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UNIVALENCE CRITERIA AND LIPSCHITZ-TYPE
SPACES ON PLURIHARMONIC MAPPINGS

SH. CHEN, S. PONNUSAMY†, and X. WANG‡

Abstract
In this paper, we investigate some properties of pluriharmonic mappings defined in the unit ball.
First, we discuss the relationship between the univalence of pluriharmonic mappings and linearly
connected domains, and then we study Lipschitz-type spaces for pluriharmonic mappings.

1. Introduction and main results

Let Cn denote the complex Euclidean n-space. For z = (z1, . . . , zn) ∈ Cn,
the conjugate of z, denoted by z, is defined by z = (z1, . . . , zn). For z and
w = (w1, . . . , wn) ∈ Cn, the standard Hermitian scalar product on Cn and the
Euclidean norm of z are given by 〈z, w〉 := ∑n

k=1 zkwk and ‖z‖ := 〈z, z〉1/2,
respectively. For a ∈ Cn,

Bn(a, r) = {z ∈ Cn : ‖z − a‖ < r}
is the (open) ball of radius r with center a. Also, we let Bn(r) := Bn(0, r) and
use Bn to denote the unit ball Bn(1), and D = B1. We can interpret Cn as the
real 2n-space R2n so that a ball in Cn is also a ball in R2n. We use the following
standard notations. For a ∈ Rn, we may let

Bn
R(a, r) = {x ∈ Rn : ‖x − a‖ < r}

so that Bn
R(r) := Bn

R(0, r) and Bn
R = Bn

R(1) denotes the open unit ball in Rn

centered at the origin.
For a complex-valued and differentiable function f from Bn into C, we

introduce (see for instance [4], [5], [6])

∇f =
(

∂f

∂z1
, . . . ,

∂f

∂zn

)
and ∇f =

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
.
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Throughout, H (Bn, Cn) denotes the set of all continuously differentiable
mappings f from Bn into Cn with f = (f1, . . . , fn) and fj (z) = uj (z)+ivj (z)

(1 ≤ j ≤ n), where uj and vj are real-valued functions from Bn into R. For
f ∈ H (Bn, Cn), the real Jacobian matrix of f is given by

Jf =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂u1

∂x1

∂u1

∂y1

∂u1

∂x2

∂u1

∂y2
· · · ∂u1

∂xn

∂u1

∂yn

∂v1

∂x1

∂v1

∂y1

∂v1

∂x2

∂v1

∂y2
· · · ∂v1

∂xn

∂v1

∂yn

...
...

...
...

. . .
...

...

∂un

∂x1

∂un

∂y1

∂un

∂x2

∂un

∂y2
· · · ∂un

∂xn

∂un

∂yn

∂vn

∂x1

∂vn

∂y1

∂vn

∂x2

∂vn

∂y2
· · · ∂vn

∂xn

∂vn

∂yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Moreover, for each f = (f1, . . . , fn) ∈ H (Bn, Cn), denote by

Df = (∇f1, . . . ,∇fn

)T

the matrix formed by the complex gradients ∇f1, . . . ,∇fn, and let

Df = (∇f1, . . . , ∇fn

)T
,

where T means the matrix transpose.
For an n × n complex matrix A, we introduce the operator norm

‖A‖ = sup
z �=0

‖Az‖
‖z‖ = max

{‖Aθ‖ : θ ∈ ∂Bn
}
.

We use L(Cn, Cm) to denote the space of continuous linear operators from Cn

into Cm with the operator norm, and let In be the identity operator in L(Cn, Cn).
A continuous complex-valued function f defined on a domain G ⊂ Cn is

said to be pluriharmonic if for each fixed z ∈ G and θ ∈ ∂Bn, the function
f (z+θζ ) is harmonic in {ζ : ‖ζ‖ < dG(z)}, where dG(z) denotes the distance
from z to the boundary ∂G of G. It follows from [15, Theorem 4.4.9] that if G is
simply connected, then a real-valued function u defined on G is pluriharmonic
if and only if u is the real part of a holomorphic function on G. Clearly, a
mapping f : Bn → C is pluriharmonic if and only if f has a representation
f = h + g, where g and h are holomorphic. We refer to [2], [4], [11], [12] for
more details on pluriharmonic mappings.

