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COACTIONS ON CUNTZ-PIMSNER ALGEBRAS

S. KALISZEWSKI, J. QUIGG and D. ROBERTSON

Abstract
We investigate how a correspondence coaction gives rise to a coaction on the associated Cuntz-
Pimsner algebra. We apply this to recover a recent result of Hao and Ng concerning Cuntz-Pimsner
algebras of crossed products of correspondences by actions of amenable groups.

1. Introduction

The Cuntz-Pimsner algebra OX associated to a C∗-correspondence X is a
C∗-algebra whose representations encode the Cuntz-Pimsner covariant rep-
resentations of X. These were introduced by Pimsner in [13], and generalize
both crossed products by Z and graph algebras when the underlying graph
has no sources. Further work by Katsura in [9] has expanded the class of
Cuntz-Pimsner algebras to include graph algebras of arbitrary graphs, crossed
products by partial automorphisms and topological graph algebras.

As in the cases of the above mentioned C∗-algebras, it is fruitful to invest-
igate how C∗-constructions involving OX can be studied in terms of corres-
ponding constructions involving X. For example, it has been understood for
some time how actions of groups on OX can be studied in terms of actions
on X, see [5] for example. In this paper we show how coactions of a locally
compact groupG on OX can be studied in terms of suitable coactions ofG on
X.

In order to say what “suitable” should mean, we appeal to [7], where we
showed that the passage fromX to OX is functorial for certain categories. Spe-
cifically, the target category is C∗-algebras and nondegenerate homomorph-
isms into multiplier algebras, and the domain category is correspondence and
Cuntz-Pimsner covariant homomorphisms (defined in [7]). To see how this
should be applied, note that a coaction of G on OX is a nondegenerate ho-
momorphism ζ : OX → M(OX ⊗ C∗(G)) satisfying appropriate conditions,
and similarly a coaction of G on X (as defined in [4]) is a homomorphism
σ : X → M(X ⊗ C∗(G)). In order to apply the techniques from [7], we
want ζ to be determined by σ . If we knew that OX ⊗ C∗(G) were equal to
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OX⊗C∗(G), the Cuntz-Pimsner algebra of the external-tensor-product corres-
pondence, then the main result of [7] would tell us that we should require the
correspondence homomorphism σ to be Cuntz-Pimsner covariant in the sense
defined there. As it happens, due to the nonexactness of minimal C∗-tensor
products, we need a slightly stronger version of Cuntz-Pimsner covariance,
specifically suited for correspondence coactions. We work this out in an ab-
stract setting toward the end of Section 2, then we use this to prove our main
result concerning coactions on Cuntz-Pimsner algebras at the start of Section 3,
after which we go on to develop a few tools dealing with inner coactions on
correspondences.

In Section 4 we show how to recognize covariant representations of the
coaction ζ on OX using the coaction σ on X. In Theorem 4.4 we show that
under a mild technical condition the crossed product OX �ζ G is isomorphic
to the Cuntz-Pimsner algebra OX�σG of the crossed-product correspondence.
We list in Lemma 4.6 a couple of situations in which the technical condition is
guaranteed to hold. We also show that, as in the C∗-case, the crossed product
of X by an inner coaction is isomorphic to the tensor product X ⊗ C0(G),
and that if G is amenable and acts on X then the dual coaction on the crossed
productX�G satisfies our stronger version of Cuntz-Pimsner covariance. For
all we know the amenability hypothesis in the latter result is unnecessary, but
anyway we will apply this in Section 5 to recover a recent result of Hao and
Ng [5]; they show that if G acts on X then OX � G ∼= OX�G, and we give a
substantially different proof using the techniques of the present paper.

2. Preliminaries

We are mainly interested in correspondences over a single coefficient C∗-
algebra, but occasionally we will find it convenient to allow the left and right
coefficient C∗-algebras to be different. We denote an A − B correspondence
X by (A,X,B) and write ϕA : A → L (X) for the left action of A on X. If
A = B we denote the A-correspondence X by (X,A). All correspondences
will be assumed nondegenerate in the sense that A ·X = X.

We record here the notation and results that we will need.
The multiplier correspondence of a correspondence (A,X,B) isM(X) :=

LB(B,X), which is an M(A) − M(B) correspondence in a natural way.
If (A,X,B) and (C, Y,D) are correspondences, a correspondence homo-
morphism (π,ψ, ρ) : (A,X,B) → (M(C),M(Y ),M(D)) comprises ho-
momorphisms π : A → M(C) and ρ : B → M(D) and a linear map
ψ : X→ M(Y) preserving the correspondence operations. The homomorph-
ism (π,ψ, ρ) is nondegenerate if span{ψ(X) · D} = Y and both π and
ρ are nondegenerate, and then there is a unique strictly continuous exten-
sion (π,ψ, ρ) : (M(A),M(X),M(B)) → (M(C),M(Y ),M(D)), and also
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a unique nondegenerate homomorphism ψ(1) : K (X) → L (Y ) such that
(ψ(1), ψ, ρ) : (K (X),X,B) → (L (Y ),M(Y ),M(D)) is a nondegenerate
correspondence homomorphism. The diagram

(2.1)

A π−−−−−−→ M(B)

ϕA ϕB

L (X) −−−−−→
ψ(1)

L (Y )

commutes, and ψ(1) is determined by

ψ(1)(θξ,η) = ψ(ξ)ψ(η)∗.
IfA = B,C = D, andπ = ρ, we write (ψ, π) : (X,A)→ (M(Y ),M(C)).
We refer to [7, Section 2] for an exposition of the properties of the “relative

multipliers” from [3, Appendix A]. Very briefly, if (X,A) is a nondegenerate
correspondence and κ : C → M(A) is a nondegenerate homomorphism, the
C-multipliers of X are

MC(X) := {m ∈ M(X) : κ(C) ·m ∪m · κ(C) ⊂ X}.
The main purpose of relative multipliers is the following extension theorem [3,
Proposition A.11]: letX and Y be nondegenerate correspondences over A and
B, respectively, let κ : C → M(A) and σ : D→ M(B) be nondegenerate ho-
momorphisms. If there is a nondegenerate homomorphismλ : C → M(σ(D))

such that
π(κ(c)a) = λ(c)π(a) for c ∈ C, a ∈ A,

then for any correspondence homomorphism (ψ, π) : (X,A) → (MD(Y ),

MD(B)) there is a unique C-strict to D-strictly continuous correspondence
homomorphism (ψ, π) making the diagram

(X,A)
(ψ,π)−−−−−−−→ (MD(Y ),MD(B))

!

