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THE ALGEBRA OF SEMIGROUPS OF SETS

MATS AIGNER, VITALIJ A. CHATYRKO and VENUSTE NYAGAHAKWA

Abstract
We study the algebra of semigroups of sets (i.e. families of sets closed under finite unions) and
its applications. For each n > 1 we produce two finite nested families of pairwise different
semigroups of sets consisting of subsets of Rn without the Baire property.

1. Introduction

An interesting extension of the family M of all meager subsets of the real line
R, as well as the family O of all open subsets of R, in the family P(R) of all
subsets of R is the family Bp of all sets possessing the Baire property. The
property is a classical notion which is related to the thesis of R. Baire. Recall
that B ∈ Bp if there are an O ∈ O and an M ∈ M such that B = O � M .

It is well known that the family Bp is a σ -algebra of sets invariant under
homeomorphisms of the real line R, and the complement BC

p = P(R) \ Bp of
Bp in P(R) is not empty (for example, each Vitali set S of R ([7]) is an element
of BC

p ). Moreover, there are elements of BC
p with a natural algebraic structure

(see [4] for subgroups of the additive group R, which are elements of BC
p ).

In [2] Chatyrko and Nyagahakwa looked for subfamilies of the family BC
p

which have some algebraic structures. They proved that the family V1 of all
finite unions of Vitali sets of R and its extension V2 which elements are all sets
of the type A � B, where A ∈ V1 and B ∈ M, are semigroups of sets (i.e.
families of sets closed under finite unions) invariant under translations of the
real line R and consisting of zero-dimensional subsets of BC

p . Furthermore,
Chatyrko and Nyagahakwa extended the result to the Euclidean spaces Rn,
where n is any positive integer.

In this paper we pay attention to the algebra of semigroups of sets. We look
at the behavior of semigroups of sets under several operations. Then we suggest
some applications. First, we show that the results from [2] can be obtained by
the use of the theory. Moreover, we can suggest many different semigroups of
sets in BC

p . After that for each n > 1 we produce two finite nested families of
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pairwise different semigroups of sets consisting of subsets of Rn without the
Baire property.

2. Auxiliary notions

Recall that a non-empty set S is called a semigroup if there is an operation
α : S ×S → S such that α(α(s1, s2), s3) = α(s1, α(s2, s3)). The semigroup
S is called abelian if α(s1, s2) = α(s2, s1).

Let X be a set and P(X) be the family of all subsets of X. In the paper we
will be interested in subsets S of P(X) such that for each A, B ∈ S we have
A ∪ B ∈ S . It is evident that such a family of sets is an abelian semigroup
with respect to the operation of union of sets (in brief, a semigroup of sets).

Let A ⊂ P(X). Put SA = {∪i≤nAi : Ai ∈ A , n ∈ N}. Note that SA is
a semigroup of sets. Recall that a set I ⊂ P(X) is called an ideal of sets
if I is a semigroup of sets and if A ∈ I and B ⊂ A then B ∈ I . Put
IA = {B ∈ P(X) : there is A ∈ SA such that B ⊂ A}. Note that IA is an
ideal of sets.

For x ∈ R denote by Tx the translation of R by x, i.e. Tx(y) = y + x for
each y ∈ R. If A is a subset of R and x ∈ R, we denote Tx(A) by Ax .

The equivalence relation E on R is defined as follows. For x, y ∈ R, let
xEy iff x − y ∈ Q, where Q is the set of rational numbers. Let us denote
its equivalence classes by Eα , α ∈ I . It is evident that |I | = c (continuum),
and for each α ∈ I and each x ∈ Eα , Eα = Qx . Let us also note that every
equivalence class Eα is dense in R. Recall ([7]) that a Vitali set of R is any
subset S of R such that |S ∩Eα| = 1 for each α ∈ I , and each Vitali set neither
possess the Baire property in R nor it is measurable in the sense of Lebesgue.

For other notions and notations we refer to [3] and [6].

3. Semigroups of sets and ideals of sets

Let A , B ⊂ P(X). Put A ∪ B = {A ∪ B : A ∈ A , B ∈ B}, A � B =
{A�B : A ∈ A , B ∈ B} and A ∗B = {(A\B1)∪B2 : A ∈ A ; B1, B2 ∈ B}.
However, A ∩ B denotes the intersection of A , B, i.e. the family of common
elements of A , B.

