\left|z_{0}\right|<1$, such that

$$
|\arg \{p(z)\}|<\frac{\pi \beta}{2} \quad \text { for } \quad|z|<\left|z_{0}\right|
$$

and

$$
\left|\arg \left\{p\left(z_{0}\right)\right\}\right|=\frac{\pi \beta}{2}
$$

for some $\beta>0$, then we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\frac{2 i k \arg \left\{p\left(z_{0}\right)\right\}}{\pi}
$$

for some $k \geq m\left(a+a^{-1}\right) / 2>m$, where

$$
\left\{p\left(z_{0}\right)\right\}^{1 / \beta}= \pm i a, \quad \text { and } \quad a>0
$$

Lemma 2.2. [9]Let $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ be an analytic function in U . If there exists a point $z_{0}, z_{0} \in \mathbf{U}$, such that

$$
\mathfrak{R e}\{p(z)\}>c, \quad \text { for } \quad|z|<\left|z_{0}\right|
$$

and

$$
\mathfrak{R e}\left\{p\left(z_{0}\right)\right\}=c, \quad p\left(z_{0}\right) \neq c
$$

for some $c \in(0,1)$, then we have

$$
\mathfrak{R e} \frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)} \leq \gamma(c)
$$

where

$$
\gamma(c)= \begin{cases}c /(2 c-2) & \text { when } c \in(0,1 / 2] \tag{3}\\ (c-1) /(2 c) & \text { when } c \in(1 / 2,1)\end{cases}
$$

3. Main result

Theorem 3.1. Suppose that a function $f \in \mathscr{A}$ of the form

$$
f(z)=z+a_{m} z^{m}+a_{m+1} z^{m+1}+\cdots, \quad a_{m} \neq 0
$$

satisfies the conditions $f^{\prime}(z) \neq 0$ in U and

$$
\begin{equation*}
\left|\arg \left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right|<\tan ^{-1} \lambda \quad \text { for } \quad z \in \mathrm{U} \tag{4}
\end{equation*}
$$

where $\lambda>0$. Then we have

$$
\begin{equation*}
\left|\arg \left\{f^{\prime}(z)\right\}\right|<\frac{\pi \lambda}{2(m-1)} \quad \text { for } \quad z \in U \tag{5}
\end{equation*}
$$

Proof. First, we note that from (4) it follows that $\mathfrak{R e}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>0$ and f is convex univalent in the unit disc, since $f^{\prime}(z) \neq 0$ and $\arg \left\{f^{\prime}(z)\right\}$ is well defined. If $f^{\prime}(z)=p(z)$, then

$$
\begin{equation*}
p(z)=1+m a_{m} z^{m-1}+\cdots, \quad p(z) \neq 0, \quad \text { for } \quad z \in U \tag{6}
\end{equation*}
$$

For this function p, we suppose that there exists a point $z_{0} \in \mathrm{U}$ such that

$$
|\arg \{p(z)\}|<\frac{\pi \lambda}{2(m-1)} \quad \text { for } \quad|z|<\left|z_{0}\right|
$$

and

$$
\left|\arg \left\{p\left(z_{0}\right)\right\}\right|=\frac{\pi \lambda}{2(m-1)} .
$$

By Nunokawa's Lemma 2.1 and by (6), for all $\beta \in(0,1)$ there exists a real $k \geq(m-1)\left(a+a^{-1}\right) / 2>(m-1)$ such that

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\frac{2 i k \arg \left\{p\left(z_{0}\right)\right\}}{\pi}
$$

where

$$
\left\{p\left(z_{0}\right)\right\}^{(m-1) / \lambda}= \pm i a, \quad \text { and } \quad a>0
$$

From (6) we get

$$
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{p^{\prime}(z)}{p(z)}
$$

If $\arg \left\{p\left(z_{0}\right)\right\}=\pi \lambda /(2 m-2)>0$, then we have

$$
\begin{aligned}
\arg \left\{1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right\} & =\arg \left\{1+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right\}=\arg \left\{1+\frac{2 i k \arg \left\{p\left(z_{0}\right)\right\}}{\pi}\right\} \\
& =\arg \left\{1+\frac{i \lambda k}{m-1}\right\} \geq \arg \{1+i \lambda\} \geq \tan ^{-1} \lambda
\end{aligned}
$$