(ψ,π)

(MC(X),MC(A))

commute.
We will also need to use the method of [7] to construct homomorphisms

of Cuntz-Pimsner algebras from correspondence homomorphisms. Following
Katsura [8], we define an ideal JX of A by

JX := {a ∈ A : ϕA(a) ∈ K (X) and ab = 0 for all b ∈ ker ϕA}.
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For a C∗-correspondence (X,A), we denote the associated Cuntz-Pimsner
algebra by OX, and universal covariant representation by (kX, kA) : (X,A)→
OX; see [7] for details.

We say a homomorphism (ψ, π) : (X,A) → (M(Y ),M(B)) is Cuntz-
Pimsner covariant if

(i) ψ(X) ⊂ MB(Y ),

(ii) π : A→ M(B) is nondegenerate,

(iii) π(JX) ⊂ M(B; JY ), and

(iv) the diagram

(2.2)

JX
π |−−−−−−→ M(B; JY )

ϕA| ϕB |

K (X) −−−−−→
ψ(1)

MB(K (Y ))

commutes,

where, for an ideal I of a C∗-algebra A, we follow [1] by defining

M(A; I ) = {m ∈ M(A) : mA ∪ Am ⊂ I }.
By [7, Corollary 3.6], when (ψ, π) is Cuntz-Pimsner covariant there is a unique
homomorphism Oψ,π making the diagram

X
(ψ,π)−−−−−−→ MB(Y )

kX kY

OX −−−−−−→
Oψ,π

MB(OY )

commute.
If G is a locally compact group and (X,A) is a correspondence we will

write
MC∗(G)(A⊗ C∗(G)) = M1⊗C∗(G)(A⊗ C∗(G))
MC∗(G)(X ⊗ C∗(G)) = M1⊗C∗(G)(X ⊗ C∗(G)).

Recall that a coaction of G on a C∗-algebra A is a nondegenerate injective
homomorphism δ : A → M(A ⊗ C∗(G)) satisfying the coaction identity
given by the commutative diagram

(2.3)

A δ−−−−−−−−−−−−−−−−→ M(A⊗ C∗(G))
δ δ⊗id

M(A⊗ C∗(G)) −−−−−−−→
id⊗δG

M(A⊗ C∗(G)⊗ C∗(G)),
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and satisfying the coaction-nondegeneracy condition

span{δ(A)(1⊗ C∗(G))} = A⊗ C∗(G).

Remarks 2.1. (1) Note that, as has become customary in recent years,
we have built coaction-nondegeneracy into the definition of coaction, and of
course it follows that δ(A) ⊂ MC∗(G)(A⊗ C∗(G)).

(2) The coaction identity requires δ to be nondegenerate as a homomorph-
ism, so that it extends uniquely to multipliers. However, if we know that
δ(A) ⊂ MC∗(G)(A ⊗ C∗(G)), then, even without knowing δ is nondegen-
erate, the coaction identity makes sense when the upper right and lower left
corners of the commutative diagram (2.3) are replaced byMC∗(G)(A⊗C∗(G)).

(3) Coaction-nondegeneracy implies nondegeneracy as a homomorphism.
However, an under-appreciated result of Katayama [8, Lemma 4], implies that,
assuming we know δ satisfies all the other coaction axioms except for coaction-
nondegeneracy, the closed span of the products δ(A)(1 ⊗ C∗(G)) is actually
a C∗-subalgebra of A⊗C∗(G), and hence to show coaction-nondegeneracy it
suffices to verify the seemingly weaker condition

(2.4) δ(A)(1⊗ C∗(G)) generates A⊗ C∗(G) as a C∗-algebra.

A nondegenerate homomorphism μ : C0(G) → M(A) implements an
inner coaction δμ on A via

δμ(a) = Adμ⊗ id(wG)(a ⊗ 1),

where
wG ∈ M(C0(G)⊗ C∗(G)) = Cb(G,M(C∗(G)))

is the (strictly continuous) function given by the canonical embedding of G
into the unitary group of M(C∗(G)). The trivial coaction δ1 = idA⊗1 on A
is implemented by the homomorphism

f 	→ f (e)1M(A) for f ∈ C0(G).

A coaction (A, δ)makes A into a Banach module over the Fourier-Stieltjes
algebra B(G) = C∗(G)∗ via

f · a = Sf ◦ δ(a) for f ∈ B(G), a ∈ A,
where Sf : A⊗ C∗(G)→ A is the slice map, which we sometimes alternat-
ively denote by id⊗f . Frequently we restrict the module action to the Fourier
algebra A(G), which is dense in C0(G).
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The Kronecker product (see, e.g., [2, Théorème 1.5], [10, p. 118], [12,
Definition A.2], [14, Definition 6.6]) of two nondegenerate homomorphisms
μ and ν of C0(G) in M(A) and M(B), respectively, is defined by

μ× ν := μ⊗ ν ◦ α,
where α : C0(G)→ Cb(G×G) = M(C0(G)⊗ C0(G)) is given by

α(f )(s, t) = f (st).
Letting

u = μ⊗ id(wG) and v = ν ⊗ id(wG),

we have
(μ× ν)⊗ id(wG) = u13v23.

A covariant homomorphism of a coaction (A, δ) is a pair (π, μ) : (A,
C0(G)) → M(B) comprising nondegenerate homomorphisms π : A →
M(B) and μ : C0(G)→ M(B) such that

π ⊗ id ◦ δ(a) = Adμ⊗ id(wG)(π(a)⊗ 1).

A crossed product of (A, δ) is a triple (A�δG, jA, jG) consisting of a covariant
homomorphism (jA, jG) : (A,C0(G))→ M(A�δ G) that is universal in the
sense that for every covariant homomorphism (π, μ) : (A,C0(G))→ M(B)

there is a unique nondegenerate homomorphism π × μ : A �δ G → M(B)

making the diagram

A
jA−−−→M(A�δ G)

jG←−−− C0(G)

π π×μ! μ

M(B)

commute. It follows thatA�δG = span{j (A)jG(C0(G)). The crossed product
is unique up to isomorphism, and one construction is given by the regular
representation

((id⊗λ) ◦ δ, 1⊗M) : (A,C0(G))→ M(A⊗K (L2(G))),

where λ is the left regular representation of G and M : C0(G)→ B(L2(G))

is the multiplication representation.
For correspondence coactions, we follow [4], but again build in coaction-

nondegeneracy:
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Definition 2.2. A coaction of G on a correspondence (A,X,B) is a
nondegenerate correspondence homomorphism

(δ, σ, ε) : (A,X,B)→ (
M(A⊗ C∗(G)),M(X ⊗ C∗(G)),M(B ⊗ C∗(G)))

such that:

(i) δ and ε are coactions on A and B, respectively;

(ii) σ satisfies the coaction identity given by the commutative diagram

X σ−−−−−−−−−−−−−−−−→ M(X ⊗ C∗(G))
σ σ⊗id

M(X ⊗ C∗(G)) −−−−−−−→
id⊗δG

M(X ⊗ C∗(G)⊗ C∗(G));
(iii) σ satisfies the coaction-nondegeneracy condition

span{(1⊗C∗(G)) ·σ(X)} = span{σ(X) · (1⊗C∗(G))} = X⊗C∗(G).

