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HAAR MEASURE

YULIA KUZNETSOVA

(To the memory of my father, Nikolay V. Kuznetsov)

Abstract
We present a simple and intuitive framework for duality of locally compacts groups, which is not
based on the Haar measure. This is a map, functorial on a non-degenerate subcategory, on the
category of coinvolutive Hopf C∗-algebras, and a similar map on the category of coinvolutive
Hopf-von Neumann algebras. In the C∗-version, this functor sends C0(G) to C∗(G) and vice
versa, for every locally compact group G. As opposed to preceding approaches, there is an ex-
plicit description of commutative and co-commutative algebras in the range of this map (without
assumption of being isomorphic to their bidual): these algebras have the formC0(G) orC∗(G) re-
spectively, whereG is a locally compact group. The von Neumann version of the functor puts into
duality, in the group case, the enveloping von Neumann algebras of the algebras above: C0(G)

∗∗
and C∗(G)∗∗.

1. Introduction

A well-known theorem of L. S. Pontryagin states that a commutative locally
compact groupG is isomorphic to its second dual group, where the dual group
Ĝ is the set of all unitary characters of G, which has a natural group struc-
ture.

This symmetry does not appear in the non-commutative case, because the
set Ĝ of irreducible unitary representations of G – the natural analogue of
characters – has no reasonable group structure. The problem can be stated,
however, in an abstract form as follows.

Let H be a category. Call a functor̂ : H → H a duality if ̂2 is equivalent
to the identity functor. Let LCG and LCAG be the categories of all (respect-
ively abelian) locally compact groups. On LCAG we have the Pontryagin
duality functor .̂ The task is to construct a category H with duality, and a
faithful functor A : LCG → H so that the Pontryagin duality is preserved:
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Â (G) � A (Ĝ) for every G ∈ LCAG . This is illustrated by the following
diagram:

H ̂−−−−−−−−−−→ H

A A

LCG LCG

LCAG ̂−−−−−−→LCAG

In this setting, the duality problem has been solved by the theory of Kac al-
gebras (the canonical reference is [5]), a theory later developed to that of locally
compact quantum groups (see a recent survey monograph [7]). A conceptual
difference between this theory and that of Pontryagin is the distinguished role
of the Haar measure (or its generalization called the Haar weight). In the clas-
sical theory, the dual group is defined in purely algebraic and topological terms:
it is just the group of continuous characters. On the contrary, in the theory of
Kac algebras the Haar weight is a part of the definition and is crucial in the
construction of the dual object.

There has been a number of duality theorems which did not use the Haar
measure explicitly. One alternative is the approach of multiplicative unitaries,
developed mainly by S. Baaj and G. Skandalis [1], S. L. Woronowicz, T. Mas-
uda and Y. Nakagami [23], [15], [14]. These results have in common the fact
that they are not constructive; formulating sufficient conditions for a duality,
they do not present a means of obtaining reflexive objects (except for deriving
them from a Haar weight).

Another alternative, very close to the present paper, is the work of E. Kirch-
berg [11] and its development by J. Kustermans [13] and Ch.-K. Ng [16]. The
main idea is to define a dual algebra on the basis of “unitary” corepresenta-
tions. In the case when a Haar weight exists, one can show that the second dual
algebra is isomorphic to the initial one. It would be very attracting to know
that the first dual of any algebra is isomorphic to the third dual: this would give
then a means of constructing reflexive algebras from any given ones. But for
the moment, there are no such theorems.

In this paper, we propose another functor, close to the functor of Kirchberg,
which has the following advantages. First, it is more explicit and accord-
ingly more easy to calculate. Second, one can show that every commutative
or cocommutative algebra in the range of our functor comes from a locally
compact group and as a consequence is reflexive. This provides ground to a
conjecture that the dual of every algebra is reflexive.

The main work is done in the category H0 of coinvolutive Hopf-von Neu-
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mann algebras (see definitions in Section 2). In Section 6 we define a map ̂
on H0 and a full subcategory H of H0 on which this is a duality functor. The

objects of H are just M ∈ H0 such that M � ̂̂
M; let us call such algebras

reflexive.
It is shown (Theorem 6.11) that there is a faithful contravariant functor

A : LCG → H , such that for an abelian groupG, we have Â (G) � A (Ĝ).
Explicitly, the functor A is given by A (G) = C0(G)

∗∗. This is the enveloping
von Neumann algebra of C0(G), canonically identified with the second dual
space. The algebra Â (G) is the big group algebra of J. Ernest, W ∗(G) �
C∗(G)∗∗. The explicit consideration of the group case is given in Section 4.

Conversely, every commutative or co-commutative algebra in the range of
our map is isomorphic to C0(G)

∗∗ or C∗(G)∗∗ respectively for some locally
compact groupG (Theorems 7.4 and 7.6). All theorems of this kind known be-
fore assumed stronger properties guaranteeing a certain duality (a Haar weight,
a regular representation etc).

In Section 8, we give a C∗-algebraic version of this theory: for every coin-
volutive C∗-bialgebra A (see definition in Section 8), one can define its dual
coinvolutiveC∗-bialgebra Â, such that ̂C0(G) = C∗(G) and ̂C∗(G) = C0(G).
Every commutative or co-commutative algebra in the range of this map is iso-
morphic to C0(G) or C∗(G) respectively.

Acknowledgements. I am grateful to Prof. M. Enock for pointing me
out to the thesis [11] and for sending a copy of it. I thank Prof. E. Kirchberg
for clarification of some of his results. I am greatly obliged to the referee who
pointed out several gaps and corrected numerous details in the paper.

2. Definitions and notations

Notations 2.1. In general, we allow a von Neumann algebra to be zero,
i.e. its unit may equal zero. For a pair of von Neumann algebras M,N , we
denote byM ⊗̄N their von Neumann tensor product. IfA, B are C∗-algebras,
then A ⊗̄ B denotes their spatial (minimal) tensor product. There should be
no reason to confuse this case with the von Neumann algebras case. The dual

of a Banach space X is denoted by X∗. By X ⊗̂op Y , X
h⊗ Y we denote the

(completed) projective operator space tensor product and the Haagerup tensor
product of operator spacesX, Y (more details on operator spaces can be found
in [4]). If H , K are Hilbert spaces, then H ⊗ K is their Hilbert space tensor
product, B(H) is the space of bounded linear operators on H , and N(H) is
the space of trace class (nuclear) operators. Unless otherwise stated, G will
denote a locally compact group.
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Recall the notion of the C∗-enveloping algebra, or the C∗-envelope of a
Banach ∗-algebra [17, §11.1]:

Definition 2.2. Let A be a Banach ∗-algebra, and let I ⊂ A be the com-
mon kernel of all its ∗-representations (this is a two-sided ∗-ideal). A is called
reduced if I = {0}. For any x ∈ A, set ‖x‖∗ = sup{‖π(x)‖} <∞, where su-
premum is taken over all ∗-representationsπ ofA. It is known that ‖x‖∗ � ‖x‖
for all x ∈ A. On A/I , the quotient seminorm is a norm; the completion of
A/I with respect to this norm is called the C∗-envelope of A and denoted by
C∗(A). The canonical map from A to C∗(A) is injective if and only if A is
reduced.

From now on, the term “representation” will always mean “∗-represent-
ation”. To everyC∗-algebraA, one can associate in a canonical way a von Neu-
mann algebraW ∗(A), which is called the enveloping von Neumann algebra of
A [3, 12.1.5] and has the following universality property:

Proposition 2.3. LetA be a C∗-algebra and letW be its von Neumann en-
velope. Let� : A→ W be the canonical morphism. Then for every represent-
ation π : A→ B(H) there is unique normal representation π̃ : W → B(H)

such that π̃(�x) = π(x) for every x ∈ A. Moreover, π̃(W) is the weak closure
of π(A). We will say that π̃ is the lifting of π to W .

Explicitly, W ∗(A) is constructed as the weak closure of the image of A
under the universal representation. Moreover, it can be naturally identified
with the second dual space of A. Therefore we often write just A∗∗ instead of
W ∗(A), having in mind this enveloping algebra structure on A∗∗.

A Banach ∗-algebra (strictly speaking, its image) is norm dense in its C∗-
envelope, and aC∗-algebra is ultraweakly dense in its von Neumann envelope.
We will also write W ∗(A) instead of W ∗(C∗(A)) if A is a Banach ∗-algebra.

The following definition can be found, e.g., in [5, §1.2]:

Definition 2.4. A coinvolutive Hopf-von Neumann algebra is a triple
(M,�, �), whereM is a von Neumann algebra, � : M → M ⊗̄M (comulti-
plication) is an injective normal unital∗-homomorphism such that (�⊗id)� =
(id⊗�)�, and � : M → M (coinvolution) is a ∗-antihomomorphism such
that �2 = id and (�⊗�)� = θ��, where θ is the flip map: θ(a⊗b) = b⊗a.

A morphism of coinvolutive Hopf-von Neumann algebrasM,N is a normal
∗-homomorphism ϕ : M → N such that:�N ◦ϕ = (ϕ⊗ϕ)�M and �N ◦ϕ =
ϕ ◦ �M . Note that, contrary to [5], we do not require that ϕ(1) = 1.

In the theory of operator spaces, there are two most natural notions of an
algebra:
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Definition 2.5. A completely contractive Banach algebra is a Banach
algebra A which is an operator space such that the multiplication in A is
completely contractive, i.e. is extended to a continuous map � : A⊗̂opA→ A.
An operator algebra is a Banach algebra A which is an operator space such

that the multiplication in A is extended to a continuous map � : A
h⊗A→ A.

On the predual M∗ of a coinvolutive Hopf-von Neumann algebra M one
can introduce an involution, as usual in the Hopf theory: μ∗(a) = μ(�(a∗)),
μ ∈ M∗, a ∈ M . Then M∗ becomes a completely contractive Banach ∗-
algebra, but in general not an operator algebra. For example, for the most
popular algebra M = L∞(G) one has M∗ = L1(G), and this is known not to
be an operator algebra.

When we speak of Banach∗-algebras, we always suppose that the involution
is isometric. It is known that the coinvolution � is also always isometric.

2.1. Common group algebras

There is a variety of algebras associated to a locally compact groupG. We recall
them here in order to have the freedom to use the notations below without extra
explanations.

The most popular commutative algebras are: C0(G) – the algebra of con-
tinuous functions vanishing at infinity; Cb(G) – the algebra of continuous
bounded functions; L∞(G) – the algebra of equivalence classes of essentially
bounded measurable functions; A(G) – the Fourier algebra, equal to the space
of coefficients of the regular representation; B(G) – the Fourier-Stieltjes al-
gebra, equal to the linear span of all continuous positive-definite functions. All
these algebras are considered with pointwise multiplication, involution being
the complex conjugation.

There is also a large choice of convolution algebras (and their completions):
M(G)– the algebra of finite regular complex measures;L1(G)– the subalgebra
(in fact, an ideal) of absolutely continuous measures inM(G);C∗(G) – the full
group C∗-algebra, equal to the C∗-envelope of L1(G); C∗r (G) – the reduced
group C∗-algebra, generated by the regular representation of L1(G); L (G)

– the group von Neumann algebra, equal to the weak closure of C∗r (G) in
B(L2(G)); W ∗(G) – the Ernest algebra, equal to the von Neumann envelope
of C∗(G).

In this list, L∞(G), L (G) and W ∗(G) � C∗(G)∗∗ are well-known to
have structures of coinvolutive Hopf-von Neumann algebras. There is also
an algebra which is rarely used but is important in the sequel: C0(G)

∗∗ =
W ∗(C0(G)), the enveloping von Neumann algebra of C0(G). Since it can be
identified with the second dual of C0(G), it is the dual space of M(G) =
C0(G)

∗.
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Instead of proving explicitly that M(G)∗ has a structure of a coinvolutive
Hopf-von Neumann algebra, we can apply the known theory [5, §1.6] toM =
L (G): its predual isM∗ = A(G), which has the C∗-envelope equal to C0(G)

– see a proof a few lines below – and then W ∗(M∗) = C0(G)
∗∗, as proved

in [5], has a structure of a coinvolutive Hopf-von Neumann algebra (agreeing
with the structure of C0(G)).