It is evident that A ∪ B = B ∪ A and A � B = B � A . Since A ∪ B =
(A \B)∪B = (B \A)∪A, we have A ∪ B ⊂ A ∗ B and A ∪ B ⊂ B ∗ A .
Moreover, if A , B are both semigroups of sets or both ideals of sets then the
family A ∪ B is of the same type.

On the other hand as we will see in the following examples in general for
given semigroups of sets A , B the families A � B, A ∗ B, B ∗ A do not
need to be semigroups of sets and none of the statements A � B ⊆ A ∪ B,
A � B ⊇ A ∪ B, A � B ⊆ A ∗ B, A � B ⊇ A ∗ B, A ∗ B ⊆ B ∗ A
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needs to hold. Moreover, one of the families A ∗B, B ∗A can be a semigroup
of sets while the other is not.

Example 3.1. Let |X| ≥ 2 and A be a non-empty proper subset of X. Put
B = X \ A, A = {A, X} and B = {B, X}. Note that A = SA , B = SB

and the families A ∪ B = {X}, A � B = {∅, A, B, X}, A ∗ B = {B, X},
B ∗ A = {A, X} are semigroups of sets. Moreover, none of the following
inclusions A � B ⊆ A ∪ B, A � B ⊆ A ∗ B, A ∗ B ⊆ B ∗ A and
B ∗ A ⊆ A ∗ B holds.

Example 3.2. Let X = {1, 2, 3, 4}, A1 = {1, 3}, A2 = {2, 4}, B1 = {1, 2},
B2 = {3, 4}, C = {1, 4}, D = {2, 3}, A = {∅, A1, A2} and B = {∅, B1, B2}.
Note that SA = {∅, A1, A2, X} and SB = {∅, B1, B2, X}. Moreover, we have
SA ∪ SB = {∅, A1, A2, B1, B2, {1}−, {2}−, {3}−, {4}−, X} (here Y− denotes
the complement of a set Y in the set X), SA � SB = {∅, A1, A2, B1, B2, C,

D, X} and SA ∗ SB = SB ∗ SA = P(X) \ {C, D}. It is easy to see that the
inclusions SA ∗ SB ⊆ SA � SB and SA ∪ SB ⊆ SA � SB do not hold.
We note also that none of the families SA � SB , SA ∗ SB and SB ∗ SA is a
semigroup of sets. In fact, A1, D ∈ SA � SB but A1 ∪ D = 4− /∈ SA � SB ,
and {1}, {4} ∈ SA ∗ SB but {1} ∪ {4} = C /∈ SA ∗ SB .

Example 3.3. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A1 = {1, 2, 4, 5, 7, 8},
A2 = {2, 3, 5, 6, 8, 9}, B1 = {1, 2, 3, 4, 5, 6}, B2 = {4, 5, 6, 7, 8, 9}, A =
{A1, A2}, B = {∅, B1, B2}. Note that SA = {A1, A2, X} and SB = {∅, B1,

B2, X}. First we will show that the family SA ∗SB is not a semigroup of sets. It
is enough to prove that the set C = ((A1\B1)∪∅)∪((A2\B2)∪∅) /∈ SA ∗SB .
Note that C = (A1 \B1)∪(A2 \B2) = {2, 3, 7, 8}. Assume that C ∈ SA ∗SB .
Thus C = (S1 \ S2) ∪ S3 for some S1 ∈ SA and S2, S3 ∈ SB . Since |C| = 4,
we have S3 = ∅. Let S1 = A1. Then |S1 \S2| is either 2 (if S2 is B1 or B2), 0 (if
S2 = X) or 6 (if S2 = ∅). We have a contradiction. If S1 = A2, we also have a
contradiction by a similar argument as above. Assume now that S1 = X. Then
|S1 \ S2| is either 3 (if S2 is B1 or B2), 0 (if S2 = X) or 9 (if S2 = ∅). We have
again a contradiction that proves the statement.