We also say that σ is δ − ε compatible.

Remarks 2.3. (1) Remarks similar to those following the definition of
C∗-coaction apply to correspondence coactions. For example, coaction-non-
degeneracy implies that σ(X) ⊂ MC∗(G)(X⊗C∗(G)) and σ is nondegenerate
as a correspondence homomorphism. In fact, it implies a stronger form of
nondegeneracy, namely that, in addition to span{σ(X) · (X ⊗ C∗(G))} =
X ⊗ C∗(G), we also have the symmetric property on the other side:

span{(X ⊗ C∗(G)) · σ(X)} = X ⊗ C∗(G).
(2) On the other hand, nondegeneracy of σ as a correspondence homo-

morphism implies one half of the coaction-nondegeneracy, namely span{σ(X)·
(1⊗ C∗(G))} = X ⊗ C∗(G), by coaction-nondegeneracy of ε.

(3) σ will be isometric since ε is injective.

Frequently we will have A = B and δ = ε, in which case we say that
(σ, δ) is a coaction on (X,A); of course the case X = A = B and σ = δ = ε
reduces to aC∗-coaction. Being particularly nice correspondence homomorph-
isms, coactions on C∗-correspondences are easily shown to be Cuntz-Pimsner
covariant:

Lemma 2.4. A coaction (σ, δ) of G on a correspondence (X,A) is Cuntz-
Pimsner covariant as a correspondence homomorphism if and only if

δ(JX) ⊂ M(A⊗ C∗(G); JX⊗C∗(G)).
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Proof. By definition of correspondence coaction, the correspondence ho-
momorphism (σ, δ) : (X,A)→ (M(X⊗C∗(G)),M(A⊗C∗(G))) is nonde-
generate, and the inclusion σ(X) ⊂ MC∗(G)(X⊗C∗(G)) trivially implies that
σ(X) ⊂ MA⊗C∗(G)(X ⊗ C∗(G)). Combining with [7, Lemma 3.2] gives the
result.

However, as a consequence of the nonexactness of minimal C∗-tensor pro-
ducts, we will need a variation on Lemma 2.4, and we state it in abstract form,
not involving coactions:

Lemma 2.5. Let (X,A) be a correspondence, let C be a C∗-algebra, and
let (ψ, π) : (X,A) → (MC(X ⊗ C),MC(A ⊗ C)) be a nondegenerate cor-
respondence homomorphism. If

π(JX) ⊂ M(A⊗ C; JX ⊗ C),
then the composition

(
kX ⊗ id ◦ ψ, kA ⊗ id ◦ π)

: (X,A)→ M(OX ⊗ C)
is Cuntz-Pimsner covariant.

Proof. By checking on elementary tensors one verifies that, on the ideal
JX ⊗ C of A⊗ C, we have

(kX ⊗ id)(1) ◦ ϕA⊗C = (k(1)X ⊗ id) ◦ (ϕA ⊗ id)

= k(1)X ◦ ϕA ⊗ id

= kA ⊗ id,

and so, by strict continuity, on M(A⊗ C; JX ⊗ C) we have

(kX ⊗ id)(1) ◦ ϕA⊗C = kA ⊗ id.

Thus, on JX we have
(
kX ⊗ id ◦ ψ)(1) ◦ ϕA = (kX ⊗ id)(1) ◦ ψ(1) ◦ ϕA

= (kX ⊗ id)(1) ◦ ϕA⊗C ◦ π,
by [7, Lemma 3.3], since (ψ, π) is nondegenerate,

= kA ⊗ id ◦ π,
which is Cuntz-Pimsner covariance.

Here is the connection between Lemmas 2.4 and 2.5:
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Lemma 2.6. Let (X,A) be a correspondence, let C be a C∗-algebra, and
let (X ⊗ C,A⊗ C) be the external-tensor-product correspondence. Then

JX ⊗ C ⊂ JX⊗C,
with equality if C is exact.

Proof. We use the characterization [9, Paragraph following Definition 2.3]
of JX as the largest ideal ofA thatϕA maps injectively into K (X), and similarly
for JX⊗C . By [16, Corollary 3.38], for example, we have

K (X ⊗ C) = K (X)⊗ C,
so

ϕA⊗C = ϕA ⊗ idC .

Since ϕA maps JX injectively into K (X), ϕA ⊗ id maps JX ⊗ C injectively
into K (X)⊗C. Therefore ϕA⊗C maps JX ⊗C injectively into K (X⊗C), so
JX ⊗ C ⊂ JX⊗C .

Now assume that C is exact, and let x ∈ JX⊗C . Since C is exact, it has
the slice map property, so to show that x ∈ JX ⊗ C it suffices to show that
(id⊗ω)(x) ∈ JX for all ω ∈ C∗. To verify the first property of JX, we have

ϕA((id⊗ω)(x)) = (id⊗ω) ◦ (ϕA ⊗ id)(x),

which is in K (X) because

(ϕA ⊗ id)(x) = ϕA⊗C(x) ∈ K (X ⊗ C) = K (X)⊗ C.
For the other property of JX, let a ∈ ker φA. Factor ω = c ·ω′ with c ∈ C and
ω′ ∈ C∗. Then

((id⊗ω)(x))a = (id⊗c · ω′)(x(a ⊗ 1))

= (id⊗ω′)(x(a ⊗ c)),
which is 0 because

a ⊗ c ∈ ker ϕA ⊗ C = ker ϕA⊗C.

Recall from [4, Proposition 3.9] that if (δ, σ, ε) is a coaction of G on a
correspondence (A,X,B), then the crossed product correspondence (A �δ

G,X �σ G,B �ε G) is defined by

X �σ G = span{jX(X) · jBG(C0(G))} ⊂ M(X ⊗K (L2(G))),
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where
jX = (id⊗λ) ◦ σ
jBG = 1M(B) ⊗M.

X �σ G is an A �δ G − B �ε G correspondence in a natural way when we
use the regular representations

(jA, j
A
G) : (A,C0(G))→ M(A⊗K (L2(G)))

(jB, j
B
G) : (B,C0(G))→ M(B ⊗K (L2(G))).

[4, Lemma 3.10] proves that there is a coaction μ of G on K (X) such that

• ϕA : A→ M(K (X)) is δ − μ equivariant;

• there is an isomorphism K (X�σ G) ∼= K (X)�μ G that carries ϕA�δG

to ϕA �G.