A vector-valued mapping f = (f1, . . . , fn) ∈ H (Bn, Cn) is said to be
pluriharmonic, if each component fj (1 ≤ j ≤ n) is a pluriharmonic mapping
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from Bn into C. We denote by PH (Bn, Cn) the set of all vector-valued pluri-
harmonic mappings from Bn into Cn. Let f = h + g ∈ PH (Bn, Cn), where h

and g are holomorphic in Bn. Then the real Jacobian determinant of f can be
rewritten in the following form

det Jf = det

(
Dh Dg

Dg Dh

)

and if h is locally biholomorphic, then the determinant of Jf can be written as
follows

det Jf = | det Dh|2 det
(
In − Dg[Dh]−1Dg[Dh]−1

)
.

Recall that the determinant of the Jacobian Jf of a planar harmonic mapping
f = h + g is given by

det Jf = |fz|2 − |fz|2 := |h′|2 − |g′|2,
and so, f is locally univalent and sense-preserving in D if and only if |g′(z)| <

|h′(z)| in D; or equivalently if h′(z) �= 0 and the dilatation ω = g′/h′ has the
property that |ω(z)| < 1 in D (see [10], [13]). For f = h + g ∈ PH (Bn, Cn),
the condition ‖Dg[Dh]−1‖ < 1 is sufficient for det Jf to be positive and hence
for f to be sense-preserving, which is a natural generalization of one-variable
condition |g′(z)| < |h′(z)| (cf. [11]).

A domain D ⊂ Cn is said to be M-linearly connected if there exists a
positive constant M < ∞ such that any two points w1, w2 ∈ D are joined by
a path γ ⊂ D with

�(γ ) ≤ M‖w1 − w2‖,
where �(γ ) = inf

{∫
γ

‖dz‖ : γ ⊂ D
}
. It is not difficult to verify that a 1-

linearly connected domain is convex. For extensive discussions on linearly
connected domains, see [1], [3], [8], [14]. In [8], Chuaqui and Hernández dis-
cussed the relationship between the linear connectivity of the images D under
the planar harmonic mappings f = h+g and under their corresponding holo-
morphic counterparts h, where h and g are holomorphic in D. We generalize
the corresponding results of [8] to the following forms.

Theorem 1.1. Let f = h + g be a univalent pluriharmonic mapping from
Bn into Cn, where h is locally biholomorphic and g is holomorphic in Bn. If
� = f (Bn) is M-linearly connected and

‖Dg(z)[Dh(z)]−1‖ <
1

M + 1
for z ∈ Bn,
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then h is biholomorphic. If furthermore

‖Dg(z)[Dh(z)]−1‖ ≤ C <
1

M + 1
for z ∈ Bn

and for some positive constant C, then h(Bn) is M ′-linearly connected, where
M ′ = M

1−C(1+M)
.

We remark that Theorem 1.1 is a generalization of [8, Theorem 2].

Theorem 1.2. Let f = h + g be a univalent pluriharmonic mapping from
Bn into Cn, where h is locally biholomorphic and g is holomorphic in Bn. If
� = f (Bn) is M-linearly connected and

‖Dg(z)[Dh(z)]−1‖ <
1

2M + 1
for z ∈ Bn,

then F = h + gA is univalent for every A ∈ L(Cn, Cn) with ‖A‖ = 1.

We remark that if n = 1, then Theorem 1.2 coincides with [8, Theorem 3].
The following result is similar to [11, Theorem 6].

Theorem 1.3. Let f = h + g ∈ PH (Bn, Cn), where h is biholomorphic
and g is holomorphic in Bn. If h(Bn) is M-linearly connected and

‖Dg(z)[Dh(z)]−1‖ ≤ C <
1

M

for some positive constant C, then F = h + gA is univalent and F(Bn) is
M ′-linearly connected, where M ′ = (1+C)M

1−MC
for every A ∈ L(Cn, Cn) with

‖A‖ = 1.