This contradicts assumption (4). If $\arg \left\{p\left(z_{0}\right)\right\}=-\pi \lambda /(2 m-2)$, then applying the same method we get

$$
\arg \left\{1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right\} \leq-\tan ^{-1} \lambda
$$

which also contradicts assumption (4). Thus, there is no $z_{0} \in \mathrm{U}$ such that

$$
|\arg \{p(z)\}|<\frac{\pi \lambda}{2(m-1)} \quad \text { for } \quad|z|<\left|z_{0}\right|
$$

and

$$
\left|\arg \left\{p\left(z_{0}\right)\right\}\right|=\frac{\pi \lambda}{2(m-1)}
$$

Because $\arg \{p(0)\}=\arg \{1\}=0$ this implies that

$$
|\arg \{p(z)\}|<\frac{\pi \lambda}{2(m-1)} \quad \text { for all } \quad z \in \mathrm{U}
$$

Corollary 3.2. Suppose that a function $p \in \mathscr{H}$ of the form

$$
p(z)=1+c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots, \quad c_{n} \neq 0
$$

satisfies the conditions $p(z) \neq 0$ and

$$
\begin{equation*}
\left|\arg \left\{1+\frac{z p^{\prime}(z)}{p(z)}\right\}\right|<\tan ^{-1} \lambda \quad \text { for } \quad z \in \mathrm{U} \tag{7}
\end{equation*}
$$

where $\lambda>0$. Then we have

$$
\begin{equation*}
|\arg \{p(z)\}|<\frac{\pi \lambda}{2 n} \quad \text { for } \quad z \in \mathrm{U} \tag{8}
\end{equation*}
$$

Proof. Consider a function $f, f(z)=z+\cdots$ such that $p(z)=f^{\prime}(z)$. Then we have

$$
f(z)=z+\frac{c_{n}}{n+1} z^{n+1}+\cdots, \quad c_{n} \neq 0
$$

Moreover, (7) becomes (4). By Theorem 3.1, we then have (8).
Theorem 3.3. Suppose that a function f of the form

$$
\begin{equation*}
f(z)=z+a_{m} z^{m}+a_{m+1} z^{m+1}+\cdots, \quad a_{m} \neq 0 \tag{9}
\end{equation*}
$$

is in the class $\mathscr{S} \mathscr{K}(\gamma)$, where $\gamma=\gamma(\alpha, \beta)=\frac{2}{\pi} \tan ^{-1} \frac{\beta(m-1)}{1-\alpha}, \alpha, \beta \in(0,1)$. Then there exists a function $g \in \mathscr{K}_{1-\alpha} \cap \mathscr{S} \mathscr{K}(\gamma)$ such that

$$
\begin{equation*}
\left|\arg \frac{f^{\prime}(z)}{g^{\prime}(z)}\right|<\frac{\pi \beta}{2} \quad \text { for } \quad z \in \mathrm{U} \tag{10}
\end{equation*}
$$

or $f \in \mathscr{S} \mathscr{C}_{1-\alpha}(\beta)$.
Proof. If $f \in \mathscr{S} \mathscr{K}(\gamma)$, then f is univalent and $f^{\prime}(z) \neq 0$ in the unit disc. Let a function $g \in \mathscr{A}$ be defined by

$$
\begin{equation*}
g^{\prime}(z)=\left(f^{\prime}(z)\right)^{\alpha} \tag{11}
\end{equation*}
$$

This implies that

$$
\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}
$$

Furthermore, $f \in \mathscr{S} \mathscr{K}(\gamma)$ follows that $\mathfrak{R e}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>0$. Therefore

$$
\begin{aligned}
\mathfrak{R e}\left\{1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right\} & =\mathfrak{R e}\left\{1+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \\
& =\mathfrak{R e}\left\{1-\alpha+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>1-\alpha
\end{aligned}
$$

which means that $g \in \mathscr{K}_{1-\alpha}$. Moreover,

$$
\begin{aligned}
\left|\arg \left\{1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right\}\right| & =\left|\arg \left\{1+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right| \\
& =\left|\arg \left\{\frac{1-\alpha}{\alpha}+\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}\right| \\
& <\left|\arg \left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right|<\frac{\gamma \pi}{2}
\end{aligned}
$$