For future references it is convenient to formulate the following proposition,
certainly known.

Proposition 2.6. C∗(A(G)) = C0(G).

Proof. It is known that A(G) is contained and dense in C0(G). The ir-
reducible representations of A(G) are just characters; it is known that every
(nonzero) character ofA(G) has form f �→ f (t), f ∈ A(G), for some t ∈ G.
It follows that ‖f ‖∗ = supt∈G |f (t)| = ‖f ‖∞ for every f ∈ A(G). One can
see that ‖·‖∗ is a norm (not just a seminorm), so that C∗(A(G)) is the com-
pletion of A(G) with respect to ‖·‖∗. Now it is clear that C∗(A(G)) is just the
closure of A(G) in C0(G), and the statement follows.

2.2. Multiplier algebras

For aC∗-algebraA, letM(A)denote theC∗-algebra of its two-sided multipliers
[18, §3.12]. It can be identified with a unital norm closed subalgebra inW ∗(A).
A homomorphism ϕ : A→ M(B) is called non-degenerate if for an approx-
imate identity eα ofA, ϕ(eα) converges to 1 in the strict topology ofM(B) (as
operators on B). Every homomorphism ϕ : A → M(B) has a unique exten-
sion to a (A∗, B∗)-weakly continuous homomorphism ϕ̄ : M(A)→ M(B). If
ϕ is non-degenerate, ϕ̄ is unital. This applies to anti-homomorphisms as well.

For A = C0(G), M(A) is the algebra Cb(G) of bounded continuous
functions on G. As a particular case of the discussion above, Cb(G) is a ∗-
subalgebra in M(G)∗, with the natural pairing f (μ) = ∫

f dμ, f ∈ Cb(G),
μ ∈ M(G).
3. Representations with generator

Let M be a coinvolutive Hopf-von Neumann algebra, M∗ its predual. Fix a
Hilbert space H such that M ⊂ B(H). For x, y ∈ H denote by μxy ∈ M∗ the
functional μxy(a) = 〈ax, y〉, a ∈ M . Since M∗ is a quotient space of N(H),
for every μ ∈ M∗ there is a representation μ = ∑

μxn,yn with xn, yn ∈ H
such that

∑ ‖xn‖ ‖yn‖ < ∞. Moreover, ‖μ‖ = inf
∑ ‖xn‖ ‖yn‖, where the

infinum is taken over all such decompositions.
For another Hilbert space K , there is a natural isomorphism of operator

spaces [4, 7.2.4] (M∗ ⊗̂op N(K))
∗ � M ⊗̄ B(K). In particular, every U ∈

M ⊗̄ B(H) can be viewed as a bilinear functional on M∗ ×N(H).
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From the other side, M ⊗̄ B(K) ⊂ B(H ⊗ K). We will use explicit co-
ordinate form of this algebra. For x, y ∈ K , denote by ωxy the functional
ωxy(b) = 〈bx, y〉, b ∈ B(K). For a ∈ M , b ∈ B(K) we have with any
x, y ∈ H , x ′, y ′ ∈ K:

(a ⊗ b)(μxy, ωx ′y ′) = μxy(a)ωx ′y ′(b) = 〈ax, y〉〈bx ′, y ′〉
= 〈ax ⊗ bx ′, y ⊗ y ′〉 = 〈(a ⊗ b)(x ⊗ x ′), y ⊗ y ′〉.

By continuity it follows that any U ∈ M ⊗̄ B(K) ⊂ B(H ⊗K) acts as

(1) U(μxy, ωx ′y ′) = 〈U(x ⊗ x ′), y ⊗ y ′〉.
Definition 3.1. Let π be a representation ofM∗ on a Hilbert spaceK . An

operator U ∈ M⊗̄B(K) is called a generator of π if

(2) U(μ, ω) = ω(π(μ))
for every μ ∈ M∗, ω ∈ N(K).

The original definition of a generator of a representation, where U is sup-
posed to be a partial isometry, is given in [5, §1.5].

In fact, as shows the proposition below, the representations with generator
are nothing else but completely bounded representations, as defined in the
operator space theory [4]. In [11], the term “bounded” was used instead. When
we speak ofM∗ as an operator space, we always suppose the predual structure
on it, that is the quotient structure in the correspondingB(H)∗ factored byM⊥
(see [4, 4.2.2]).

Proposition 3.2. Let π be a representation of M∗ on a Hilbert space K .
Then π is completely bounded if and only if there exists U ∈ M ⊗̄ B(K) =
(M∗⊗̂opN(K))

∗ such thatU(μ,ω) = ω(π(μ)) for everyμ ∈ M∗,ω ∈ N(K).
In this case ‖U‖ = ‖π‖cb.

Proof. There is [4, 7.1.5] a natural isometric isomorphism λ of the spaces
CB(M∗, B(K)) and M ⊗̄ B(K), given by ω(λ(U)(μ)) = U(μ,ω) for U ∈
M ⊗̄ B(K) and μ ∈ M∗, ω ∈ N(K). If π ∈ CB(M∗, B(K)), there is U ∈
M ⊗̄B(K) such that π = λ(U), and vice versa. By definition of λ, this means
exactly that U(μ,ω) = ω(π(μ)), and in this case ‖π‖cb = ‖U‖.

If π is a representation ofM∗ on a Hilbert spaceK with a basis (fα), denote
by παβ ∈ M the linear functional on M∗ defined by παβ(μ) = 〈π(μ)fβ, fα〉,
μ ∈ M∗; in other words, παβ(μ) = ωfβ,fα (π(μ)).

We give next a temporary definition of a standard representation (this term
is justified by Theorem 4.2 below). In the Theorem 3.6 it is proved that a
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standard representation is in fact a non-degenerate representation with a unitary
generator. There is another term for the same object: a unitary representation,
and below we will switch to this latter term.

Definition 3.3. Call a representation π ofM∗ on a Hilbert spaceK stand-
ard if in some basis of K ,

(3)
∑
γ

π∗γα · πγβ =
∑
γ

παγ · π∗βγ =
{

1, α = β
0, α �= β

for every α, β, the series converging absolutely in the M∗-weak topology of
M .

From the Theorem 3.6 below it will follow that this definition does not
depend, in fact, on the choice of a basis. This implies also that a standard
representation is automatically non-degenerate.

Lemma 3.4. Let M act on a Hilbert space H with a basis (eα). Then for
every x, y ∈ H and every a, b ∈ M ,

(ab)(μxy) =
∑
α

μeαy(a)μxeα (b),

the series converging absolutely.

Proof. This is an immediate calculation:

(ab)(μxy) = 〈abx, y〉 = 〈bx, a∗y〉 =
∑
α

〈bx, eα〉〈eα, a∗y〉

=
∑
α

〈bx, eα〉〈aeα, y〉 =
∑
α

μeαy(a)μxeα (b).

Lemma 3.5. LetM ⊂ B(H), and letπ : M∗ → B(K) be a representation of
M∗. Let U ∈ M ⊗̄B(K) be such that U(μ,ω) = ω(π(μ)) for every μ ∈ M∗,
ω ∈ N(K). Let (eα), (fξ ) be bases in H and K respectively. Then for any
x, y ∈ H

〈U(x ⊗ fα), U(y ⊗ fβ)〉 =
∑
η

(π∗ηβπηα)(μx,y),

〈U ∗(x ⊗ fα), U ∗(y ⊗ fβ)〉 =
∑
η

(πβηπ
∗
αη)(μx,y),

the series converging absolutely.
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Proof. With (1), U satisfies for every x, y ∈ H and every α, β:

〈U(x ⊗ fα), (y ⊗ fβ)〉 = U(μx,y, ωfα,fβ ) = ωfα,fβ (π(μx,y))(4)

= πβα(μx,y),
〈U ∗(x ⊗ fα), (y ⊗ fβ)〉 = 〈U(y ⊗ fβ), x ⊗ fα〉 = παβ(μy,x).

Decomposing the scalar product, we get the following absolutely converging
series:

〈U(x ⊗ fα), U(y ⊗ fβ)〉(5)

=
∑
ξ,η

〈U(x ⊗ fα), eξ ⊗ fη〉〈eξ ⊗ fη, U(y ⊗ fβ)〉

=
∑
ξ,η

πηα(μx,eξ )πηβ(μy,eξ ).

After a simple transform:

πηβ(μy,eξ ) = 〈πηβ y, eξ 〉 = 〈π∗ηβeξ , y〉 = π∗ηβ(μeξ ,y),
we get:

〈U(x ⊗ fα), U(y ⊗ fβ)〉 =
∑
ξ,η

πηα(μx,eξ )π
∗
ηβ(μeξ ,y).

With the Lemma 3.4 this gives

〈U(x ⊗ fα), U(y ⊗ fβ)〉 =
∑
η

(π∗ηβπηα)(μx,y).

For U ∗, we have similarly:

〈U ∗(x ⊗ fα), U ∗(y ⊗ fβ)〉 =
∑
ξ,η

παη(μeξ ,x)πβη(μeξ ,y)

=
∑
ξ,η

π∗αη(μx,eξ )πβη(μeξ ,y)

=
∑
η

πβηπ
∗
αη(μx,y).

Theorem 3.6. A non-degenerate representation ofM∗ has a unitary gener-
ator if and only if it is standard.
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Proof. Let M ⊂ B(H), and let π : M∗ → B(K) be a representation.
Choose bases (eα), (fβ) in the spaces H , K respectively.

Suppose that a generator U exists and is unitary. We have then for every
x, y ∈ H and every α, β, by Lemma 3.5:

〈x, y〉δαβ = 〈x⊗fα, y⊗fβ〉 = 〈U(x⊗fα), U(y⊗fβ)〉 =
∑
η

(π∗ηβπηα)(μx,y).

Since 〈x, y〉 = μx,y(1), we get the first equality in (3) for μ = μx,y . The
decomposition into an absolutely converging series μ =∑

μxn,yn implies that
it is valid also for every μ ∈ M∗.

The adjoint operator U ∗ is unitary as well, and we get:

〈x, y〉δαβ = 〈U ∗(x ⊗ fα), U ∗(y ⊗ fβ)〉 =
∑
η

πβηπ
∗
αη(μx,y)

what implies the second equality in (3), so that π is standard.
Conversely, let π be standard. Then we can take (4) as a definition of

U(x ⊗ fα), and reversing the calculations above, we see that

〈U(x ⊗ fα), U(y ⊗ fβ)〉 = 〈x, y〉δαβ.
Extending U by linearity to finite linear combinations x = ∑

xα ⊗ fβ , we
have:

‖Ux‖2 = 〈Ux,Ux〉 =
∑
α,β,γ,ζ

〈U(xα ⊗ fβ), U(xγ ⊗ fζ )〉

=
∑
α,β,γ,ζ

〈xα ⊗ fβ, xγ ⊗ fζ 〉 = ‖x‖2.

Thus, U is isometric and then extends to an isometry on H ⊗ K . Further, U
has an adjoint operator U ∗ satisfying (4); again, π being standard implies that
U ∗ is isometric, so U is onto and as a consequence unitary.