In fact, the an examination of the construction used in [4] reveals that the
coaction on K (X) is none other than

σ (1) : K (X)→ MC∗(G)(K (X)⊗ C∗(G)) = MC∗(G)(K (X ⊗ C∗(G)),
so that the left-module action of A�δ G on X �σ G can be regarded as

ϕA �G : A�δ G→ M(K (X)�σ (1) G).

Remark 2.7. Note that

(jA, jX, jB) : (A,X,B)→ (
M(A�δ G),M(X �σ G),M(B �ε G)

)

is a correspondence homomorphism. In fact, it is a bit more: since jA and jB
are nondegenerate by the standard theory of C∗-coactions, it follows from [4,
Lemma 3.10] that he correspondence homomorphism (jA, jX, jB) is nonde-
generate.

Lemma 2.8. Let (σ, δ) be a coaction ofG on a correspondence (X,A). Then
the canonical correspondence homomorphism (jX, jA) : (X,A)→ (M(X�σ

G),M(A�δ G)) is Cuntz-Pimsner covariant if and only if

jA(JX) ⊂ M(A�δ G; JX�σG).

Proof. By Remark 2.7 and [7, Lemma 3.2], it suffices to observe that

jX(X) ⊂ MA�δG(X �σ G).

Although the following concept does not appear in [4], we will find it useful:
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Definition 2.9. Let (δ, σ, ε) be a coaction of G on a correspondence
(A,X,B), let (π,ψ, ρ) : (A,X,B) → (M(D),M(Y ),M(E)) be a corres-
pondence homomorphism, and let μ : C0(G) → M(D) and ν : C0(G) →
M(E) be homomorphisms. Then (π,ψ, ρ, μ, ν) is covariant for (δ, σ, ε) if

(i) (π, μ) and (ρ, ν) are covariant for (A, δ) and (B, ε), respectively;

(ii) for all ξ ∈ X we have

ψ ⊗ id ◦ σ(ξ) = μ⊗ id(wG) · (ψ(ξ)⊗ 1) · ν ⊗ id(wG)
∗.

Remark 2.10. Note that covariance of (π, μ) and (ρ, ν) entails that π , μ,
ρ, ν are all nondegenerate.

If A = B, δ = ε, π = ρ, and μ = ν, we say (ψ, π, μ) is covariant for
(σ, δ).

3. Coactions on Cuntz-Pimsner algebras

Proposition 3.1. Let (σ, δ) be a coaction of G on a correspondence (X,A).
If

δ(JX) ⊂ M(A⊗ C∗(G); JX ⊗ C∗(G)),

then there is a unique coaction ζ of G on OX making the diagram

(X,A)
(σ,δ)−−−−−−−→ (MC∗(G)(X ⊗ C∗(G)),MC∗(G)(A⊗ C∗(G)))

(kX,kA) (kX⊗id,kA⊗id)

OX
!−−−−−−−−−−−−
ζ

MC∗(G)(OX ⊗ C∗(G))
commute.

Proof. By definition of correspondence coaction, the correspondence ho-
momorphism (σ, δ) is nondegenerate, and so, by Lemma 2.5, our hypothesis
guarantees that the composition

(
kX ⊗ id ◦ σ, kA ⊗ id ◦ δ)

is Cuntz-Pimsner covariant. Thus there is a unique homomorphism ζ making
the diagram commute, and moreover ζ is injective because δ is.
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For the coaction identity, we have

ζ ⊗ id ◦ ζ ◦ kX = ζ ⊗ id ◦ ζX
= ζ ⊗ id ◦ kX ⊗ id ◦ σ
= ζ ◦ kX ⊗ id ◦ σ
= kX ⊗ id ◦ σ ⊗ id ◦ σ
= kX ⊗ id⊗ id ◦ σ ⊗ id ◦ σ
= kX ⊗ id⊗ id ◦ id⊗ζG ◦ σ
= id⊗ζG ◦ kX ⊗ id ◦ σ
= id⊗ζG ◦ ζ ◦ kX,

and similarly
ζ ⊗ id ◦ ζ ◦ kA = id⊗ζG ◦ ζ ◦ kA,

and it follows that
ζ ⊗ id ◦ ζ = id⊗ζG ◦ ζ.

For the coaction-nondegeneracy, routine computations show that

span{ζX(X)(1⊗ C∗(G))} = kX(X)⊗ C∗(G),
and of course

span{ζA(A)(1⊗ C∗(G))} = kA(A)⊗ C∗(G),
and hence the property (2.4) holds.

We now develop a few tools involving inner coactions on correspondences,
for use elsewhere.

Proposition 3.2. LetX be anA−B correspondence, and letμ : C0(G)→
M(A) and ν : C0(G)→ M(B) be nondegenerate homomorphisms, and let δμ

and δν be the associated inner coactions on A and B. Then there is a δμ − δν
compatible coaction σ on X given by

σ(ξ) = μ⊗ id(wG) · (ξ ⊗ 1) · ν ⊗ id(wG)
∗.

Proof. Write

u = μ⊗ id(wG) and v = ν ⊗ id(wG).

Then u ∈ M(A⊗ C∗(G)), v ∈ M(B ⊗ C∗(G)), and

X ⊗ 1 ⊂ M(X ⊗ C∗(G)),
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so certainly σ maps into M(X ⊗ C∗(G)).
To see that (δ, σ, ε) is a correspondence homomorphism, we compute, for

a ∈ A and ξ, η ∈ X:

σ(a · ξ) = u · (a · ξ ⊗ 1) · v∗
= u · ((a ⊗ 1) · (ξ ⊗ 1)

) · v∗
= u(a ⊗ 1)u∗u · (ξ ⊗ 1) · v∗
= δ(a) · σ(ξ),

and

〈σ(ξ), σ (η)〉 = 〈u · (ξ ⊗ 1) · v∗, u · (η ⊗ 1) · v∗〉
= 〈(ξ ⊗ 1) · v∗, (η ⊗ 1) · v∗〉 (because u is unitary)

= v〈ξ ⊗ 1, η ⊗ 1〉v∗
= v(〈ξ, η〉 ⊗ 1)v∗

= ε(〈ξ, η〉).
We show coaction-nondegeneracy:

span{(1⊗ C∗(G)) · σ(X)}
= span{(1⊗ C∗(G))u · (X ⊗ 1) · v∗}
= span{(1⊗ C∗(G))u · (μ(C0(G) ·X ⊗ 1) · v∗}
= span{(1⊗ C∗(G))u(μ(C0(G))⊗ 1) · (X ⊗ 1) · v∗}
= span{(1⊗ C∗(G))(μ(C0(G))⊗ 1)u · (X ⊗ 1) · v∗}

(because u ∈ M(μ(C0(G))⊗ C∗(G)))
= span{(μ(C0(G))⊗ C∗(G))u · (X ⊗ 1) · v∗}
= span{(μ(C0(G))⊗ C∗(G)) · (X ⊗ 1) · v∗}

(because u is a unitary multiplier)