This means that $g \in \mathscr{S} \mathscr{K}(\gamma)$, thus $g \in \mathscr{K}_{1-\alpha} \cap \mathscr{P K}(\gamma)$.
From assumption $f \in \mathscr{S} \mathscr{K}(\gamma)$ we have

$$
\begin{equation*}
\left|\arg \left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right|<\tan ^{-1} \frac{\beta(m-1)}{1-\alpha} \quad \text { for } \quad z \in U \tag{12}
\end{equation*}
$$

thus by Theorem 3.1 we obtain

$$
\begin{equation*}
\left|\arg \left\{f^{\prime}(z)\right\}\right|<\frac{\pi}{2(m-1)} \frac{\beta(m-1)}{1-\alpha}=\frac{\pi \beta}{2(1-\alpha)} \quad \text { for } \quad z \in \mathrm{U} \tag{13}
\end{equation*}
$$

By (13) we have

$$
\begin{aligned}
\left|\arg \left\{\frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}\right|=\left|\arg \left\{\frac{f^{\prime}(z)}{\left(f^{\prime}(z)\right)^{\alpha}}\right\}\right| & =(1-\alpha)\left|\arg \left\{f^{\prime}(z)\right\}\right| \\
& <(1-\alpha) \frac{\pi \beta}{2(1-\alpha)}=\frac{\pi \beta}{2}
\end{aligned}
$$

which proves (10).
Condition (10) means that f is a strongly close-to-convex function of order β with respect to a function g which is convex of order $1-\alpha$. Moreover, $g \in \mathscr{K}_{1-\alpha} \cap \mathscr{S} \mathscr{K}(\gamma)$. We can rewrite Theorem 3.3 in the following form.

Corollary 3.4. Assume that $\alpha, \beta \in(0,1)$ and a function $f(z)=z+$ $a_{m} z^{m}+a_{m+1} z^{m+1}+\cdots, a_{m} \neq 0$ satisfies the condition $f^{\prime}(z) \neq 0$ in U . Then

$$
\left[\left|\arg \left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right|<\tan ^{-1} \frac{\beta(m-1)}{1-\alpha}\right] \Longrightarrow\left[\left|\arg \frac{f^{\prime}(z)}{g^{\prime}(z)}\right|<\frac{\pi \beta}{2}\right]
$$

for $z \in \mathrm{U}$ and for some $g \in \mathscr{K}_{1-\alpha} \cap \mathscr{S K}(\gamma)$, where $\gamma=\gamma(\alpha, \beta)=$ $\frac{2}{\pi} \tan ^{-1} \frac{\beta(m-1)}{1-\alpha}$.

Theorem 3.5. Assume that $\alpha \in[1 / 2,1), \beta \geq 1$ and $c \in(0,1)$. Furthermore, let $f \in \mathscr{K}_{\alpha}$ and let a function $g \in \mathscr{A}$ satisfy the conditions

$$
\begin{equation*}
\mathfrak{H e} \frac{z g^{\prime}(z)}{g(z)} \leq \frac{\alpha-\gamma(c)+(\beta-1) \delta(\alpha)}{\beta}, \quad g(z) \neq 0 \tag{14}
\end{equation*}
$$

for $z \in \mathrm{U} \backslash\{0\}$, where $\gamma(c)$ is given by (3) and

$$
\delta(\alpha)= \begin{cases}(1-2 \alpha) /\left(2^{2-2 \alpha}-2\right) & \text { for } \alpha \neq 1 / 2 \tag{15}\\ 1 /(2 \log 2) & \text { for } \alpha=1 / 2\end{cases}
$$

Then we have

$$
\mathfrak{R e} \frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)}>c \quad \text { for } \quad z \in \mathrm{U}
$$

Proof. From [17] it follows that if $f \in \mathscr{K}_{\alpha}$, then $f \in \mathscr{S}_{\delta(\alpha)}^{*}$. Because $\beta \geq 1$, so

$$
\begin{equation*}
\mathfrak{R e}\left\{(1-\beta) \frac{z f^{\prime}(z)}{f(z)}\right\} \leq(1-\beta) \delta(\alpha) \tag{16}
\end{equation*}
$$

If f, g satisfy (16) and (14), respectively, then f is univalent in $U, f(z) \neq 0$ and $g(z) \neq 0$ for $z \in \mathrm{U} \backslash\{0\}$. If we put

$$
\begin{equation*}
p(z)=f^{\prime}(z)\left\{\frac{z}{f(z)}\right\}^{1-\beta}\left\{\frac{z}{g(z)}\right\}^{\beta}=\frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)}, \tag{17}
\end{equation*}
$$

then p is an analytic function in U and $p(0)=1$. From (17) we get

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{z p^{\prime}(z)}{p(z)}+(1-\beta) \frac{z f^{\prime}(z)}{f(z)}+\beta \frac{z g^{\prime}(z)}{g(z)} \tag{18}
\end{equation*}
$$