Now we must show that U satisfies (2). By definition, we have (2) for
μ = μxy and ω = ωfα,fβ . Since both parts in

〈U(x ⊗ x ′), (y ⊗ y ′)〉 = ωx ′,y ′(π(μx,y))
depend linearly and jointly continuously on x ′, y ′ ∈ K , we have this equality
for all x ′, y ′, i.e. (2) holds for μ = μxy and ω = ωx ′y ′ . Finally, the decompos-
ition μ = ∑

μxn,yn , ω =
∑
ωx ′n,y ′n into absolutely converging series implies

(2) for all μ ∈ M∗, ω ∈ N(H).
Now it remains to show thatU ∈ M ⊗̄B(H), not justU ∈ B(H ⊗K). This

follows from the bicommutant theorem; we need to show that U commutes
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with (M⊗̄B(H))′ = M ′⊗̄C [9, 11.2.16]. Letϕ ∈ M ′. Then for every x, y ∈ H
and every a ∈ M we have μϕx,y(a) = 〈aϕx, y〉 = 〈ϕax, y〉 = 〈ax, ϕ∗y〉 =
μx,ϕ∗y , so that μϕx,y = μx,ϕ∗y . Then

〈U(ϕ ⊗ id)(x ⊗ x ′), y ⊗ y ′〉 = 〈U(ϕx ⊗ x ′), y ⊗ y ′〉
= ωx ′,y ′(π(μϕx,y)) = ωx ′,y ′(π(μx,ϕ∗y))
= 〈U(x ⊗ x ′), ϕ∗y ⊗ y ′〉
= 〈(ϕ ⊗ id)U(x ⊗ x ′), y ⊗ y ′〉,

so that U commutes with ϕ ⊗ id, and the theorem is proved.

A finite-dimensional version of this theorem was known long ago [5, Pro-
position 1.5.7].

From now on, we will use a known term unitary representation instead of
standard. We see that the property of being unitary does not depend on the
particular choice of a basis.

Corollary 3.7. Every unitary representation π of M∗ is completely con-
tractive.

Proof. By Theorem 3.6, π has a unitary generator; by Proposition 3.2
‖π‖cb = ‖U‖ = 1.

From [5, 3.1.4] it follows:

Corollary 3.8. IfM is a Kac algebra, every non-degenerate representation
of M∗ is unitary.

4. Representations of the measure algebra

In this section we prove (Theorem 4.4) that if an irreducible representation
of M(G) is unitary, then it comes from a continuous representation of G, and
vice versa. Thus, in the case of the measure algebra, the class of unitary repres-
entations is exactly the class of representations commonly used in harmonic
analysis.

The central Theorem 4.4 in the abelian case reduces to a known theorem
of M. Walter [22]: a character (thus, an irreducible representation) of B(G) is
unitary, in the definition above, if and only if it is the evaluation at a point of
G. Recall that if G is abelian, then B(G) � M(Ĝ). In general, Theorem 4.4
is a dual analogue of the Walter’s theorem.

In principle, the results of this section are consequences of [11]. But we find
it highly instructive to present here new proofs, based on the representation
theory. This gives a clear intuitive understanding of the whole picture.
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Proposition 4.1. Let π be an irreducible representation of M(G). Then
either π |L1(G) ≡ 0, or π is generated by a continuous unitary representation
π̃ of G by the classical integral formula:

(6) π(μ) =
∫
G

π̃(t) dμ(t),

for every μ ∈ M(G).
Proof. L1(G) is an ideal inM(G), so the closed subspaceH1 generated by

π(f )H , f ∈ L1(G), is invariant under π . Thus either H1 = {0} or H1 = H .
In the first case π |L1(G) ≡ 0. In the second case we have a non-degenerate
representation of L1(G), and one shows, as usual [3, 13.3], that there is a
continuous representation π̃ of G such that (6) holds for all μ ∈ L1(G).

It is known that a representation of a ∗-algebra is uniquely extended from
a ∗-ideal on which it is non-degenerate [17, 11.1.12], so (6) holds for all
μ ∈ M(G) as well.

Theorem 4.2. Let π̄ be a continuous unitary representation of G on a
Hilbert space H , and let π be the corresponding representation of M(G).
Then π is unitary.

Proof. Let (eα)α∈A be a basis of H and let παβ(μ) = 〈π(μ)eβ, eα〉. If
μ = δt is the probability measure in G concentrated at a point t , we will also
write παβ(t) := παβ(δt ). Then παβ may be considered as a continuous function
on G.

To prove that π is unitary, we need to show that for every μ ∈ M(G),

(7) δαβ

∫
G

1 dμ =
∑
γ

∫
G

πγα(t)πγβ(t) dμ

(since for continuous functions, the usual multiplication and conjugation co-
incide with those in M(G)∗). This corresponds to the first series in (3), inter-
changing α and β. The second series is reduced to the first one in the following
way. One checks that παγ (t) = πγα(t−1) = π∗γα(t−1). For μ ∈ M(G), let
μ̌ ∈ M(G) be defined by

∫
f (t−1) dμ(t) = ∫

f (t) dμ̌(t). Then we have
παγ (μ) = π∗γα(μ̌). Once (7) is proved, we will have then

∑
γ

∫
G

παγ π
∗
βγ dμ =

∑
γ

∫
G

π∗γαπγβ dμ̌ = δαβ
∫

1 dμ̌ = δαβ dμ.

The equality (7) is sufficient to prove for a positive measure μ. For every
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t ∈ G, using the Kronecker symbol δαβ , we have:

δαβ = 〈eα, eβ〉 = 〈π̄(t)eα, π̄(t)eβ〉 =
∑
γ

〈π̄(t)eα, eγ 〉〈eγ , π̄(t)eβ〉(8)

=
∑
γ

πγα(t)πγβ(t) =
∑
γ

(π∗γβπγα)(δt ).

Thus, pointwise (on δt ) we always have the equality (7). To prove that (7) holds
for any Radon measure (which we may assume to be positive), we need to use
in further reasoning the continuity of π .

Denote

(9) fαβ(t) =
∑
γ

|πγα(t)πγβ(t)|.

This series converges, since

fαβ(t) =
∑
γ

|〈π̄(t)eα, eγ 〉| |〈eγ , π̄(t)eβ〉|

�
(∑

γ

|〈π̄(t)eα, eγ 〉|2
)1/2(∑

ζ

|〈eζ , π̄(t)eβ〉|2
)1/2

= ‖π̄(t)eα‖ ‖π̄(t)eβ‖ = 1.

Ifα = β, then fαα ≡ 1. Let us show that fαβ is a continuous function, whatever
are α and β. For s, t ∈ G,

|fαβ(t)− fαβ(s)|
=

∑
γ

(|πγα(t)πγβ(t)| − |πγα(s)πγβ(s)|)
=

∑
γ

(|πγα(t)πγβ(t)| − |πγα(t)πγβ(s)| + |πγα(t)πγβ(s)| − |πγα(s)πγβ(s)|)

�
∑
γ

(|πγα(t)| · |πγβ(t)− πγβ(s)| + |πγβ(s)| · |πγα(t)− πγα(s)|)

�
(∑

ζ

|πζα(t)|2
∑
γ

|πγβ(t)−πγβ(s)|2
)1/2

+
(∑

ζ

|πζβ(s)|2
∑
γ

|πγα(t)−πγα(s)|2
)1/2
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=
(∑

ζ

|〈π̄(t)eα, eζ 〉|2
∑
γ

|〈π̄(t)eβ, eγ 〉 − 〈π̄(s)eβ, eγ 〉|2
)1/2

+
( ∑

ζ

|〈π̄(s)eβ, eζ 〉|2 ·
∑
γ

|〈π̄(t)eα, eγ 〉 − 〈π̄(s)eα, eγ 〉|2
)1/2

= ‖π̄(t)eα‖‖π̄(t)eβ − π̄(s)eβ‖ + ‖π̄(s)eβ‖ · ‖π̄(t)eα − π̄(s)eα‖
= ‖π̄(t)eβ − π̄(s)eβ‖ + ‖π̄(t)eα − π̄(s)eα‖.

As s → t , this tends to zero since π̄ is continuous in the strong-operator
topology (as every continuous unitary representation). Thus, the series (9) of
positive continuous functions converges to a continuous function; by Dini’s
theorem, it converges uniformly on every compact subset of G.

We can assume thatμ(G) = 1. For every ε > 0, there is a compact set F ⊂
G such thatμ(G\F) < ε [8, 14.1]. Now onF , the series converges absolutely
and uniformly to a constant function δαβ (see (8)), so we immediately get (7).

Proposition 4.3. The annihilator of L1(G) is a two-sided ideal inM(G)∗.

Proof. Denote M = M(G)∗ = C0(G)
∗∗. This space can be viewed as

the enveloping von Neumann algebra of C0(G). By the corresponding uni-
versality property, every representation ρ of C0(G) is extended to a normal
representation ρ̄ of M , so that ρ̄(M) is the von Neumann algebra generated
by ρ(C0(G)). Let ρ be the action on L2(G) by pointwise multiplication. Then
ρ̄(M) = L∞(G).

From the other side, consider L1(G) as a closed subspace of M(G), and
let Z = L1(G)

⊥ be the annihilator of L1(G) in M . Then L1(G)
∗ = M/Z.

This space is also isomorphic to L∞(G), so we get the quotient map q : M →
L∞(G). Then ρ̄, q are both weakly continuous and identical on C0(G); since
C0(G) is weakly dense in M , it follows that ρ̄ = q. Thus, ker ρ̄ = ker q =
L1(G)

⊥, so this is a two-sided ideal in M .

Theorem 4.4. An irreducible representation π of M(G) is unitary if and
only if it is generated by a continuous representation π̃ of G by the integral
formula (6).

Proof. With Theorem 4.2, we need to prove one implication only. Let the
restriction of π toG be discontinuous. Then, by Proposition 4.1, π |L1(G) ≡ 0.
By Proposition 4.3, then (π∗γαπγβ)|L1(G) ≡ 0 for every α, β, γ ; thus∑

γ

(π∗γαπγβ)(f ) = 0

for any f ∈ L1(G). This is different from f (1) = ∫
f if

∫
f �= 0, so π is not

unitary.
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Proposition 4.5. Every representation of M(G) is completely bounded.

Proof. We always considerM(G) with the operator space structure as the
dual of C0(G), or, what is the same, as the predual of C0(G)

∗∗. Since C0(G)

is a commutative C∗-algebra, its natural operator structure is the minimal one.
Then onM(G)we have the maximal operator space structure. And in this case,
every bounded linear operator on M(G) is completely bounded.

5. The absolutely continuous ideal

Definition 5.1. Representations ofM∗which are not unitary we will call non-
unitary. Let M×∗ ⊂ M∗ be the common kernel of all irreducible non-unitary
representations. If there are none, letM×∗ = M∗. This is a two-sided ∗-ideal in
M∗, which is called the absolutely continuous ideal of M∗. With the structure
inherited from M∗, M×∗ is a Banach ∗-algebra and an operator space.

Remark 5.2. Every non-degenerate representation of M×∗ extends uniq-
uely to M∗ [17, 11.1.12]. It is easy to show that M∗ is mapped into the weak
closure of the image ofM×∗ , i.e. to the von Neumann algebra generated byM×∗ .
Conversely, if ϕ1, ϕ2 : M∗ → N are two ∗-homomorphisms to a von Neumann
algebra N which agree on M×∗ and are such that ϕi(M∗) is contained in the
weak closure of ϕi(M×∗ ) for i = 1, 2, then ϕ1 = ϕ2.

In the case whenM∗ = M(G), the algebraM×∗ has been studied by J. Taylor
under the notation L1/2(G) [20]. He has proved that L1/2(G) �= L1(G) ifG is
non-discrete. However, L1/2(G) and L1(G) have the same ∗-representations,
what motivates our term: this ideal is a means of ‘recovering’ the absolutely
continuous measures without knowing the Haar measure.

The main property ofM×∗ is that every representation which is non-degene-
rate on it must be unitary. For the duality construction we need more: that
unitary representations do not vanish on it. To guarantee this, we exclude all
degenerate cases by the following definition:

Definition 5.3. Let I 0 be the weakly closed ideal in M generated by
(M×∗ )⊥, that is by the annihilator of M×∗ . Set M0∗ = M×∗ if I 0 �= M and
M0∗ = {0} otherwise.

Proposition 5.4. If M0∗ �= {0} then every unitary representation of M∗ is
non-degenerate on M0∗ .

Proof. Let π : M → B(H) be a unitary representation of M∗. First, it is
nonzero onM0∗ : otherwise we would have παβ ∈ I 0 for all its coefficients, and
by (3) this would imply 1 ∈ I 0, what is not true by assumption.



a duality of locally compact groups 265

Next suppose that π is degenerate onM0∗ . Let L ⊂ H be the null subspace
of π(M0∗ ). Then L is π -invariant, and π |L is also unitary [5, 1.5.4(ii)] and
vanishes on M0∗ , what is impossible.