= (X ⊗ C∗(G)) · v∗
= (X ⊗ C∗(G)),

because v is unitary, and similarly

span{σ(X) · (1⊗ C∗(G))} = X ⊗ C∗(G).
This also implies that σ is nondegenerate as a correspondence homomorphism.
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For the coaction identity, we have

σ ⊗ id ◦ σ(ξ) = u12 · σ(ξ)13 · v∗12

= u12u13 · (ξ ⊗ 1⊗ 1) · v∗13v
∗
12

= id⊗δG(u) · id⊗δG(ξ ⊗ 1) · id⊗δG(v)∗
= id⊗δG ◦ σ(ξ),

where the third equality expresses the fact that u and v are “corepresentations”
of C0(G), and where the first equality follows from linearity, density, strict
continuity, and the following computation with an elementary tensor η ⊗ c ∈
X � C∗(G):

σ ⊗ id(η ⊗ c) = σ(η)⊗ c
= u · (η ⊗ 1) · v∗ ⊗ c
= (u⊗ 1) · (η ⊗ 1⊗ c) · (v ⊗ 1)∗

= u12 · (η ⊗ c)13 · v∗12.

Definition 3.3. In the situation of Proposition 3.2, we call the coaction σ
on X inner, and say that it is implemented by the pair (μ, ν).

Corollary 3.4. Let (X,A) be a correspondence, let δ be a coaction of
G on A, and let μ : C0(G) → L (X) be a nondegenerate representation
such that the pair (ϕA, μ) is a covariant representation of the coaction (A, δ).
Define a unitary

u = μ⊗ id(wG) ∈ L (X ⊗ C∗(G)).
Then there is an δ − δ1 compatible coaction σ on X given by

σ(ξ) = u · (ξ ⊗ 1).

Proof. Temporarily regard X as a K (X)−A correspondence. Letting δμ

be the inner coaction on K (X) implemented by μ, by Proposition 3.2 the
formula for σ defines a δμ − δ1 compatible coaction on X. Since (ϕA, μ) is
covariant for (A, δ), it follows that σ is also δ − δ1 compatible.

Corollary 3.5. Let (X,A) be a correspondence, and let μ : C0(G) →
L (X) be a nondegenerate representation commuting with ϕA. Then there is a
coaction ζ of G on OX such that for ξ ∈ X and a ∈ A we have

ζ ◦ kX(ξ) = kX ⊗ id
(
μ⊗ 1(wG) · (ξ ⊗ 1)

)
ζ ◦ kA(a) = kA(a)⊗ 1.
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Proof. Since μ commutes with ϕA, the hypotheses of Corollary 3.4 are
satisfied when δ is taken to be the trivial coaction δ1, and we let σ be the
resulting δ1 − δ1 compatible coaction on X. Then Proposition 3.1 gives a
suitable coaction ζ of G on OX, because the trivial coaction δ1 maps JX into

JX ⊗ 1 ⊂ M(A⊗ C∗(G); JX ⊗ C∗(G)).

4. Crossed products

Lemma 4.1. Let (σ, δ) be a coaction ofG on a correspondence (X,A) such that
δ(JX) ⊂ M(A⊗C∗(G); JX ⊗C∗(G)), and let (ψ, π, μ) : (X,A,C0(G))→
M(B) be a (σ, δ)-covariant homomorphism, with (ψ, π) Cuntz-Pimsner cov-
ariant. Then the pair

(ψ × π,μ) : (OX,C0(G))→ M(B)

is covariant for the associated coaction ζ of G on OX.

Proof. π andμ are nondegenerate, hence so isψ×π . Letu = μ⊗ id(wG).
We must show that for x ∈ OX we have

(ψ × π)⊗ id ◦ ζ(x) = Ad u
(
(ψ × π)(x)⊗ 1

)
,

and it suffices to show this on generators kX(ξ) and kA(a) for ξ ∈ X and
a ∈ A. For for the first, we have

(ψ × π)⊗ id ◦ ζ ◦ kX(ξ) = (ψ × π)⊗ id ◦ kX ⊗ id ◦ σ(ξ)
= ψ ⊗ id ◦ σ(ξ)
= u(ψ(ξ)⊗ 1)u∗

= Ad u
(
(ψ × π) ◦ kX(ξ)⊗ 1

)
,

and for the second,

(ψ × π)⊗ id ◦ ζ ◦ kA(a) = (ψ × π)⊗ id ◦ kA ⊗ id ◦ δ(a)
= π ⊗ id ◦ δ(a)
= Ad u(π(a)⊗ 1)

= Ad u
(
(ψ × π) ◦ kA(a)⊗ 1

)
.

Lemma 4.2. Let (σ, δ) be a coaction of G on a correspondence (X,A), let
(ψ, π, μ) : (X,A,C0(G))→ (MB(Y ),M(B)) be a (σ, δ)-covariant corres-
pondence homomorphism, and let (ρ, τ ) : (Y, B) → (MD(Z),M(D)) be a
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correspondence homomorphism with τ nondegenerate. Then the composition

(ρ ◦ ψ, τ ◦ π, τ ◦ μ) : (X,A,C0(G))→ (MD(Z),M(D))

is covariant for (σ, δ).

Proof. First of all, since π , μ, and τ are nondegenerate, τ ◦ π is also
nondegenerate, and (τ ◦π, τ ◦μ) is covariant for (A, δ) by the standard theory
of C∗-coactions.

Routine calculations show that

(ρ ◦ ψ, τ ◦ π) : (X,A)→ (M(Z),M(D))

is a correspondence homomorphism. Also, since ψ and ρ map into MB(Y )

and MD(Z), respectively, it is easy to see that ρ ◦ ψ maps X into MD(Z).
Lettingu = τ ◦ μ⊗ id(wG), the following calculation completes the proof:

for ξ ∈ X we have

(τ ◦ ψ)⊗ id ◦ σ(ξ) = τ ⊗ id ◦ ψ ⊗ id ◦ σ(ξ)
= τ ⊗ id

(
μ⊗ id(wG) · (ψ(ξ)⊗ 1) · μ⊗ id(wG)

∗)
= u · (τ ◦ ψ(ξ)⊗ 1) · u∗.

Corollary 4.3. Let (σ, δ) be a coaction ofG on a correspondence (X,A)
such that δ(JX) ⊂ M(A ⊗ C∗(G); JX ⊗ C∗(G)), and let (ψ, π, μ) : (X,A,
C0(G))→ (MB(Y ),M(B))be a (σ, δ)-covariant homomorphism, with (ψ,π)
Cuntz-Pimsner covariant. Then the pair

(Oψ,π , kB ◦ μ) : (OX,C0(G))→ M(OY )

is covariant for the associated coaction ζ .