For this function p, we suppose that there exists a point $z_{0} \in \mathrm{U}$ such that

$$
\mathfrak{R e}\{p(z)\}>c, \quad \text { for } \quad|z|<\left|z_{0}\right|
$$

and

$$
\mathfrak{R e}\left\{p\left(z_{0}\right)\right\}=c, \quad p\left(z_{0}\right) \neq c
$$

Hence, Lemma 2.2 gives us

$$
\begin{equation*}
\mathfrak{R e} \frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)} \leq \gamma(c), \tag{19}
\end{equation*}
$$

where $\gamma(c)$ is given by (3).
Taking into account (14), (16), (18) and (19), we get

$$
\begin{aligned}
\mathfrak{R e}\left\{1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right\} & =\mathfrak{R e}\left\{\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}+(1-\beta) \frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}+\beta \frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right\} \\
& \leq \gamma(c)+(1-\beta) \delta(\alpha)+\beta \frac{\alpha-\gamma(c)+(\beta-1) \delta(\alpha)}{\beta} \\
& =\alpha
\end{aligned}
$$

This contradicts the hypothesis that $f \in \mathscr{K}_{\alpha}$. Thus, there is no $z_{0} \in \mathbf{U}$ such that

$$
\mathfrak{R e}\{p(z)\}>c \quad \text { for } \quad|z|<\left|z_{0}\right|
$$

and

$$
\mathfrak{R e}\left\{p\left(z_{0}\right)\right\}=c, \quad p\left(z_{0}\right) \neq c
$$

Because $p(0)=1>c$, this implies that $\mathfrak{R e}\{p(z)\}>c$ in the unit disc, which completes the proof.

For $\beta=1$, Theorem 3.5 gives us the following corollary.

Corollary 3.6. Assume that $\alpha \in[1 / 2,1)$. Moreover, let $f \in \mathscr{K}_{\alpha}$ and let a function $g \in \mathscr{A}$ satisfy the conditions

$$
\mathfrak{R e} \frac{z g^{\prime}(z)}{g(z)} \leq \alpha-\gamma(c), \quad g(z) \neq 0, \quad \text { for } \quad z \in U \backslash\{0\}
$$

where $\gamma(c)$ is given by (3) and $c \in(0,1)$ is such that $\alpha-\gamma(c)>1$. Then we have

$$
\mathfrak{R e} \frac{z f^{\prime}(z)}{g(z)}>c \quad \text { for } \quad z \in \mathrm{U}
$$

Remark 3.7. If $\beta>1, \alpha$ and f satisfy the conditions of Theorem 3.5, then f is a Bazilevič function of order $c, c \in(0,1)$, see [14, p. 353].

If $g \in \mathscr{S}^{*}[A, B]$, then

$$
\frac{1+A}{1+B} \leq \mathfrak{R e} \frac{z g^{\prime}(z)}{g(z)} \leq \frac{1-A}{1-B}
$$

Therefore, applying the same method as in the proof of Theorem 3.5, we obtain the following theorem.

Theorem 3.8. Suppose that $\alpha \in[1 / 2,1), \beta>1$ and $c \in(0,1)$. Assume also that $f \in \mathscr{K}_{\alpha}$ and that $g \in \mathscr{S}^{*}[A, B]$ with

$$
\frac{1-A}{1-B} \leq \frac{\alpha-\gamma(c)+(\beta-1) \delta(\alpha)}{\beta}
$$

where $\gamma(c)$ and $\delta(\alpha)$ are given by (3) and (15), respectively. Then we have

$$
\mathfrak{R e} \frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)}>c \quad \text { for } \quad z \in \mathrm{U}
$$

Remark 3.9. If f satisfies the conditions of Theorem 3.8, then f is a Bazilevič function.

If we take that $\alpha=3 / 4, \beta=5 / 4$ and $c=1 / 2$, then $\gamma(1 / 2)=-1 / 2$, $\delta(3 / 4)=(2+\sqrt{2}) / 4$, therefore Theorem 3.5 becomes the following corollary.