For r ∈ (0, 1), a univalent mapping f = h + g ∈ PH (Bn, Cn) with

‖Dg[Dh]−1‖ < 1

is called fully convex if it maps every ball Bn(r) onto a convex domain, where
h is locally biholomorphic and g is holomorphic in Bn (cf. [7]). The following
result is analogous to [9, Corollary 5.8].

Theorem 1.4. Let f = h + g ∈ PH (Bn, Cn) be fully convex, where
Dg(0) = 0. Then for every r ∈ (0, 1) and any two points z1, z2 ∈ Bn(r),

‖h(z2) − h(z1)‖ ≤ 1

1 − r
‖f (z2) − f (z1)‖.

The proofs of Theorems 1.1, 1.2, 1.3 and 1.4 will be presented in Section 2.
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2. The univalence criteria and Lipschitz-type spaces on pluriharmonic
mappings

The following lemma plays a key role in the proof of Theorems 1.1, 1.2 and
1.4.

Lemma 2.1. Let A be an n × n complex matrix with ‖A‖ < 1. Then In ± A

are nonsingular matrixes and

‖(In ± A)−1‖ ≤ 1

1 − ‖A‖ .

Lemma 2.1 may be referred to as the Neumann expansion theorem, and so
the proof is omitted here.

Proof of Theorem 1.1. Suppose that there are two distinct points z1, z2 ∈
Bn such that h(z1) = h(z2). Then

f (z2) − f (z1) = g(z2) − g(z1), i.e. w2 − w1 = G(w2) − G(w1),

whereG = g◦f −1 andw = f (z). It follows from the inverse mapping theorem
and Lemma 2.1 that f −1 is differentiable. Differentiation of the equation

f −1(f (z)) = z

yields the following relations

Df −1Dh + Df −1Dg = In,

Df −1Dg + Df −1Dh = 0,

which give

(1)
Df −1 = [Dh]−1

(
In − Dg[Dh]−1Dg[Dh]−1

)−1
,

Df −1 = −[Dh]−1
(
In − Dg[Dh]−1Dg[Dh]−1

)−1
Dg[Dh]−1.

By (1) and Lemma 2.1, we get

‖DgDf −1‖ + ‖DgDf −1‖
= ∥∥Dg[Dh]−1

(
In − Dg[Dh]−1Dg[Dh]−1

)−1∥∥
+ ∥∥Dg[Dh]−1

(
In − Dg[Dh]−1Dg[Dh]−1

)−1
Dg[Dh]−1

∥∥



176 sh. chen, s. ponnusamy and x. wang

≤ ∥∥(
In − Dg[Dh]−1Dg[Dh]−1

)−1∥∥‖Dg[Dh]−1‖ × (1 + ‖Dg[Dh]−1‖)

≤ ‖Dg[Dh]−1‖(1 + ‖Dg[Dh]−1‖)
1 − ∥∥Dg[Dh]−1Dg[Dh]−1

∥∥

≤ ‖Dg[Dh]−1‖(1 + ‖Dg[Dh]−1‖)
1 − ‖Dg[Dh]−1‖2

≤ ‖Dg[Dh]−1‖
1 − ‖Dg[Dh]−1‖

<
1

M
.

Let w = f (z) and γ ⊂ � be a curve joining w1, w2 with l(γ ) ≤ M‖w1−w2‖.
Then, using the last inequality, we see that

‖w2 − w1‖ = ‖G(w2) − G(w1)‖
≤

∫
γ

(‖DG(w)‖ + ‖DG(w)‖) ‖dw‖

=
∫

γ

(‖Dg(z)Df −1(w)‖ + ‖Dg(z)Df −1(w)‖) ‖dw‖

≤
∫

γ

‖Dg(z)[Dh(z)]−1‖
1 − ‖Dg(z)[Dh(z)]−1‖ ‖dw‖

<
1

M
l(γ )

≤ ‖w2 − w1‖,
which is a contradiction. Therefore, h is biholomorphic. The proof of the first
part of the theorem is complete.