Proof. Applying Lemma 4.2 to the Toeplitz representation (kY , kB) : (Y,
B)→ OY , we see that

(kY ◦ ψ, kB ◦ π, kB ◦ μ) : (X,A,C0(G))→ M(OY )

is covariant for (σ, δ).
By [7, Theorem 3.5] the composition (kY ◦ψ, kB ◦ π) is a Cuntz-Pimsner-

covariant Toeplitz representation of (X,A) in M(OY ). Then, since (ψ, π) is
Cuntz-Pimsner covariant, Lemma 4.1 with B = OY tells us that

(
(kY ◦ ψ)× (kB ◦ π), kB ◦ μ

)
: (OX,C0(G))→ M(OY )
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is ζ -covariant. But by construction (see [7, Corollary 3.6]) we have

(kY ◦ ψ)× (kB ◦ π) = Oψ,π .

Theorem 4.4. Let (σ, δ) be a coaction of G on a correspondence (X,A)
such that δ(JX) ⊂ M(A ⊗ C∗(G); JX ⊗ C∗(G)), and let ζ be the associ-
ated coaction on OX, as in Proposition 3.1. If the canonical correspondence
homomorphism

(jX, jA) : (X,A)→ (M(X �σ G),M(A�δ G))

is Cuntz-Pimsner covariant, then

OX �ζ G ∼= OX�σG.

Remark 4.5. We do not know whether the hypothesis of Cuntz-Pimsner
covariance of (jX, jA) is redundant; in Corollary 4.6 below we will show that
it is satisfied under certain conditions.

Proof of Theorem 4.4. Our strategy is to construct a covariant homo-
morphism

(ρ, μ) : (OX,C0(G))→ M(OX�σG),

and show that the integrated form ρ × μ is an isomorphism of OX �ζ G onto
OX�σG. For the covariant homomorphism we will need a homomorphism of
OX, and to get this we will apply functoriality: since (jX, jA) is Cuntz-Pimsner
covariant, by [7, Corollary 3.6] there is a unique nondegenerate homomorph-
ism

OjX,jA : OX → M(OX�σG)

making the diagram

(X,A)
(jX,jA)−−−−−−−−→ (MA�δG(X �σ G),M(A�δ G))

(kA,kA) (kX�σ G,kA�δG
)

OX −−−−−−−−−−−−−−−−−→
OjX,jA

M(OX�σG)

commute.
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We next show that (jX, jA, jG) is covariant for (σ, δ):

jX ⊗ id ◦ σ = (
id⊗λ ◦ σ )⊗ id ◦ σ

= id⊗λ⊗ id ◦ σ ⊗ id ◦ σ
= id⊗λ⊗ id ◦ id⊗δG ◦ σ
= Ad

(
1⊗M ⊗ id(wG)

) ◦ id⊗λ⊗ id ◦ (σ ⊗ 1)

= Ad 1⊗M ⊗ id(wG) ◦
(
id⊗λ ◦ σ ⊗ 1

)
= Ad jG ⊗ id(wG) ◦ (jX ⊗ 1),

where the fourth equality follows by linearity, density, and strict continuity
from the following computation with elementary tensors: for η ∈ X and t ∈ G
we have

id⊗λ⊗ id ◦ id⊗δG(η ⊗ t) = id⊗λ⊗ id(η ⊗ δG(t))
= η ⊗ λ⊗ id ◦ δG(t)
= η ⊗ λt ⊗ t
= η ⊗ AdM ⊗ id(wG)(λt ⊗ 1)

= Ad
(
1⊗M ⊗ id(wG)

)
(η ⊗ λt ⊗ 1)

where in turn the fourth equality follows from the following: for f ∈ B(G)
we have

Sf
(
(λt ⊗ t)M ⊗ id(wG)

) = λtSf ·t(M ⊗ id(wG)
)

= λtMf ·t
= Mfλt

= Sf
(
M ⊗ id(wG)

)
λt

= Sf
(
M ⊗ id(wG)(λt ⊗ 1)

)
,

so that
(λt ⊗ t)M ⊗ id(wG) = M ⊗ id(wG)(λt ⊗ 1).

It now follows from Corollary 4.3 that the pair
(
OjX,jA , kA�δG ◦ jG

)

is a covariant homomorphism of the coaction (OX, ζ ) inM(OX�σG), and thus
we get a homomorphism

� := OjX,jA ×
(
kA�δG ◦ jG

)
: OX �ζ G→ M(OX�σG).
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It remains to show the following:

(i) � maps into OX�σG;

(ii) � is surjective;

(iii) � is injective.

For (i), for ξ ∈ X, a ∈ A, and f ∈ C0(G) we have

OjX,jA ◦ kX(ξ)kA�δG ◦ jG(f ) = kX�σG(jX(ξ))kA�δG(jG(f ))

= kX�σG(jX(ξ) · jG(f ))
and

OjX,jA ◦ kA(a)kA�δG ◦ jG(f ) = kA�δG(jA(a))kA�δG(jG(f ))

= kA�δG

(
jA(a)jG(f )

)
.

For (ii), we see from the above that the image of � contains

kX�σG

(
jX(X) · jG(C0(G))

)
and kA�δG

(
jA(A) · jG(C0(G))

)
,

and hence contains

kX�σG(X �σ G) and kA�δG(A�δ G),

which generate OX�σG.
For (iii) we apply [15, Proposition 3.1]: we must show that�◦jOX is faithful

and that there is an action α of G on OX�σG such that � is ζ̂ − α equivariant.
To see that � ◦ jOX is faithful, we apply the Gauge-Invariant Uniqueness

Theorem: since
� ◦ jOX ◦ kA = OjX,jX ◦ kA = jA

is faithful, it suffices to show that for all z ∈ T, ξ ∈ X, and a ∈ A we have

γz ◦� ◦ jOX ◦ kX(ξ) = z� ◦ jOX ◦ kX(ξ)
γz ◦� ◦ jOX ◦ kA(a) = � ◦ jOX ◦ kA(a).

For the first, we have

γz ◦� ◦ jOX ◦ kX(ξ) = γz ◦ OjX,jA ◦ kX(ξ)
= γz ◦ kX�σG ◦ jX(ξ)
= zkX�σG ◦ jX(ξ)
= z� ◦ jOX ◦ kX(ξ),

where the third equality follows from

γz ◦ kX�σG = zkX�σG.
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The second is similar, this time using γz ◦ kA�δG = kA�δG.
We now turn to the action of G. First note that there is an action β of G on

X �σ G given by

βt
(
jX(ξ) · jG(f )

) = jX(ξ) · jG ◦ rtt (f ) for ξ ∈ X, f ∈ C0(G),

where rt is the action of G on C0(G) given by right translation. This in turn
gives an action α of G on OX�σG such that

αt ◦ kX�σG = kX�σG ◦ βt
αt ◦ kA�δG = kA�δG ◦ βt .