Further note that SB ∗ SA = {A1, A2, {1}−, {3}−, {7}−, {9}−, X} = SA ∪
SB . Hence, the family SB ∗ SA is a semigroup of sets.

Proposition 3.4. Let S be a semigroup of sets and I be an ideal of sets.
Then the family S ∗ I is a semigroup of sets.

Proof. In fact, let Si ∈ S and I ′
i , I

′′
i ∈ I , i = 1, 2. Proceed as follows:

U = ((S1 \ I ′
1) ∪ I ′′

1 ) ∪ ((S2 \ I ′
2) ∪ I ′′

2 ) = (S1 \ I ′
1) ∪ (S2 \ I ′

2) ∪ (I ′′
1 ∪ I ′′

2 ). Put
I2 = I ′′

1 ∪I ′′
2 and continue: U = ((S1∩I ′−

1 )∪(S2∩I ′−
2 ))−−∪I2 = ((S1∩I ′−

1 )−∩
(S2 ∩I ′−

2 )−)− ∪I2 = ((S−
1 ∪I ′

1)∩ (S−
2 ∪I ′

2))
− ∪I2 = ((S−

1 ∩S−
2 )∪ (S−

1 ∩I ′
2)∪
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(S−
2 ∩ I ′

1)∪ (I ′
1 ∩ I ′

2))
− ∪ I2. Put I1 = (S−

1 ∩ I ′
2)∪ (S−

2 ∩ I ′
1)∪ (I ′

1 ∩ I ′
2) and note

that U = ((S−
1 ∩S−

2 )−∩I−
1 )∪I2 = ((S1 ∪S2)∩I−

1 )∪I2 = ((S1 ∪S2)\I1)∪I2.
It is easy to see that S1 ∪ S2 ∈ S and I1, I2 ∈ I . Hence, U ∈ S ∗ I .

Let (X, τ) be a topological space and M(X,τ) be a family of meager subsets
of (X, τ). It is easy to see that the family τ is a semigroup of sets and M(X,τ)

is an ideal of sets (in fact, σ -ideal of sets). The family B(X,τ) of sets with
the Baire property is defined as the family τ � M(X,τ). It is well known that
τ � M(X,τ) = τ ∗ M(X,τ). In fact, this equality is a particular case of the
following general statement.

Proposition 3.5. Let S be a semigroup of sets and I be an ideal of sets.
Then

(a) S ∗ I = S � I ⊃ S ∪ I = I ∗ S ⊃ S ;

(b) (S ∗ I ) ∗ I = S ∗ I , I ∗ (I ∗ S ) = I ∗ S .

Proof. (a) Note that for any set S ∈ S and for any set I ∈ I we have
S � I = (S \ I ) ∪ (I \ S) ∈ S ∗ I , S ∪ I = S � (I \ S) ∈ S � I ,
S ∪ I = (I \ S) ∪ S ∈ I ∗ S and S = S ∪ ∅ ∈ S ∪ I . Thus, S ∗ I ⊃
S � I ⊃ S ∪ I ⊃ S and I ∗ S ⊃ S ∪ I . Observe also that for any sets
S1, S2 ∈ S and any sets I1, I2 ∈ I we have (S1 \ I1)∪ I2 = S1 � I ∈ S � I ,
where I = ((I1 ∩ S1) \ I2) ∪ (I2 \ S1) and (I1 \ S1) ∪ S2 ∈ S ∪ I . Thereby,
S ∗ I ⊂ S � I and I ∗ S ⊂ S ∪ I .

(b) Let S ∈ S and I1, I2, I3, I4 ∈ I . Observe that (((S\I1)∪I2)\I3)∪I4 =
(S \ (I1 ∪ I3)) ∪ ((I2 \ I3) ∪ I4) ∈ S ∗ I . Hence, (S ∗ I ) ∗ I ⊂ S ∗ I . The
opposite inclusion is evident.

Let I1, I2, I3 ∈ I and S1, S2, S3, S4 ∈ S . Note that (I1 \ ((I2 \S1)∪S2))∪
((I3 \ S3) ∪ S4) = ((I1 \ ((I2 \ S1) ∪ S2)) ∪ (I3 \ S3)) ∪ S4 = I ∪ S4 ∈ I ∗ S ,
where I = (I1 \ ((I2 \ S1) ∪ S2)) ∪ (I3 \ S3). Hence, I ∗ (I ∗ S ) ⊂ I ∗ S .
The opposite inclusion is evident.