Now, we prove the second part of the theorem. Define

H(w) = h(f −1(w)) = w − G(w),

where G = g ◦ f −1 and w = f (z). Let γ ⊂ � be a curve joining w1, w2 with
l(γ ) ≤ M‖w1 − w2‖. By the chain rule, we have

DH = In − Dg Df −1

and
DH = −Dg Df −1.
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Then ‖DH‖ + ‖DH‖ = ∥∥In − Dg Df −1
∥∥ + ∥∥Dg Df −1

∥∥
≤ 1 + ∥∥Dg Df −1

∥∥ + ∥∥Dg Df −1
∥∥

≤ 1 + ‖Dg[Dh]−1‖
1 − ‖Dg[Dh]−1‖

= 1

1 − ‖Dg[Dh]−1‖
≤ 1

1 − C
,

which gives

(2)

l(H(γ )) ≤
∫

γ

(‖DH(w)‖ + ‖DH(w)‖) ‖dw‖

≤ l(γ )

1 − C
≤ M

1 − C
‖w2 − w1‖.

On the other hand,

‖H(w2) − H(w1)‖ = ‖w2 − G(w2) − (w1 − G(w1))‖
≥ ‖w2 − w1‖ − ‖G(w2) − G(w1)‖

≥ ‖w2 − w1‖ −
∫

γ

(‖DG(w)‖ + ‖DG(w)‖) ‖dw‖

≥ ‖w2 − w1‖ − C

1 − C
l(γ )

≥ 1 − C(1 + M)

1 − C
‖w2 − w1‖

≥ (1 − C(1 + M))
l
(
H(γ )

)
M

,

by (2).
Hence

l(H(γ )) ≤ M

1 − C(1 + M)
‖H(w2) − H(w1)‖.

The proof of the theorem is complete.

Proof of Theorem 1.2. We rewriteF = h+gA = f +g(A−In). Suppose
that there are two distinct points z1, z2 ∈ Bn such that F(z1) = F(z2). Then

f (z2) − f (z1) = (
g(z2) − g(z1)

)
(A − In),
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that is,
w2 − w1 = (G(w2) − G(w1))(A − In),

where G = g ◦ f −1 and w = f (z). By calculations, we have

‖w2 − w1‖ = ‖(G(w2) − G(w1))(A − In)‖
≤ ‖G(w2) − G(w1)‖‖A − In‖
≤ (1 + ‖A‖)‖G(w2) − G(w1)‖
= 2‖G(w2) − G(w1)‖,

which implies

(3) ‖G(w2) − G(w1)‖ ≥ ‖w2 − w1‖
2

.

On the other hand, by using arguments similar to those in the proof of
Theorem 1.1, we have

‖DG(w)‖ + ‖DG(w)‖ ≤ ‖Dg(z)Df −1(w)‖ + ‖Dg(z)Df −1(w)‖

≤ ‖Dg(z)[Dh(z)]−1‖
1 − ‖Dg(z)[Dh(z)]−1‖ <

1

2M
,

by assumption.
Let γ ⊂ � be a curve joining w1, w2 with l(γ ) ≤ M‖w1 − w2‖. Then

‖G(w2) − G(w1)‖ ≤
∫

γ

(‖DG(w)‖ + ‖DG(w)‖) ‖dw‖

<
l(γ )

2M
≤ ‖w2 − w1‖

2

which is a contradiction to (3). Therefore, F is univalent. The proof of the
theorem is complete.