The main property of the idealM0∗ is presented in the next theorem. Recall
that every (completely bounded) irreducible representation which does not
vanish on M0∗ is unitary by definition.

The main property of the ideal M0∗ is presented in the next theorem.

Theorem 5.5. Every completely bounded representation of M∗ which is
nondegenerate on M0∗ is unitary.

Proof. By Proposition 3.2, there exists U ∈ M ⊗̄ B(H) such that
U(μ,ω) = ω(π(μ)), and all we need is to prove that U is unitary.

Let M be realized on a Hilbert space K . We will need several times the
following representation. Fix x ∈ K , ξ ∈ H and bases (eα) ⊂ K , (fβ) ⊂ H .
Then

〈U(x ⊗ ξ), eα ⊗ fβ〉 = 〈π(μxeα ) ξ, fβ〉,
so that

U(x ⊗ ξ) =
∑
α,β

〈U(x ⊗ ξ), eα ⊗ fβ〉eα ⊗ fβ(10)

=
∑
α,β

〈π(μxeα )ξ, fβ〉 eα ⊗ fβ

=
∑
α

eα ⊗
(∑

β

〈π(μxeα )ξ, fβ〉fβ
)

=
∑
α

eα ⊗ π(μxeα )ξ

(convergence is everywhere in the Hilbert space norm).
For subspaces E,F ⊂ K , let ME,F ⊂ M∗ denote the closed subalgebra

generated by μxy with x ∈ E, y ∈ F . Denote also M0
E,F = ME,F ∩ M0∗ .

These subalgebras are not supposed to be self-adjoint. By 〈ME,F 〉∗, 〈M0
E,F 〉∗

we denote the closed ∗-subalgebras generated byME,F andM0
E,F respectively.

We can suppose that M is realized in its standard form. Then [5, 1.2.8]
the involution on M∗ is given by μ∗xy = μJx,Jy , with an antilinear bijective
isometry J : K → K . For J -invariant subspaces E and F , we have then
〈ME,F 〉∗ = ME,F and 〈M0

E,F 〉∗ = M0
E,F .

Lemma 5.6. A closed subspace E⊗L ⊂ K ⊗H is U -invariant if and only
if π(ME,K)L ⊂ L and π(ME,E⊥)L = {0}.
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Proof. Choose a base (eα)α∈A in K such that the subset (eα)α∈A1 is a
base for E. If E ⊗ L is U -invariant, then, by (10), for every x ∈ E, ξ ∈ L
by orthogonality π(μxeα ) ξ ∈ L for all α, and moreover π(μxeα ) ξ = 0 for
α /∈ A1. It follows that π(ME,K)L ⊂ L and π(ME,E⊥)L = {0}.

Conversely, if π(ME,E⊥) vanishes on L, then for all x ∈ E, ξ ∈ L the sum
in (10) reduces to α ∈ A1 only, and if L is invariant under π(ME,K), then
moreover U(x ⊗ ξ) ∈ E ⊗ L.

Lemma 5.7. For every separable subspace F ⊂ K ⊗H there exist closed
separable subspaces E ⊂ K , L ⊂ H such that F ∪ UF ⊂ E ⊗ L and
(J ⊗ id)F ⊂ E ⊗ L.

Proof. Since F is separable, so is V = F + UF . Pick a sequence (xn)
dense in V and orthonormal bases (eα) ⊂ K , (fβ) ⊂ H . Every xn is contained
in lin{eα ⊗ fβ : α ∈ An, β ∈ Bn} with countable An, Bn. Then for E0 =
lin{eα : α ∈ ∪An} and L = lin{fβ : β ∈ ∪Bn} we have F ∪ UF ⊂ E0 ⊗ L.
The statement now holds with E = E0 + JE0.

Lemma 5.8. Every v ∈ K ⊗H can be embedded into a U -invariant separ-
able subspace E ⊗ L such that JE ⊂ E and L is essential for π(M0

E,K)|L.

Proof. Construct separable subspaces Ek , Lk by induction as follows. Let
E1 ⊗ L1 be any separable subspace containing v. Suppose now that Ek−1,
Lk−1 are constructed for some k � 2. Since H is essential for M0∗ , there
are sequences μ(k)n ∈ M0∗ , ξ (k)n ∈ H such that lin{π(μ(k)n )ξ (k)n } is dense in
Lk−1. Since M is in the standard form, every μ(k)n can be represented as

μ(k)n = μ
x
(k)
n ,y

(k)
n

with x(k)n , y
(k)
n ∈ K . Set E′k = Ek−1 + lin{x(k)n : n ∈ N},

L′k = Lk−1 + lin{ξ (k)n : n ∈ N}. Then μ(k)n ∈ M0
E′k ,K

and ξ (k)n ∈ L′k for all

n. By Lemma 5.7 there are separable subspaces Ek , Lk such that E′k ⊗ L′k ∪
U(E′k ⊗ L′k) ⊂ Ek ⊗ Lk and JE′k ⊂ Ek .

Set E = ∪Ek and L = ∪Lk , then E ⊗ L = ∪(Ek ⊗ Lk) since Ek , Lk are
increasing. We have U(Ek⊗Lk) ⊂ Ek+1⊗Lk+1, JEk ⊂ Ek+1 for all k, what
implies the invariance required in the statement. Moreover, by construction
the set {π(μ)ξ : μ ∈ M0

E,K, ξ ∈ L} is dense in L.

Proof of the Theorem. Take now any v ∈ K⊗H . LetE⊗L ⊂ K⊗H
beU -invariant and separable, such that v ∈ E⊗L, JE ⊂ E andL is essential
for M0

E,K . Together with E, the subspace E⊥ is also J -invariant (since J is
isometric), what implies that ME,E , M0

E,E , ME,E⊥ , ME,K and M0
E,K are self-

adjoint.
Let rL : B(H) → B(L) be the reduction onto L, then we have a ∗-

representation ρ = rL ◦π : ME,K → B(L) (such that ρ(ME,E⊥) = 0). Let A
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be the C∗-algebra generated by ρ(M0
E,K) in B(L). Since ME,E is separable,

so are ρ(ME,E) = ρ(ME,K) ⊃ ρ(M0
E,K) and A .

The identity representation of A is then decomposed into a direct integral
of irreducible representations [3, 8.5.2]: there exist a set P equipped with a
probability measure β; an integrable field of Hilbert spaces � ⊂ {(Hp)p∈P }; a
field of representations σA → B(Hp), p ∈ P , where every σp is irreducible;
and an isometric isomorphism V : L → � = ∫ ⊕

P
Hp dβ(p) such that: if

ξ ∈ L and V (ξ) = ∫
P
ξp dβ(p), then for every a ∈ A we have V (aξ) =∫

P
σp(a)ξp dβ(p).
For every μ ∈ M0

E,K and ξ ∈ L, denoting V ξ = ∫
ξp, we have

(11) V (ρ(μ)ξ) =
∫
P

ρp(μ)ξp dβ(p)

with irreducible representations ρp = σp ◦ ρ of M0
E,K .

Moreover, we can extendρp uniquely and irreducibly toME,K , still denoting
this extension by ρp. We have ρ(ME,K) ⊂ A ′′ [9, 14.1.10], so every V ◦ρ(μ)
with μ ∈ ME,K is decomposable, and one verifies that the formula (11) holds
in fact for all μ ∈ ME,K .

Let [·] denote the norm closure in B(H). For every p, σp ◦ rL is lifted
from [π(M0

E,K)] to an irreducible representation σ̃p of [π(M0∗ )], probably on
a bigger space H̃p ⊃ Hp [3, 2.10]. Next, σ̃p ◦π is extended uniquely fromM0∗
to an irreducible representation ρ̃p of M∗. On M0

E,K , ρ̃p|Hp = ρp; since ρp is
irreducible (and cyclic) on the ideal M0

E,K ⊂ ME,K , its extension to ME,K is
unique, and we have ρ̃p|Hp = ρp on ME,K .

In particular, Hp is invariant under ρ̃p(ME,K), and ρ̃p(ME,E⊥)|Hp =
ρp(ME,E⊥) = {0} (this follows from ρ(ME,E⊥) = {0} and (11)). Being ir-
reducible and nonzero on M0∗ , ρ̃p is unitary, with a unitary generator Up ∈
M ⊗ B(H̃p). By the reasoning above, we can apply Lemma 5.6 and conclude
that E ⊗Hp is Up-invariant.∫

(E ⊗ Hp)p∈P is also a field of Hilbert spaces, isomorphic to E ⊗ L
under the isomorphism Ṽ = id⊗V . Let (eα)α∈A be a base in K such that the
(countable) subset (eα)α∈A1 is a base for E. We have then for x ∈ E, ξ ∈ L
that μxeα ∈ ME,K and so π(μxeα )ξ = ρ(μxeα )ξ . Denote V ξ = ∫

ξp; we have

Ṽ (U(x ⊗ ξ)) = Ṽ
(∑
α∈A1

eα ⊗ π(μxeα ) ξ
)

=
∑
α∈A1

eα ⊗ V (ρ(μxeα ) ξ) =
∑
α∈A1

eα ⊗
∫
(ρp(μxeα ) ξp)
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=
∑
α∈A1

∫
eα ⊗ (ρp(μxeα ) ξp).(12)

The last series converges in the Hilbert norm of
∫
(E ⊗Hp).

From the other hand, for every p we have a formula similar to (10): if
x ∈ E, ξp ∈ Hp, then

Up(x ⊗ ξp) =
∑
α∈A1

eα ⊗ ρp(μxeα ) ξp,

so the series in (12) converges pointwise to
∫
Up(x⊗ ξp). Both imply conver-

gence in measure in the following sense: denote ϕαp = eα ⊗ ρp(μxeα ) ξp, then
for every ε > 0

β

{
p :

∥∥∥(
Ṽ (U(x ⊗ ξ)))

p
−

∑
α∈B

∫
ϕαp

∥∥∥ � ε

}
→ 0,

β

{
p :

∥∥∥Up(x ⊗ ξp)−∑
α∈B

∫
ϕαp

∥∥∥ � ε

}
→ 0

as finite set of indices B ⊂ A1 increases (the reasoning for real-valued func-
tions applies verbatim). It follows that

(
Ṽ (U(x ⊗ ξ)))

p
= Up(x ⊗ ξp) almost

everywhere, that is

Ṽ (U(x ⊗ ξ)) =
∫
Up(x ⊗ ξp) =

(∫
Up

)
(Ṽ (x ⊗ ξ)).

It follows that (Up), or strictly speaking (Up|E⊗Hp), is a measurable field of
operators on

∫
E ⊗Hp, and Ṽ U = ∫

UpṼ . Since
∫
Up is unitary, so is U on

E ⊗ L.
As the initial vector v was arbitrary, we get that U is unitary on H ⊗ K ,

what proves the theorem.

Corollary 5.9. If M0∗ is nonzero, then a completely bounded representa-
tion of M∗ is unitary if and only if it is non-degenerate on M0∗ .

We give next several examples: first some degenerate ones, and then we
consider the case of a locally compact group. The dual algebra will be defined
via C∗(M0∗ ), this is why we mention this C∗-algebra in every case.

Example 5.10. On M = L∞(R) with the usual structure, introduce a new
coinvolution � as �(ϕ) = ϕ. Then M is again a coinvolutive Hopf-von Neu-
mann algebra. On its predual, which is L1(R), we have the usual convolution
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product. The involution ◦ onL1(R) is the pointwise conjugation: forf ∈ L1(R),
ϕ ∈ L∞(R) we have∫

ϕf ◦ =
∫
(�ϕ)∗f =

∫
ϕ(t)f (t) dt,

so f ◦(t) = f (t).
Every s ∈ R defines by the usual formula a character χs ofL1(R), and every

character is of this form. A character is involutive if

χs(f
◦) =

∫
eistf (t) dt = χs(f ) =

∫
e−istf (t) dt,

i.e. if s = 0. For s = 0 the trivial character χ0 is of course unitary. Thus, there
are no non-unitary characters, so M0∗ = M×∗ = M∗. And it is now obvious
that C∗(M∗) = C. This shows in particular that the canonical map of M0∗ to
C∗(M0∗ ) might not be injective.