Finally, we check the ζ̂ − α covariance:

αt ◦� ◦ jOX = αt ◦ OjX,jA

= αt ◦ kX�σG ◦ jX
= kX�σG ◦ βt ◦ jX
= kX�σG ◦ jX
= � ◦ jOX

= � ◦ ζ̂t ◦ jOX ,

and
αt ◦� ◦ jG = αt ◦ kA�δG ◦ jG

= kA�δG ◦ βt ◦ jG
= kA�δG ◦ jG ◦ rtt
= � ◦ jG ◦ rtt

= � ◦ ζ̂t ◦ jG.

Corollary 4.6. Let (σ, δ) be a coaction ofG on a correspondence (X,A).
If either

(i) G is amenable, or

(ii) ϕA : A→ L (X) is faithful,

then the canonical correspondence homomorphism

(jX, jA) : (X,A)→ (M(X �σ G),M(A�δ G))

is Cuntz-Pimsner covariant.

Proof. By Lemma 2.8, it suffices to show that

jA(JX)(A�δ G) ⊂ JX�σG.
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The ideal of A�δ G generated by jA(JX)(A�δ G) is

I := span{(A�δ G)jA(JX)(A�δ G)},
so it suffices to show that ϕA�δG maps I injectively into K (X �σ G). As
we observed immediately before Remark 2.7, we can work with ϕA �G and
K (X)�σ (1) G rather than ϕA�δG and K (X �σ G). To see that ϕA �G maps
I into K (X)�σ (1) G, it suffices to observe that

(ϕA �G)
(
jAG(C0(G))jA(A)jA(JX)jA(A)j

A
G(C0(G))

)
= (ϕA �G)

(
jAG(C0(G))jA(AJXA)j

A
G(C0(G))

)
⊂ (ϕA �G)

(
jAG(C0(G))jA(JX)j

A
G(C0(G))

)

= jK (X)
G (C0(G))jK (X)(ϕA(JX))j

K (X)
G (C0(G))

⊂ jK (X)
G (C0(G))jK (X)(K (X))j

K (X)
G (C0(G))

⊂ K (X)�σ (1) G.

On the other hand, to see that ϕA�G is injective on I , we now consider each
hypothesis (i) and (ii) separately. First, if ϕA is injective, then so is ϕA � G,
because ϕA gives aG-equivariant isomorphism between (A, δ) and the image
(ϕA(A), η), where η is the corresponding coaction on ϕA(A), and we have a
commuting diagram

A�δ G
∼=−−−−→ ϕA(A)�η G

π

M(K (X)�σ (1) G),

where the horizontal arrow is an isomorphism and the vertical arrow is an
inclusion.

Thus it remains to show that ϕA �G is injective on I under the assumption
that G is amenable. We will show that in this case JX is a δ-invariant ideal of
A in the sense that δ restricts to a coaction on JX. It will follow that

I = JX �δ G,

and since the restriction ϕA| : JX → K (X) is injective we will be able to
conclude that

ϕA|�G : JX �δ G→ K (X)�σ (1) G

is injective as well.
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To see that JX is invariant, by [15, Proposition 2.6] it suffices to show that
JX is an A(G)-submodule of A. Let f ∈ A(G) and a ∈ JX. We must show
both of the following:

(i) ϕA(f · a) ∈ K (X);

(ii) (f · a)b = 0 for all b ∈ ker ϕA.

For (i), we have

ϕA(f · a) = ϕA ◦ Sf ◦ δ(a)
= Sf ◦ ϕA ⊗ id ◦ δ(a)
= Sf ◦ σ (1) ◦ ϕA(a)
⊂ Sf ◦ σ (1)(K (X))

⊂ Sf
(
MC∗(G)

(
K (X)⊗ C∗(G)))

⊂ K (X),

by [11, Lemma 1.5].
In preparation for (ii), we first show that ker ϕA is δ-invariant: if f ∈ A(G)

and b ∈ ker ϕA, then

ϕA(f · b) = Sf ◦ ϕA ⊗ id ◦ δ(b) = Sf ◦ σ (1) ◦ ϕA(b) = 0.

Thus δ restricts to a coaction on ker ϕA, so

(4.1) span{δ(ker ϕA)(1⊗ C∗(G))} = ker ϕA ⊗ C∗(G).
We now verify (ii): for f ∈ A(G), a ∈ JX, and b ∈ ker ϕA we first factor
f = c · f ′ for some c ∈ C∗(G) and f ′ ∈ A(G) (using amenability of G
again), and then

(f · a)b = Sf ◦ δ(a)b
= Sf

(
δ(a)(b ⊗ 1)

)
= Sc·f ′

(
δ(a)(b ⊗ 1)

)
= Sf ′

(
δ(a)(b ⊗ c))

≈
n∑
1

Sf ′
(
δ(a)δ(bi)(1⊗ ci)

)
(for some bi ∈ ker ϕA and ci ∈ C, by (4.1))

≈
n∑
1

Sf ′
(
δ(abi)(1⊗ ci)

) = 0,

because JX ⊂ (ker ϕA)⊥.
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Then [14, Theorem 6.9] (see also [11, Theorem 2.9]) shows that the crossed
product of a C∗-algebra A by an inner coaction of G is isomorphic to A ⊗
C0(G); the following result is a version for correspondences:

Proposition 4.7. Let (A,X,B) be a correspondence, and let (A, δ) and
(B, ε) be inner coactions implemented by nondegenerate homomorphisms μ
and ν, respectively, and let σ be the associated coaction on X, as in Proposi-
tion 3.2. Then there is an isomorphism

� : X �σ G→ X ⊗ C0(G)

given by
�(y) = μ⊗ λ(wG)∗ · y · ν ⊗ λ(wG).

The left and right module actions are transformed by � as follows:

�
(
jA(a)j

A
G(f ) · y · jB(b)jBG(g)

)
= (a ⊗ 1)(μ×M)(f ) ·�(y) · (b ⊗ 1)(ν ×M)(g),

where μ ×M denotes the Kronecker product of μ and M , respectively, and
similarly for ν ×M .

Proof. Note that we are identifyingC0(G)with its image under the repres-
entation M on L2(G) by pointwise multiplication, i.e., (Mf ξ)(t) = f (t)ξ(t)
for f ∈ C0(G) and ξ ∈ L2(G). Routine calculations show

� ◦ jA = idA⊗1

� ◦ jB = idB ⊗1

� ◦ jX = idX⊗1

� ◦ jAG = μ×M
� ◦ jBG = ν ×M;

for the last two it helps to note that

Ad id⊗λ(wG)∗(1⊗Mf ) = (id×M)(f ).