Proof of Theorem 1.3. First, we prove F(Bn) is linearly connected.
Define � = h(Bn) and

H(w) = w + g(h−1(w))A

for w ∈ �. For any two distinct points w1, w2 ∈ �, by hypothesis, there is a
curve γ ⊂ � joining w1 and w2 such that l(γ ) ≤ M‖w1 − w2‖. Also, we let
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	 = H(γ ). Then we find that

l(	) =
∫

	

‖dH(w)‖

≤
∫

γ

(‖DH(w)‖ + ‖DH(w)‖) ‖dw‖

≤
∫

γ

(‖In‖ + ‖Dg(z)[Dh(z)]−1‖ ‖A‖) ‖dw‖

≤ (1 + C)M‖w2 − w1‖.(4)

On the other hand, the definition of H gives

‖H(w2) − H(w1)‖ ≥ ‖w2 − w1‖ − ‖g(h−1(w2)) − g(h−1(w1))‖(5)

≥ ‖w2 − w1‖ −
∫

γ

‖Dg(z)[Dh(z)]−1‖ ‖dw‖

≥ ‖w2 − w1‖(1 − MC),

and therefore, (4) gives

l(	) ≤ M ′‖H(w2) − H(w1)‖,

where M ′ = (1+C)M

1−MC
.

Finally, we show the univalency of F = h + gA for every A ∈ L(Cn, Cn).
Suppose that F fails to be univalent. Then there are two distinct points w1, w2

such that H(w1) = H(w2) which is impossible, by (5). The proof of the
theorem is complete.

Proof of Theorem 1.4. Since � = f (Bn(r)) is convex, for any two points
z1, z2 ∈ Bn(r) and t ∈ [0, 1], we have

ϕ(t) = (f (z2) − f (z1))t + f (z1) ∈ �,

where f = (f1, . . . , fn). Let γ = f −1 ◦ ϕ. For any fixed θ ∈ ∂Bn, let
Aθ = Dg[Dh]−1θ . By Schwarz’s lemma, for z ∈ Bn(r), ‖Aθ(z)‖ < ‖z‖ if
r ∈ (0, 1). The arbitrariness of θ ∈ ∂Bn gives

(6) ‖Dg(z)[Dh(z)]−1‖ < r
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for z ∈ Bn(r). By (1), (6) and Lemma 2.1, we have

‖h(z2) − h(z1)‖

=
∥∥∥∥
∫

γ

Dh(z) dz

∥∥∥∥ =
∥∥∥∥
∫ 1

0
Dh(γ (t))

d

dt
γ (t) dt

∥∥∥∥

=
∥∥∥∥
∫ 1

0
Dh(γ (t))

[
Df −1(ϕ(t))Dϕ(t) + Df −1(ϕ(t))Dϕ(t)

]
dt

∥∥∥∥

≤
∫ 1

0

(‖Dh(γ (t))Df −1(ϕ(t))‖ + ‖Dh(γ (t))Df −1(ϕ(t))‖)‖Dϕ(t)‖ dt

≤ ‖f (z2) − f (z1)‖
∫ 1

0

(
1 + ‖Dg(γ (t))[Dh(γ (t))]−1‖)

× ∥∥In − Dg(γ (t))
[
Dh(γ (t))

]−1
Dg(γ (t))[Dh(γ (t))]−1

∥∥ dt

≤
∫ 1

0

1 + ‖Dg(γ (t))[Dh(γ (t))]−1‖
1 − ∥∥Dg(γ (t))[Dh(γ (t))]−1Dg(γ (t))[Dh(γ (t))]−1

∥∥ dt

× ‖f (z2) − f (z1)‖

≤ ‖f (z2) − f (z1)‖
∫ 1

0

1

1 − ‖Dg(γ (t))[Dh(γ (t))]−1‖ dt

≤ 1

1 − r
‖f (z2) − f (z1)‖,

where Dϕ(t) =

⎛
⎜⎜⎜⎜⎜⎝

φ1(z2 − z1) 0 · · · 0

0 φ2(z2 − z1) · · · 0

...
...

. . .
...

0 0 · · · φn(z2 − z1)

⎞
⎟⎟⎟⎟⎟⎠

is a diag-

onal matrix, where for convenience we write φn(z2 − z1) = fn(z2) − fn(z1).
The proof of this theorem is complete.
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