Example 5.11. Modifying the previous example a little bit, one can show
that an algebra “arising” from one locally compact group can be driven to the
group algebra of another group by our functor.

Namely, let M = L∞(R2). Change the coinvolution to be �(ϕ)(s, t) =
ϕ(s,−t). Then on M∗ = L1(R2) we get as before the usual convolution and
the involution f ◦(s, t) = f (s,−t). The involutive characters are described as
χα(f ) =

∫
eiαtf (s, t) ds dt , α ∈ R and are all unitary, thus we have again

M0∗ = M×∗ = M∗ but C∗(M0∗ ) = C0(R).

Example 5.12. It may happen thatM×∗ = {0}. This means that non-unitary
irreducible representations separate points of M∗.

Let S be a topological semigroup with identity. Call a map V : S → B(H)

a representation of S if V (xy) = V (x)V (y) and ‖V (x)‖ � 1 for all x, y ∈ S.
If x is invertible, it follows that V (x)must be unitary. A representation will be
called continuous if it is a continuous map from S toB(H) in the weak operator
topology. One can show [11, p. 55] that there is a von Neumann algebraW ∗(S)
such that its normal representations correspond bijectively to continuous rep-
resentations of S. Moreover, there is a continuous map with a dense image
F : S → W ∗(S) (where W ∗(S) is considered with the weak topology), and
W ∗(S) has a canonical structure of a Hopf-von Neumann algebra. If S is a loc-
ally compact group, then W ∗(S) is exactly the Ernest group algebra. One can
introduce also coinvolution on W ∗(S) so that it induces the pointwise involu-
tion on the predual B(S) = (W ∗(S))∗ (this is the only detail not mentioned in
[11]). With this structure,W ∗(S) is a coinvolutive Hopf-von Neumann algebra.

By definition, F(x) is an involutive character of B(S) for every x ∈ S.
If F(x) is a unitary element in W ∗(S), then V (x) must be unitary for every
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representation V . Now it is easy to provide an example of S such that F(x) is
not unitary for all x except the identity. For example, if S = [0,+∞) (with
addition), then for every α < 0 we have a non-unitary character V (x) = eαx ,
x ∈ S, so we have V ∈ B(S). If x �= 0, then |V (x)| = |eαx | �= 1, so F(x)
is not unitary for any x �= 0, so this is a non-unitary character of B(S). For
x = 0, the character F(0) is of course unitary. From the other side, F(S \ {0})
separates points of B(S) by continuity, so M×∗ = M0∗ = {0}.

We see also on this example that the set of representations of C∗(M0∗ ) may
be strictly less than the set of unitary representations of M∗.

Proposition 5.13. Let A be a Banach ∗-algebra, and let I ⊂ A be a
two-sided ∗-ideal. Let ϕ : A→ C∗(A) be the canonical map. Then C∗(I ) is
isomorphic to the closure of ϕ(I) in C∗(A).

Proof. Let γA, γI be the maximal C∗-seminorms on A and on I respect-
ively. Clearly γA|I � γI . From the other side, let π : I → B(H) be a
representation of I such that ‖π(x)‖ = γI (x) for all x ∈ I . Then [17, 11.1.12]
π can be extended to a representation π̄ : A → B(H), and we will have
‖π(x)‖ � ‖π̄(x)‖ � γA(x) for all x ∈ I . It follows that γI = γA|I .

SinceC∗(I ) is the completion of I with respect to γI andC∗(A) is complete,
from the isometry ϕ(I) � (I, γI ) it follows the isometry in question.

Proposition 5.14. Let A be a Banach ∗-algebra, and let I ⊂ A be a two-
sided ∗-ideal. Let ϕ : A → W ∗(A) be the canonical map. Then W ∗(I ) is
isomorphic to the weak closure of ϕ(I) in W ∗(A).

Proof. Denote by [ϕ(I)] this weak closure; it is a von Neumann algebra.
Let π be a representation of I . It has a unique extension π̄ to A, and π̄ has a
unique normal lifting to W ∗(A). Its restriction to [ϕ(I)] is a normal lifting of
π , in the same sense that it is normal and equals to π when composed with ϕ.

To show that this lifting is unique, suppose that ρ, σ are two distinct nor-
mal representations of [ϕ(I)] both lifting π . We can assume that π is non-
degenerate, then so are ρ and σ . By [17, 11.1.12], there are unique extensions
ρ̄, σ̄ toW ∗(A) (since [ϕ(I)] is an ideal inW ∗(A)). They are obviously given by
ρ̄(x) = ρ(px) and σ̄ (x) = σ(px), where p ∈ W ∗(A) is a central projection
such that pW ∗(A) = [ϕ(I)]. Thus, these extensions are normal. Since ϕ(A)
is weakly dense in W ∗(A), ρ̄ and σ̄ have different restrictions to ϕ(A). But it
would mean that π has two different extensions to A, what is impossible.

Thus, [ϕ(I)] has the universal property of the von Neumann envelope of I ,
so it is isomorphic to W ∗(I ).

Let A be a Banach ∗-algebra. For a set X ⊂ A, let h(X) be the set of
irreducible representations of A which vanish on X.
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Proposition 5.15. Let A be a Banach ∗-algebra. Let B, B ′ be ideals in A
such that h(B) = h(B ′). Then C∗(B) � C∗(B ′).

Proof. Let ϕ : A→ C∗(A) be the canonical map, and for X ⊂ A let [X]
denote the closure of ϕ(X) in C∗(A). As we have proved above, C∗(B) � [B]
and C∗(B ′) � [B ′]. It is easy to see that [B], [B ′] are ideals in C∗(A).

Let� denote the space of irreducible representations ofC∗(A). For Y ⊂ �,
set k(Y ) = ∩{ker π : π ∈ Y }. In C∗(A), as in every C∗-algebra, I = k(h(I ))
for every closed ideal I [3, 2.9.7]. From assumptions it follows that h([B]) =
h([B ′]).

Thus, C∗(B) � [B] = k(h([B])) = k(h([B ′])) = [B ′] � C∗(B ′).
Proposition 5.16. If M∗ = M(G) or M∗ = L1(G), then C∗(M0∗ ) =

C∗(L1(G)) = C∗(G). IfM∗ = B(G) orM∗ = A(G), thenC∗(M0∗ ) = C0(G).

Proof. For M∗ = M(G), let I = M(G)× be the absolutely continuous
ideal. It contains obviously L1(G) but is strictly larger than L1(G) if G is
non-discrete, see [20]. Since L1(G)

⊥ is a proper ideal in M(G)∗, M0∗ = I .
By the results of Section 4, h(I) = h(L1(G)). Then, by Proposition 5.15,
C∗(I ) = C∗(L1(G)) = C∗(G). If M∗ = L1(G), then M0∗ = M∗ and also
C∗(M0∗ ) = C∗(L1(G)) = C∗(G).

In the second case, the algebra M∗ = B(G) is commutative, so its irre-
ducible representations are characters. A character is unitary if and only if it
is unitary in M = W ∗(G). It was proved by M. Walter [22] that a charac-
ter of B(G) is unitary if and only if it is the evaluation at a point t ∈ G,
and if and only if it does not vanish on A(G). Thus, B(G)× ⊃ A(G) and
h(B(G)×) = h(A(G)). Since A(G)⊥ is a proper ideal in W ∗(G) = B(G)∗,
it follows that B(G)0 = B(G)× and we can again apply Proposition 5.15,
to conclude that C∗(B(G)0) = C∗(A(G)). By Proposition 2.6, C∗(A(G)) =
C0(G). And finally, if M∗ = A(G), then by Corollary 3.8 M∗ = M0∗ , and
C∗(A(G)0) = C∗(A(G)) = C0(G).

This proposition already establishes a duality in the group case:

(13)

C0(G)
∗−−−−−−−−−→ M(G)

C∗(M0∗ ) C∗(M0∗ )

B(G)
∗←−−−−−−−−− C∗(G)

In the next section, we develop this construction to a general framework of
Hopf-von Neumann algebras, and in Section 8, to the category of coinvolutive
C∗-bialgebras.
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6. The dual Hopf-von Neumann algebra

Throughout the section M will denote a coinvolutive Hopf-von Neumann al-
gebra.

Definition 6.1. Set M̂ = W ∗(M0∗ ) be the enveloping von Neumann al-
gebra of M0∗ . There is a canonical map � : M0∗ → M̂ , maybe not injective.
It has a unique extension to M∗, still having range in M̂ (see discussion after
Definition 5.1), which we denote also� : M∗ → M̂ . By the universality prop-
erty, every representation of M0∗ is lifted to a unique normal representation of
M̂ .

By definition, M̂ is a von Neumann algebra. Below we define on it a structure
of a coinvolutive Hopf-von Neumann algebra.

The coinvolution on M̂ is given by the composition with � (cf. [5, 1.6]):

Proposition 6.2. Let �̃ : M∗ → M∗ be defined by �̃(μ) = μ ◦ � for μ ∈
M∗. Then �̃ is a ∗-antihomomorphism, mapsM0∗ to itself, and is uniquely lifted
from M0∗ to a normal ∗-antihomomorphism �̂ of M̂ , which is a coinvolution
on M̂ .

Proof. It is proved, for example, in [5, 1.6] that �̃ is a∗-antimohomorphism
and �̃2 = id.

To prove that M0∗ is invariant under �̃, we should show that π(�̃(M0∗ )) =
0 for every non-unitary irreducible representation π of M∗. Fix π and set
ταβ = �πβα for every α, β. Then, by [5, 1.4.2], these are coefficients of a
representation of M∗, since

�(τ ∗αβ) = �(�π∗βα) = �(παβ) = τβα,
�(ταβ) = �(�πβα) = θ(� ⊗ �)�(πβα)

= θ(� ⊗ �)
(∑

γ

πβγ ⊗ πγα
)

=
∑
γ

�(πγα)⊗ �(πβγ ) =
∑
γ

ταγ ⊗ τγβ,

the series converging ultraweakly. If π acts on a Hilbert spaceH and J : H →
H̄ is the anti-isomorphism onto the conjugate space H̄ , then we can view τ as
acting on H̄ with τ(μ) = Jπ(�̃μ∗)J−1. Since π is by assumption irreducible
and �̃(M∗) = M∗, this implies that τ is irreducible.

If τ were unitary, then by (3) we would have, since � is ultraweakly con-



a duality of locally compact groups 273

tinuous: ∑
γ

π∗γαπγβ =
∑
γ

�(ταγ )
∗�(τβγ ) =

∑
γ

�(τβγ τ
∗
αγ )

= �
(∑

γ

τβγ τ
∗
αγ

)
= �(δαβ) = δαβ,

and similarly
∑
παγ π

∗
βγ = δαβ . Thus,π would be also a unitary representation,

what is not true by assumption. This implies that τ is non-unitary.
Now ταβ(μ) = 0 for all μ ∈ M0∗ , so πβα(�̃μ) = 0 and π(�̃(M0∗ )) = 0.

Since π was arbitrary, this implies that M0∗ is invariant under �̃.
By universality, �̃ is extended to a ∗-antihomomorphism �̂ of M̂ . Similarly

to [5, 1.6.6], one proves that θ(�̂ ⊗ �̂)�̂ = �̂�̃.

Proposition 6.3. The canonical map� : M∗ → M̂ is completely contract-
ive.

Proof. Let π be the direct sum of all irreducible representations of M∗
which are nonzero on M0∗ . They are in bijection with the irreducible repres-
entations of M0∗ . Let us consider π as a map to the C∗-algebra A generated
by π(M∗). By the theory above and [5], π has a unitary generator, so it is
completely contractive.