Since
μ⊗ λ(wG) ∈ M(A⊗K (L2(G))),

and similarly for ν ⊗ λ(wG), clearly � maps X �σ G into M(X ⊗ L2(G)).
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We actually have �(X �σ G) = X ⊗ C0(G), because

span
{
�

(
jX(X) · jG(C0(G))

)}
= span

{
�

(
jX(X · B) · jG(C0(G))

)}
= span

{
�

(
jX(X) · jB(B)jG(C0(G))

)}
= span

{
(X ⊗ 1) · Ad ν ⊗ id(wG)

∗(B �ε G)
}

= span
{
(X ⊗ 1) · (B ⊗ C0(G))

}
(by [14, Theorem 6.9] or [11, Theorem 2.9])

= X ⊗ C0(G).

Let (γ, α) be an action of G on a correspondence (X,A). Assume that G
is amenable; in particular, there is no difference between the full and reduced
crossed productsX�γ G andX�γ,r G (and similarly forA), so we can freely
apply the results of [4, Section 3.1].

As in [4, Proposition 3.5], let γ̂ be the dual coaction of G on X �γ G,
determined on generators ξ ∈ Cc(G,X) by

γ̂ (ξ)(t) = ξ(t)⊗ t,
so that γ̂ is an element ofCc(G,Mβ(X⊗C∗(G))), which in turn is embedded
in M((X �γ G)⊗ C∗(G)) via the isomorphism [4, Lemma 3.4]

(X �γ G)⊗ C∗(G) ∼=−→ (X ⊗ C∗(G))�γ⊗id G

that extends the canonical embedding

Cc(G,X)� C∗(G) ↪→ Cc(G,X ⊗ C∗(G)).
Proposition 4.8. Let (γ, α) be an action ofG on a correspondence (X,A),

and assume that G is amenable. Then the dual coaction (γ̂ , α̂) on (X �γ

G,A�α G) satisfies

(4.2) α̂(JX�γ G) ⊂ M
(
(A�α G)⊗ C∗(G); JX�γ G ⊗ C∗(G)

)
.

Proof. By [5, Proposition 2.7], the ideal JX of A is α-invariant, and

JX�γ G = JX �α G.

The isomorphism

(A�α G)⊗ C∗(G) ∼=−→ (A⊗ C∗(G))�α⊗id G,
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of [4, LemmaA.20] clearly takes (JX�αG)⊗C∗(G) to (JX⊗C∗(G))�α⊗idG.
Recall that α̂ takes a function f ∈ Cc(G,A) to the function in Cc(G,

Mβ(A⊗ C∗(G))) defined by

α̂(f )(t) = f (t)⊗ t.
It follows that for g ∈ Cc(G,A⊗ C∗(G)) we have

(α̂(f )g)(t) =
∫
G

α̂(f )(s)αs ⊗ id(g(s−1t)) ds

=
∫
G

(f (s)⊗ s)αs ⊗ id(g(s−1t)) ds.

Now let f ∈ Cc(G, JX). For all s ∈ G, it is easy to check, by first computing
with elementary tensors a ⊗ c ∈ A� C∗(G), that

(f (s)⊗ s)(A⊗ C∗(G)) ⊂ JX ⊗ C∗(G),
and it follows that

α̂(f )g ∈ Cc(G, JX ⊗ C∗(G)) ⊂ (JX ⊗ C∗(G))�α⊗id G.

By density, this implies that

α̂(JX �α G) ⊂ M
(
(A⊗ C∗(G))�α⊗id G; (JX ⊗ C∗(G))�α⊗id G

)
,

which in turn implies (4.2).

5. Application

As an application of our techniques, we will give an alternative approach to
a recent result of Hao and Ng [5, Theorem 2.10]. Given an action (γ, α) of
an amenable locally compact group G on a nondegenerate correspondence
(X,A), Hao and Ng construct an isomorphism

OX�γ G

∼=→ OX �β G,

where X �γ G is the crossed-product correspondence over A �α G and β
is the associated action of G on OX. In our earlier paper [7, Proposition 4.3]
we suggested an alternative approach to this result, removing the amenability
hypothesis on G. Namely, we construct a surjection that goes in the opposite
direction:

OX �β G→ OX�γ G.
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We suspect, but were unable to prove, that this is an isomorphism in gen-
eral; however, at least in the amenable case, we can give a new proof of [5,
Theorem 2.10] with the help of Propositions 4.8 and 3.1.

Theorem 5.1. Let (γ, α) be an action ofG on a nondegenerate correspond-
ence (X,A), let β be the associated action of G on OX, and let

� := OiX,iA × u : OX �β G→ OX�γ G

be the surjection from [7, Proposition 4.3]. If G is amenable, then � is an
isomorphism.

Proof. By Propositions 4.8 and 3.1 we get a coaction ζ ofG on OX�γ G. Our

strategy is to show that � is β̂ − ζ equivariant and that OiX,iA is injective, and
then [6, Corollary 4.4] will imply that � is injective, because by amenability
of G the coaction ζ is automatically maximal.

We check the equivariance condition

ζ ◦� = �⊗ id ◦ β̂

separately on generators from X, A, and G: for X we have

ζ ◦� ◦ iOX ◦ kX = ζ ◦� ◦ iOX ◦ kX
= ζ ◦ OiX,kA ◦ kX
= ζ ◦ kX�γ G ◦ iX
= kX�γ G ⊗ id ◦ γ̂ ◦ iX
= kX�γ G ⊗ id ◦ (iX ⊗ 1)

= (
kX�γ G ◦ iX

)⊗ 1

= OiX,iA ◦ kX ⊗ 1

= (OiX,iA ⊗ 1) ◦ kX
= (� ◦ iOX ⊗ 1) ◦ kX
= �⊗ id ◦ (iOX ⊗ 1) ◦ kX
= �⊗ id ◦ β̂ ◦ iOX ◦ kX
= �⊗ id ◦ β̂ ◦ iOX ◦ kX.

The verification for generators from A is parallel, using kA, iA, α̂ instead of
kX, iX, γ̂ .
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For generators from G we have

ζ ◦� ◦ iOXG = ζ ◦� ◦ iOXG
= ζ ◦ u
= ζ ◦ kA�αG ◦ iAG
= ζ ◦ kA�αG ◦ iAG
= kA�αG ⊗ id ◦ α̂ ◦ iAG
= kA�αG ⊗ id ◦ α̂ ◦ iAG
= kA�αG ⊗ id ◦ iAG ⊗ id ◦ δG
= kA�αG ◦ iAG ⊗ id ◦ δG
= u⊗ id ◦ δG
= � ◦ iOXG ⊗ id ◦ δG
= �⊗ id ◦ iOXG ⊗ id ◦ δG
= �⊗ id ◦ β̂ ◦ iOXG
= �⊗ id ◦ β̂ ◦ iOXG .

Finally, by [7, Corollary 3.6], OiX,iA is injective because iA is.
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