Corollary 3.10. Suppose that $f \in \mathscr{K}_{3 / 4}$ and that for $g \in \mathscr{A}$ we have

$$
\mathfrak{R e} \frac{z g^{\prime}(z)}{g(z)} \leq \frac{22+\sqrt{2}}{20}=1.17 \ldots, \quad g(z) \neq 0, \quad \text { for } \quad z \in U \backslash\{0\}
$$

Then we get

$$
\mathfrak{R e} \frac{z f^{\prime}(z) \sqrt[4]{f(z)}}{g(z) \sqrt[4]{g(z)}}>\frac{1}{2} \quad \text { for } \quad z \in \mathrm{U}
$$

If $g \in \mathscr{S}^{*}\left(q_{c}\right), c \in(0,1]$, where the class

$$
\mathscr{S}^{*}\left(q_{c}\right)=\left\{g \in \mathscr{A}: \frac{z g^{\prime}(z)}{g(z)} \prec q_{c}(z), g(z) \neq 0, z \in U \backslash\{0\}\right\}
$$

$q_{c}(z)=\sqrt{1+c z}$, was introduced in [1], then $\mathfrak{R e}\left\{z g^{\prime}(z) / g(z)\right\}<\sqrt{1+c}$. Therefore, if

$$
c<\frac{43+22 \sqrt{2}}{200}=0.37 \ldots
$$

then Corollary 3.10 becomes

$$
\left[f \in \mathscr{K}_{3 / 4} \text { and } g \in \mathscr{S}^{*}\left(q_{c}\right)\right] \Longrightarrow\left[\mathfrak{\Re e} \frac{z f^{\prime}(z) \sqrt[4]{f(z)}}{g(z) \sqrt[4]{g(z)}}>\frac{1}{2}\right]
$$

Acknowledgement. The authors wish to sincerely thank the referees for their suggestions for improvement to an earlier draft of this paper.

REFERENCES

1. Aouf, M. K., Dziok, J., Sokół, J., On a subclass of strongly starlike functions, Appl. Math. Lett. 24 (2011), 27-32.
2. Biernacki, M., Sur la représentation conforme des domaines linéairement accessibles, Prace Mat.-Fiz. 44 (1936), 293-314.
3. Brannan, D. A., Kirwan, W. E., On some classes of bounded univalent functions, J. London Math. Soc. 1 (1969) (2), 431-443.
4. Janowski, W., Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28 (1973), 297-326.
5. Kaplan, W., Close to convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.
6. Lewandowski, Z., Sur l'identité de certaines classes de fonctions univalentes, I., Ann. Univ. Mariae Curie-Skłodowska Sect. A 12 (1958), 131-146.
7. Lewandowski, Z., Sur l'identité de certaines classes de fonctions univalentes, II., Ann. Univ. Mariae Curie-Skłodowska Sect. A 14 (1960), 19-46.
8. Nunokawa, M., On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A 69 (7) (1993), 234-237.
9. Nunokawa, M., Kuroki, K., Yildiz, I., Owa, S., On the Order of Close-to-convexity of Convex Functions of Order α, J. Ineq. Appl. 2012, 2012:245.
10. Ozaki, S., On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daig. A2 (1935), 167-188.
11. Reade, M., The coefficients of close-to-convex functions, Duke Math. J. 23 (1956), 459-462.
12. Robertson, M. S., On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.
13. Stankiewicz, J., Quelques problémes extrémaux dans les classes des fonctions α-angulairement étoilées, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 20 (1966), 59-75.
14. Thomas, D. K., On Bazilevic Functions, Trans. Amer. Math. Soc. 132 (1968) (2), 353-361.
15. Umezawa, T., On the theory of univalent functions, Tohoku Math. J. 7 (1955), 212-228.
16. Umezawa, T., Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957), 869-874.
17. Wilken, D. R., Feng, J., A remark on convex and starlike functions, J. London Math. Soc. 21 (1980) (2), 287-290.
```
UNIVERSITY OF GUNMA
HOSHIKUKI-CHO 798-8
CHUOU-WARD
CHIBA, 260-0808
JAPAN
E-mail: mamoru_nuno@doctor.nifty.jp
LUBLIN UNIVERSITY OF TECHNOLOGY,
UL. NADBYSTRZYCKA 38D
20-618 LUBLIN
POLAND
E-mail: k.trabka@pollub.pl
```