Now C∗(M0∗ ) is isometrically isomorphic to the closure of π(M0∗ ) in A
(denote this closure by I ) and to the norm closure of�(M0∗ ) in M̂ = W ∗(M0∗ ).
Let ρ : I → M̂ be the latter isomorphism. Clearly I is an ideal in A, so ρ
is extended to a unique representation ρ̄ of A having range in M̂ . As every
homomorphism of C∗-algebras, ρ̄ is completely contractive. Now� = ρ̄ ◦π ,
so � is also completely contractive.

Corollary 6.4. If M̂ is nonzero, then� is a unitary representation ofM∗.

Proof. This follows from Proposition 6.3 and Theorem 5.5, since � is by
assumption non-degenerate on M0∗ .

Remark 6.5. Recall that on the set of representations of M∗, there is a
so called Kronecker product [5, 1.4.3], denoted by ×. We have therefore a
representation�×� ofM∗ whose coefficients are by definition (�×�)∗(ω⊗
υ) = �∗(ω) ·�∗(υ), for ω, υ ∈ M̂∗. Denote by �̂ : M̂ → M̂ ⊗̄ M̂ the normal
lifting of �×� to M̂ , so that �̂� = �×� on M0∗ . In fact, �×� and �̂�
are (by [5, 1.5.5] and Remark 5.4 respectively) both non-degenerate (or null)
onM0∗ and equal on it, so the equality �̂� = �×� holds onM∗ and not just
on M0∗ .

� has the adjoint map�∗ : M̂∗ → M . Let �̂ : M̂∗ → M be the restriction
of �∗ onto M̂∗ ≡ (M̂)∗. Sometimes we will write the corresponding algebra
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M as an index, so that we have �M : M∗ → M̂ and �̂M : M̂∗ → M . Note
that �̂M is always injective, because �M(M∗) is weakly dense in M̂ .

Proposition 6.6. �̂ is a comultiplication on M̂ .

Proof. The statement is trivial if M̂ = {0}, so we assume further that
M̂ is nonzero. First, we need to prove that �̂ is coassociative: (id⊗�̂)�̂ =
(�̂ ⊗ id)�̂. We have �̂� = � × � (see Remark 6.5). This implies that
�̂�̂∗ = (� × �)∗ : (M̂ ⊗̄ M̂)∗ → M . Take now μ ∈ M∗, ωj ∈ M̂∗,
j = 1, 2, 3. First,

((�×�)∗(ω1 ⊗ω2))(μ) = (ω1 ⊗ω2)((�×�)(μ)) = (�̂(ω1) · �̂(ω2))(μ).

Using this identity, we can calculate the following:

(ω1 ⊗ ω2 ⊗ ω3)(id⊗�̂)�̂(�(μ)) = (ω1 ⊗ (�̂∗(ω2 ⊗ ω3)))(�×�)(μ)
= (�̂(ω1) · �̂(�̂∗(ω2 ⊗ ω3)))(μ)

= (�̂(ω1) · �̂(ω2) · �̂(ω3))(μ)

It is easy to see that we come to the same result, starting with (�̂ ⊗ id)�̂
instead, so associativity holds.

Next, �̂ is injective. To show this, take first ω ∈ M̂∗ and μ ∈ M∗. Note that
the unit ofM is a ∗-homomorphism fromM∗ to C, so it has a lifting to M̂ . We
can thus consider 1 as an element of M̂∗. Now

(ω ⊗ 1)(�̂(�μ)) = (ω ⊗ 1)(�×�(μ)) = (�̂(ω) · �̂(1))(μ) = ω(�(μ)).
It follows that (ω ⊗ 1)(�̂(x)) = ω(x) for all x ∈ M̂ . This shows that �̂ is
injective.

By Corollary 6.4, � is unitary, and by [5, 1.5.5], �×� = �̂� is unitary
too. It is then non-degenerate, what implies �̂(1) = 1⊗ 1 (cf. [5, 1.6.5]), and
we conclude that �̂ is a comultiplication on M̂ .

Definition 6.7. The algebra M̂ with the comultiplication and coinvolution
introduced above is called the dual coinvolutive Hopf-von Neumann algebra
of M .

The structure of M̂ gives rise to a structure of a Banach ∗-algebra on
M̂∗. From the equality �̂� = � × � it follows immediately that �̂ is a
∗-homomorphism.

Corollary 6.8. If M̂ is nonzero, then �̂ is a unitary representation of M̂∗.

Proof. LetU ∈ M ⊗̄M̂ be the unitary generator of�. Then θU ∈ M̂ ⊗̄M
is the unitary generator for �̂, where θ is the flip: θU(ω,μ) = U(μ,ω) =
�(μ)(ω) = μ(�̂(ω)) for all μ ∈ M∗, ω ∈ M̂∗.
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Proposition 6.9. Let ϕ : M → N be a morphism of coinvolutive Hopf-
von Neumann algebras. Then there is a dual morphism ϕ̂ : N̂ → M̂ such that
ϕ̂ ◦�N = �M ◦ ϕ∗ on N0∗ . If N̂ �= {0}, then the equality holds on N∗.

Proof. The statement is trivial if N0∗ = {0} so we can assume that N0∗ �=
{0}. By definition, ϕ is ultraweakly continuous, so it has a pre-adjoint ϕ∗ :
N∗ → M∗. Since ϕ is a coalgebra morphism, ϕ∗ is a ∗-homomorphism. Con-
sider ψ = �M ◦ ϕ∗ : N0∗ → M̂ . This is a ∗-homomorphism, so it is lifted to a
normal ∗-homomorphism ϕ̂ : N̂ → M̂ , such that ϕ̂ �N = ψ (on N0∗ ).

If M̂ = {0} then trivially ϕ̂ �N = ψ on N∗. Suppose further that M̂ �= {0}.
Then �̂M is unitary, and (let [·] denote the weak closure) [�̂M(M̂∗)] =
[�̂M(M̂

0∗ )]. By weak continuity, then ϕ(�̂M(M̂∗)) ⊂ [ϕ(�̂M(M̂
0∗ ))]. This

means that ϕ ◦ �̂M is non-degenerate on M̂0∗ , and by Theorem 5.5 it is unitary.
Similarly to Corollary 6.8, then �Mϕ∗ = (ϕ�̂M)∗ is unitary too, and as a
consequence non-degenerate on N0∗ . From the other side, since �N is unit-
ary and ϕ̂ weakly continuous, ϕ̂ �N(N∗) ⊂ ϕ̂ �N(N

0∗ ), so that ϕ̂ �N is also
non-degenerate on N0∗ . Two representations of N∗ which are equal and non-
degenerate on N0∗ must be equal everywhere, so in fact the equality holds on
N∗.

It remains to prove that ϕ̂ is a coalgebra morphism: �M̂ ϕ̂ = (ϕ̂ ⊗ ϕ̂)�N̂ .
Since �M̂ is ultraweakly continuous, this equality is enough to check on
�N(N

0∗ ). Moreover, to check an equality in M̂ ⊗̄ M̂ where �̂ takes its values,
it is enough to consider evaluations on x ⊗ y, with x, y ∈ M̂∗. We have, with
any ν ∈ N0∗ :

(14)

�M̂ ϕ̂(�N(ν))(x ⊗ y) = ϕ̂(�N(ν))(xy) = �M(ϕ∗(ν))(xy)

= ϕ∗(ν)(�̂M(x)�̂M(y))

= ν(ϕ(�̂M(x)) ϕ(�̂M(y))
)
.

By definition, �N̂�N = �N ×�N , so from the other side:

(ϕ̂ ⊗ ϕ̂)�N̂ (�N(ν))(x ⊗ y) = (�N ×�N)(ν)(ϕ̂∗x ⊗ ϕ̂∗y)
= ν((�N)∗(ϕ̂∗x) · (�N)∗(ϕ̂∗y)

)
.

Recalling that ϕ̂ �N = �Mϕ∗, we arrive at the required equality.
Also, �M̂ϕ̂ = ϕ̂�N̂ should hold. Again, it is sufficient to consider ξ =

�N(ν), ν ∈ N0∗ . Then, with the definition of �̂ from Proposition 6.2:

�M̂ϕ̂(�N(ν)) = �M̂�M(ϕ∗(ν)) = �M(�̃M(ϕ∗(ν))).
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For every x ∈ M̂∗ we have further

�M(�̃M(ϕ∗(ν)))(x) = �̃M(ϕ∗(ν))(�̂M(x)) = ν
(
ϕ(�M�̂M(x))

)
= ν(�N(ϕ(�̂M(x)))

) = �̃N (ν)((�N)∗(ϕ̂∗(x))
)

= ϕ̂(�N�̃N(ν))(x) = ϕ̂�̂N (�N(ν))(x),

as required.

Remark 6.10. If we have two morphisms ϕ : M → N and ψ : N → L,
then on L0∗ we have:

ψ̂ ◦ ϕ ◦�L = �M ◦ (ψ ◦ ϕ)∗ = �M ◦ ϕ∗ ◦ ψ∗,
ϕ̂ ◦ ψ̂ ◦�L = ϕ̂ ◦�N ◦ ψ∗.

If N̂ �= {0}, then we can use the fact that ϕ̂◦�N = �M ◦ϕ∗ onN∗ and conclude
that both displayed lines are equal, so that ψ̂ ◦ ϕ = ϕ̂ ◦ ψ̂ . If N̂ = {0}, then
necessarily ϕ̂ ◦ ψ̂ = 0 but it might happen that ψ̂ ◦ ϕ �= 0.

We have finally the following duality theorem:

Theorem 6.11. Let H0 be the category of coinvolutive Hopf-von Neumann
algebras, and let H be the full subcategory of H0 which has as its objects all

M ∈ H0 such that M � ̂̂
M; such M is called reflexive. Then ̂ : H → H

is a contravariant duality functor, i.e. ̂̂
M � M for every M ∈ H . Moreover,

there is a faithful contravariant functor A : LCG → H , where LCG is
the category of locally compact groups, such that Â (G) = A (Ĝ) for every
abelian group G ∈ LCG .

Proof. The subcategory H is full by Proposition 6.9, and̂is by definition
a duality functor.

For every G ∈ LCG , set A (G) = C0(G)
∗∗. It is known that this is a

faithful contravariant functor from LCG to H0 (or it follows from [5, 5.1.4] and
Remark 6.10). And it follows from Proposition 5.16 that C0(G)

∗∗ is reflexive,
i.e. A (G) ∈ H .

7. Particular cases

In this section we consider first the Kac algebras and relate their duals in the
sens above to the usual duals (Proposition 7.1). Next, Propositions 7.2 and 7.3
establish relations between M and its second dual. This allows to describe, in
Theorems 7.4 and 7.6, commutative and co-commutative algebras in the range
of our functor. These are nothing but the algebras C0(G)

∗∗ or C∗(G)∗∗, where
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G is a locally compact group. In particular, this describes commutative and co-
commutative reflexive algebras. In [11, 1.7] there is a similar characterization,
but only for reflexive algebras, and with some additional assumptions in the
co-commutative case.

The following proposition has been already proved by E. Kirchberg [11].
In his definition, the “unitary dual” W ∗U(M∗) of M is a coinvolutive Hopf-
von Neumann algebra whose normal representations are in bijection with all
unitary representations ofM . IfM is a Kac algebra, then our M̂ coincides with
the unitary dual of Kirchberg. In general, they may differ. In the Example 5.12
M̂ = {0} while W ∗U(M∗) = C.

Proposition 7.1. LetN be a Kac algebra. Let L be the Kac dual ofN and

let M = N̂ . Then M = W ∗(N∗) and L̂ = M̂ = ̂̂
N = W ∗(L∗). In particular,̂̂

M � M .

Proof. Recall that a Kac algebra is supposed to be nonzero. It is known
that every representation ofN∗ has a unitary generator [5, 3.1.4], soN0∗ = N∗.
By definition, M = N̂ is then W ∗(N∗), the von Neumann envelope of N∗.

Clearly L is a quotient of M: L = ϕ(M), where ϕ is a morphism of coin-
volutive Hopf-von Neumann algebras. Then L∗ = (ker ϕ)⊥ can be considered
as an ideal ofM∗. If we prove that L∗ = M0∗ , it will follow that M̂ = W ∗(L∗).

From one side, if an irreducible representation π is zero on L∗, then its
coefficients are contained in (L∗)⊥ = ker ϕ ⊂ M . Since ker ϕ is a proper
ideal, π is non-unitary.

It remains to show, from the other side, that every irreducible representation
of M∗ is unitary if its restriction to L∗ is nonzero. In its turn, it is enough to
show that the extension τ to M∗ of the universal representation �L : L∗ →
W := W ∗(L∗) is unitary.

It is known [5, 3.2.2(ii)] that �L is quasi-equivalent to the regular rep-
resentation � : L∗ → N (based on the Haar weight), so that it can be ex-
pressed through � as (� × �L)(ρ) = Z(�(ρ)), ρ ∈ L∗, where Z is an
isomorphism of von Neumann algebras. One can express then the generator
U of �L explicitly via the generator W of � (as in [5, Theorem 3.1.4]):
U ⊗ 1 = (1⊗ θ)(W ∗ ⊗ 1)(θ ⊗ 1)(1⊗Z)W in L⊗W ∗(L)⊗N , with the help
of the flip θ on W ∗(L)⊗ L.

On N∗, we have a representation �L ◦ λ : N∗ → L (which is unitary as
every non-degenerate representation of N∗). It factors through M = W ∗(N∗):
�L ◦λ = σ ◦�N with some morphism σ : M → L. Taking pre-adjoints in this
equality, we get (�L ◦ λ)∗ = (�N)∗σ∗ = �̂Nσ∗, with σ∗ : L∗ → M∗ being an
injection. From the other side, (�L ◦ λ)∗ = � [5, 3.7.3], and we see that �̂N

is an extension of � to M∗, both representations being unitary.
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Now both �̂N × τ and Z�̂N , as representations of M∗, extend the same
non-degenerate representation � × �L = Z� of L∗. It follows that they are
equal. Let W̃ be the generator of �̂N . Then a formula similar to that of U
gives the generator Ũ of τ : Ũ ⊗ 1 := (1⊗ θ)(W̃ ∗ ⊗ 1)(θ ⊗ 1)(1⊗ Z)W̃ , in
M ⊗W ∗(L)⊗N , and this proves the proposition.

IfM is a finite-dimensional Kac algebra, thenW ∗(M∗) = M̂ is also equal to
the Kac dual ofM (and is also finite-dimensional), see [5, 6.6.9]. In particular,̂̂
M = M .

IfM is infinite-dimensional, then its second dual is usually not equal toM .
But, by Proposition 7.1, the first dual equals to the third dual, and so the first
dual is a reflexive algebra in the sense of our duality.

The table below summarizes results on the duals of classical algebras, given
by Propositions 5.16 and 7.1.

Algebra Dual

L∞(G)
W ∗(G)

C0(G)
∗∗

L (G)
C0(G)

∗∗
W ∗(G)

It is clear that not every coinvolutive Hopf-von Neumann algebra is reflexive.
For instance, this is shown by the Example 5.12 of a nontrivial algebra with

M̂ = 0. Below we establish some relations between M and ̂̂
M in the general

case.

Proposition 7.2. For every M , there is a morphism DM : ̂̂
M → M such

that DM ◦ �M̂(x) = �̂M(x) for all x ∈ M̂0∗ . If ̂̂
M �= {0}, then this equality

holds actually on M̂∗.

Proof. Denote N = M̂ . We know that there is a canonical map �̂M :
N∗ → M . In particular, �̂M |N0∗ is a ∗-homomorphism, so it is extended to
a normal homomorphism of its von Neumann envelope: DM : N̂ → M . By
definition, DM satisfies the equality in the statement for x ∈ N0∗ = M̂0∗ .

If M̂0∗ = {0}, then DM = 0 is by definition a morphism. Assume further
that M̂0∗ �= {0}. Then �̂M is unitary and non-degenerate on M̂0∗ . In the equality
DM ◦�M̂ = �̂M , we have then two representations, equal and non-degenerate
on M̂0∗ ; it follows that they are equal on M̂∗. The preadjoint map (�̂M)∗ :
M∗ → M̂ is by definition �M , but from the equality above it is equal also to
(�N)∗ ◦ (DM)∗ = �̂N ◦ (DM)∗.
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To prove thatDM is a morphism of coinvolutive Hopf-von Neumann algeb-
ras, one should check the equality

�M DM(x)(μ⊗ ν) = (DM ⊗DM)�N̂(x)(μ⊗ ν)
for every x ∈ N̂ and μ, ν ∈ M∗. By density, it is sufficient to consider
x = �N(y) with y ∈ N0∗ . Then we have:

�M DM�N(y)(μ⊗ ν) = �M �̂M(y)(μ⊗ ν) = �̂M(y)(μν)

= y(�M(μν)) = y(�M(μ)�M(ν))

= y(�̂N((DM)∗(μ)) · �̂N((DM)∗(ν)))
= �N(y)((DM)∗(μ) · (DM)∗(ν))
= �N̂(x)((DM)∗(μ)⊗ (DM)∗(ν))
= (DM ⊗DM)(�N̂(x))(μ⊗ ν).

Also, �MDM = DM�N̂ should hold. Using the definition of the dual coin-
volution in Proposition 6.2 (and its notations, so that �̃M(μ) = μ ◦ �M ), we
have for every y ∈ M̂0∗ , μ ∈ M∗ (note that �̃N (y) ∈ M̂0∗ by Proposition 6.2):

�MDM�N(y)(μ) = �M�̂M(y)(μ) = �̂M(y)(�̃M(μ)) = y(�M(�̃M(μ)))

= y(�M̂(�M(μ))) = �̃N (y)(�M(μ)) = �̂M(�̃N(y))(μ)

= DM�N�̃N(y)(μ) = DM�N̂�N(y)(μ).

This shows that �MDM = DM�N̂ on�N(N
0∗ ), and by density on the whole of̂̂

M .

One should note that DM need not be neither injective nor surjective. As

a first example, take the algebra M from the Example 5.12. Then ̂̂
M = 0, so

DM = 0. For a second example, take M = L∞(G). Then ̂̂
M = C0(G)

∗∗, and
DM is a quotient map but is not injective.

However, if M is a dual of another algebra, then DM is right invertible:

Proposition 7.3. If M = N̂ for some N and ̂̂
M �= {0}, then there is a

morphism EM : M → ̂̂
M , such that DM ◦EM = idM . If

̂̂̂
M �= {0} then EM is

unital.

Proof. By the previous proposition, there is a morphism DN : ̂̂
N → N

such that DN ◦ �N̂(x) = �̂N(x) for all x ∈ N̂∗. By Proposition 6.9, there

exists a dual morphism EM = D̂N : N̂ = M → (
̂̂
N)̂ = ̂̂

M .
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By assumption M̂ = ̂̂
N �= 0, and in this case it was proved in Proposition 7.2

that�N = �̂M ◦(DN)∗ onN∗. Moreover, since ̂̂
M �= {0}, we haveDM ◦�M̂ =

�̂M on M∗.
By Proposition 6.9, since M �= {0}, we have EM ◦�N = �M̂ ◦ (DN)∗ on

N∗. Then

DM ◦ (EM ◦�N) = (DM ◦�M̂) ◦ (DN)∗ = �̂M ◦ (DN)∗ = �N.

Thus, DM ◦ EM = idM on �N(N∗). Since this latter is weakly dense in M ,
this equality holds everywhere.

This implies, in particular, thatDM is surjective, and that �̂M(M̂
0∗ ) is weakly

dense in M . If
̂̂̂
M �= {0} (in fact, even if ̂̂

M �= {0}), then we can apply this

reasoning to M̂ and conclude that �̂M̂(
̂̂
M0∗) is weakly dense in M̂ .

Suppose now that
̂̂̂
M �= {0} butEM(1) = p �= 1. ThenEM(M) is contained

in the weakly closed ∗-subalgebra I := p
̂̂
Mp. Consider the representation

π = �M ◦ EM∗ : ̂̂
M∗ → M̂ . Its coefficients for ω ∈ M̂∗ are: ω(π(μ)) =

�M ◦EM∗(μ)(ω) = μ(EM ◦ �̂M(ω)), so the space of coefficients is contained
in the subalgebra I . Then the equality (3) cannot hold, soπ is not unitary. From

Propositions 6.3 and 5.5 it follows that π is degenerate on ̂̂
M0∗, or equivalently

π(
̂̂
M∗) is not contained in the weak closure of π( ̂̂

M0∗). In particular, π( ̂̂
M0∗) is

not weakly dense in M̂ .

Consider now ÊM :
̂̂̂
M → M̂ . From one side, ÊM� ̂̂

M
= �MEM∗ = π on̂̂

M0∗, and since ÊM is weakly continuous, ÊM(
̂̂̂
M) is contained in the closure

of ÊM(� ̂̂
M
(
̂̂
M0∗)) = π(

̂̂
M0∗), so ÊM is not surjective. From the other side,

ÊMD̂M = (DMEM)̂ = ÎM = IM̂ so ÊM must be surjective. This contradiction
proves that EM is in fact unital.

Theorem 7.4. LetM �= {0} be commutative andM � N̂ for someN . Then
there is a locally compact group G such that M � C0(G)

∗∗.

Proof. By construction,M = A∗∗ for theC∗-algebraA = C∗(N0∗ ), which
is obviously commutative. Let G be the spectrum of A, so that A � C0(G).
This is a locally compact space in the topology TA induced by the Gelfand
transform of A. Since�(N0∗ ) is norm dense in A, the same topology is gener-
ated by the Gelfand transform of �(N0∗ ).

Moreover, any subalgebra of C(G) containing C0(G) generates the same
topology TA on G. Thus, the topology generated by �(N∗) is not stronger
than TA, and with considerations above, it is equal to TA.
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G is identified with a subset in N , as the set of unitary characters of N∗
(by definition of N0∗ , they do not vanish on N0∗ ). In fact, the characters of
N∗ are given by group-like elements u ∈ N , i.e. such that �(u) = u ⊗ u,
and a character is unitary if u is unitary in N and �(u) = u∗. Then G is a
subgroup of the unitary group of N , so G has a natural group structure. The
group operations are continuous in theN∗-weak topology TN . But as we have
shown above, it equals TA. Thus, the group operations are continuous on G
in TA, so G is a locally compact group.

Now, since A � C0(G), we get M = W ∗(A) � C0(G)
∗∗. From Proposi-

tions 6.6 and 6.2 we conclude that this is also an isomorphism of coinvolutive
Hopf-von Neumann algebras.

Corollary 7.5. If {0} �= M � ̂̂
M and M is commutative, then M �

C0(G)
∗∗ for a locally compact group G.

Theorem 7.6. LetM be cocommutative (i.e.M∗ is commutative) andM �
N̂ for someN . Then, if M̂ �= {0}, there is a locally compact groupG such that
M � W ∗(G).

Proof. As it is proved above, either M̂ = {0} or there is a locally compact
group G such that M̂ � C0(G)

∗∗. Assume further the second case. Then, by
definition of the dual algebra, G is the set of unitary characters of M∗ which
do not vanish on M0∗ , so we can consider G as a subset of M . More precisely,
fix an imbedding ı : G→ M .

At the same time, every g ∈ G is a character of C0(G) = C∗(M0∗ ) and can
be considered as an element of M̂∗ = M(G): this is, of course, the measure
δg concentrated on g. In our notation, this means that �̂M(δg) = ı(g). Under

�M̂ , δg is mapped into W ∗(G) = ̂̂
M in such a way that DM�M̂(δg) = ı(g)

(by definition of DM ).

For the morphism EM : M → ̂̂
M � W ∗(G), denote ug = EM(ı(g)).

Since
̂̂̂
M = C0(G)

∗∗ �= {0}, EM is a unital ∗-homomorphism, so every ug is
unitary. Since EM is a coalgebra morphism, we have �W ∗(G)(ug) = (EM ⊗
EM)(�M(ı(g))) = ug⊗ug , so ug is a character ofB(G). This together implies
that ug = �M̂(δh) for some h ∈ G.

By Proposition 7.3,DM(ug) = DM(EM(ı(g))) = ı(g), but at the same time
DM(ug) = DM(�M̂(δh)) = ı(h). Thus, g = h. This implies that EM is in fact
surjective, so this is an isomorphism, and the theorem is proved.

8. C∗-algebraic version

In this section we give a C∗-version of our construction. The class of C∗-
algebras we use is different from coinvolutive Hopf C∗-algebras of Enock and
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Vallin [6] and from Hopf C∗-algebras of Vaes and Van Daele [21]. We will use
a different term for this reason. Some ideas of [21] are used.

Here we will need definitions related to multiplier algebras, see Subsec-
tion 2.2. Recall that for a homomorphism ϕ : A→ M(B), we denote by ϕ̄ its
unique (A∗, B∗)-continuous extension to M(A).

In the following definition the comultiplication is (as usual) a map� : A→
M(A ⊗̄A). We can considerM(A ⊗̄A) as a subset ofW ∗(A ⊗̄A), and in this
way we get a lifting of � to a map from W ∗(A) to W ∗(A ⊗̄ A). Composed
with the canonical epimorphism p : W ∗(A ⊗̄ A) → W ∗(A) ⊗̄ W ∗(A), this
gives a morphism �̃ : W ∗(A)→ W ∗(A) ⊗̄W ∗(A).

Definition 8.1. A coinvolutive C∗-bialgebra is a C∗-algebra A with a
comultiplication� : A→ M(A ⊗̄A) and coinvolution � : A→ A such that:

(i) � is a non-degenerate ∗-homomorphism, such that its lifting
�̃ : W ∗(A)→ W ∗(A) ⊗̄W ∗(A) is injective;

(ii) � is a ∗-antihomomorphism such that �2 = id;

(iii) (�⊗ id)� = (id⊗�)� and (� ⊗ �) = θ̄��, where θ is the flip map.

It is well known that with the natural morphisms of C∗-algebras, the cor-
respondence G �→ C0(G) for a locally compact group G is not functorial:
not every group homomorphism ϕ : G→ H gives by the pullback a morph-
ism from C0(H) to C0(G). This justifies another definition: a morphism ϕ ∈
Mor(A,B) between two C∗-algebras is a homomorphism ϕ : A → M(B).
Some authors [14] require even more: that ϕ is non-degenerate. But in our
setting, as well as for morphisms of von Neumann algebras, it is better to al-
low degenerate morphisms too. This should agree with the Hopf structure as
follows:

Definition 8.2. LetA, B be coinvolutiveC∗-bialgebras. A morphism ϕ ∈
Mor(A,B) is a ∗-homomorphism ϕ : A→ M(B) such that

(i) �̄Bϕ = (ϕ ⊗ ϕ)�A, where the range of ϕ ⊗ ϕ is understood to be in
M(B) ⊗̄M(B) ⊂ M(B ⊗̄ B);

(ii) �̄Bϕ = ϕ�A.

Proposition 8.3. LetAbe a coinvolutiveC∗-bialgebra. Then the enveloping
von Neumann algebraW ∗(A) ofA has a canonical structure of a coinvolutive
Hopf-von Neumann algebra. If ϕ : A → B is a morphism of coinvolutive
C∗-bialgebras, then its normal lifting ϕ̄ : W ∗(A)→ W ∗(B) is a morphism of
coinvolutive Hopf-von Neumann algebras.

Proof. Since � is non-degenerate and p is unital, �̃ is also unital. Coas-
sociativity of � together with uniqueness of these liftings implies that �̃ is
coassociative too.
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Again by universality, � has a lifting to an anti-automorphism of W ∗(A).
By continuity, 8.1(ii) implies the corresponding equality for W ∗(A).

It follows immediately from the identities 8.2(i, ii) that ϕ̄ is a morphism of
coinvolutive Hopf-von Neumann algebras.

Next proposition is a simple fact on C∗-algebras. In the duality context it
was applied, for example, in [21].

Proposition 8.4. Let A be a C∗-algebra, and let pa � 0 be an increasing
net in A. If pα converges A∗-weakly in A, then it converges in norm.

Proof. Consider pα as functions on the state space S of A. Then they are
continuous, nonnegative and increasing. Moreover, this net converges point-
wise to some p. Since S is compact, pα → p uniformly on it. This implies
that in A, it converges in norm.

Theorem 8.5. Let A be a coinvolutive C∗-bialgebra and let M be its en-
veloping (Hopf)-von Neumann algebra. Then Â = C∗(M0∗ ) has a canonical
structure of a coinvolutive C∗-bialgebra.

Proof. It is enough to prove the theorem in the nontrivial case Â �= {0}.
We have seen in Section 6 that W ∗(Â) is a coinvolutive Hopf-von Neumann
algebra, and that �̂ maps Â to itself. We need next to prove that �̂(Â) ⊂
M(Â ⊗̄ Â).

Recall that there is a map � : M∗ → M̂ extending the canonical inclusion
of M0∗ into its envelope. Suppose that M acts on a Hilbert space H , and let
(eα) be an orthonormal basis of H . Denote ϕαβ = �(μeβeα ).

Consider �̂ : M̂∗ → M as a representation of M̂∗. It is unitary by Propos-
ition 6.8. The coefficients of �̂ are (ϕαβ). It follows that for all α, we have
Â∗-weak convergence in M̂:

(15)
∑
β

ϕαβϕ
∗
αβ =

∑
β

ϕ∗βαϕβα = 1.

By the [5, 1.4.2], �̂(ϕαα) =∑
β ϕαβ ⊗ ϕβα for every α.

To show that �̂(ϕαα) ∈ M(Â ⊗̄ Â), it suffices to show that (a ⊗ b)�̂(ϕαα)
and �̂(ϕαα)(a ⊗ b) are both in Â ⊗̄ Â for all a, b ∈ Â.

Fix α and denote pβ = ϕαβ . Since M0∗ is an ideal in M∗, for every a ∈
�(M0∗ ) we have apβ ∈ �(M0∗ ) ⊂ Â. By continuity, Âpβ ⊂ Â, and similarly
pβÂ ⊂ Â. Thus, pβ ∈ M(Â).

Fora ∈ Â, from (15) we conclude that
∑

β apβp
∗
βa
∗ = aa∗ for everya ∈ Â,

weakly in Â. Applying Proposition 8.4, we see that this series converges also
in norm.
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For b ∈ Â, we have ϕ∗βαb∗bϕβα � ‖b‖2ϕ∗βαϕβα . Then
∑

β ϕ
∗
βαb
∗bϕβα �

‖b‖2 ∑
β ϕ
∗
βαϕβα = ‖b‖2, so the net of partial sums of this series is bounded.

Now we see that the series
∑

β aϕαβ ⊗ bϕβα converges in the Haagerup

norm on Â⊗ Â: for every finite subset B of indices,∥∥∥∑
β∈B

aϕαβ ⊗ bϕβα
∥∥∥2

h
�

∥∥∥∑
β∈B

aϕαβϕ
∗
αβa
∗
∥∥∥∥∥∥∑

γ∈B
ϕ∗γαb

∗bϕγα
∥∥∥.

Hence, (a ⊗ b)�̂(ϕαα) ∈ Â ⊗h Â ⊂ Â ⊗̄ Â. The other inclusion is proved
identically. Thus, �̂(ϕαα) is in M(Â ⊗̄ Â) (and even in M(Â ⊗h Â)). By
polarization, we get this inclusion also for �̂(ϕαβ) for all α, β. Since the set of
all μeβeα is total in M∗ and as a consequence the set of all ϕαβ is weakly total
in M̂ , we get by continuity that �̂(Â) ⊂ �̂(M̂) is also in M(Â ⊗̄ Â). Clearly
�̂ is non-degenerate.

The equalities 8.1(ii) we have for granted, since they are valid in W ∗(A).

Definition 8.6. Let A be a coinvolutive C∗-bialgebra. The coinvolutive
C∗-bialgebra Â = C∗(M0∗ ) will be called the dual coinvolutive C∗-bialgebra
of A.

Now we can translate the von Neumann algebraic duality theorem into the
language of C∗-algebras.

Theorem 8.7. Let CCB0 be the category of coinvolutive C∗-bialgebras,
and let CCB be the full subcategory of CCB0 which has as its objects all

A ∈ CCB0 such that A � ̂̂
A. Then̂is a contravariant functor on CCB, such

that:̂C0(G) = C∗(G) and ̂C∗(G) = C0(G), for every locally compact group
G;

Â � (Â)̂̂ for every Kac C∗-algebra A;

if A �= {0} is commutative and A � B̂ for some B, then A is isomorphic to
C0(G) for some locally compact group G;

if Â �= {0}, A is co-commutative and A � B̂ for some B, then A is
isomorphic to C∗(G) for some locally compact group G.

Proof. The only statement to check is that the dual of a morphism is always
well defined. Let ϕ : A→ M(B) be a morphism with A,B ∈ CCB. Denote
� = �∗(�), � = �∗(�). Composing with the canonical imbedding i :
M(B) → �, we get a homomorphism i ◦ ϕ : A → � and its normal lifting
ϕ̄ : �→ �.

Consider the dual (in the sense of Proposition 6.9) morphism ϕ̂ : �̂→ �̂.
By definition, ϕ̂ ◦ �� = �� ◦ ϕ̄∗ on ��∗ . It follows that ϕ̂(b) ∈ ��(�∗) for
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every b ∈ ��(�
�∗ ). Now, ��(α)Â ⊂ Â for every α ∈ �∗, since ��∗ is an

ideal in �∗. This implies that ϕ̂(B̂) is in M(Â), and the rest is obvious.

In conclusion, we will draw one more example of a dual algebra: A =
SU2(n), considered with the unitary antipode. The dual is in this case very
degenerate, Â = C. If we used the usual antipode, the second dual would
be again A, but this would require changing the definitions as to allow the
unbounded antipode. This will be done elsewhere.

Example 8.8. LetA = SUq(2)be theWoronowicz’s quantum SU(2)group
[24], q ∈ R, q �= 0. As every compact quantum group, A is the closed linear
span of the coefficients uαij of irreducible finite-dimensional corepresentations
πα of A. In the case of SUq(2), one can index them by α ∈ N0, so that the
dimension of πα is 2α + 1 (see, e.g., [12, 4.2]).

The usual antipode S is given by S(uαij ) = uα∗ji , and does not extend to a
bounded map on A. However, one can define [15, §5] a unitary map � on A
by �(uαij ) = qj−iuα∗ji such that A becomes a coinvolutive C∗-bialgebra in the
sense above (see [12, 4.2.4] to extend the formula for � from the fundamental
representation to any α).

Let h be the Haar state on A. In A∗, we have a family of coordinate func-
tionals eαij such that eαij (u

β

kl) = δαβδikδjl . As it follows from the orthogonality
of uαij with respect to the scalar product 〈a, b〉 = h(b∗a) [12, Theorem 17],
they may be expressed in terms of h as

(16) eαij (x) = h((uαij )∗x)/h((uαij )∗uαij ).
These functionals separate points of A: for x ∈ A, vanishing on every eαij
means being orthogonal to every uαij , and it is known that the set of uαij is
total in A with 〈·, ·〉. Denote by Iα the linear span of eαij for fixed α. This is a
finite-dimensional ideal in A∗, so every irreducible representation π is either
zero or irreducible on Iα . In the latter case it quickly follows that π = πα .
Moreover, if a representation vanishes on every Iα then it is zero since ∪Iα
separates points of A.

If we calculate the involution of eαij using the antipode�, we get that (eαij )
∗ =

qi−j eαji . At the same time, πα(eαij )
∗ = πα(eαji), so that πα is not involutive if

dim πα > 1. Thus, πα is unitary only if πα(μ) = μ(1).
Thus, we have only one (one-dimensional) unitary representation, and non-

unitary representations do not separate points of A∗; thus, Â = C.
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