Corollary 3.6. Let S be a semigroup of sets and I be an ideal of sets.
Then

(a) the families S � I , I ∗ S are semigroups of sets;

(b) (I ∗ S ) ∗ I = I ∗ (S ∗ I ) = S ∗ I .

Proof. We will show only (b). Note that

(1) S ∗ I = (S ∗ I ) ∗ I ⊃ (I ∗ S ) ∗ I ⊃ S ∗ I ;

(2) S ∗ I = (S ∗ I ) ∗ I ⊃ I ∗ (S ∗ I ) ⊃ S ∗ I .

The following statement is evident.
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Corollary 3.7. Let I1, I2 be ideals of sets. Then the family I1 ∗ I2 is an
ideal of sets. Moreover, I1 ∗ I2 = I2 ∗ I1 = I1 � I2 = I1 ∪ I2.

Example 3.8. Let X = {1, 2}, A = X, B = {1}, C = {2}, A = {A}, B =
{B}. Note that SA = {A}, IB = {∅, B}, SA ∗ IB = {A, C} and IB ∗ SA =
{A}. Thus, in general, none of the following statements is valid: S ∗I = I ∗S ,
S ∗ I ⊃ I , the family S ∗ I is an ideal of sets or I ∗ S is an ideal of sets,
even if S is a semigroup of sets and I is an ideal of sets.

The next statement is useful in the search of pairs of semigroups without
common elements.

Proposition 3.9 (See [2, Proposition 3.1]). Let I be an ideal of sets and
A , B ⊂ P(X) such that

(a) A ∩ I = ∅;

(b) for each element U ∈ SA and each non-empty element B ∈ B there is
an element A ∈ A such that A ⊂ B \ U .

Then

(1) for each element I ∈ I , each element U ∈ SA and each non-empty
element B ∈ B we have (U ∪ I )− ∩ B �= ∅;

(2) for each elements I1, I2 ∈ I , each element U ∈ SA and each non-empty
element B ∈ B we have (U ∪ I1)

− ∩ (B \ I2) �= ∅;

(3) for each elements I1, I2, I3, I4 ∈ I , each element U ∈ SA and each
element V ∈ SB we have (U \ I1) ∪ I2 �= (V \ I3) ∪ I4. i.e. (SA ∗ I ) ∩
(SB ∗ I ) = ∅.

Proof. Our proof is very close to the proof of [2, Proposition 3.1].
(1) Assume that U ∪ I ⊃ B for some non-empty element B ∈ B. By (b)

there is A ∈ A such that A ⊂ B \ U . Note that A ⊂ (U ∪ I ) \ U ⊂ I . But
this contradicts (a).

(2) Assume that U ∪ I1 ⊃ (B \ I2) for some non-empty element B ∈ B and
some element I2 ∈ I . Note that U ∪(I1 ∪I2) = (U ∪I1)∪I2 ⊃ (B \I2)∪I2 ⊃
B. But this contradicts (1).

(3) Assume that (U \ I1) ∪ I2 = (V \ I3) ∪ I4 for some elements U ∈ SA ,
V ∈ SB and I3, I4 ∈ I . If V = ∅, then (U \ I1)∪ I2 = I4 and so U ⊂ I1 ∪ I4.
But this contradicts (a). Hence V �= ∅. Note that there is a non-empty element
B ∈ B such that B ⊂ V . Further observe that U ∪ I2 ⊃ (U \ I1) ∪ I2 =
(V \ I3) ∪ I4 ⊃ B \ I3. But this contradicts (2).

Example 3.10 ([2]).
(a) The family V of all Vitali sets of R as A , the family O of all open sets

of R as B and the family M of all meager sets of R as I satisfy the
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conditions of Proposition 3.3. Note that SV = V1, SO = O , V1 ∗ M =
V2 and O ∗ M = Bp (the notations are from the Introduction). Hence,
V2 ∩ Bp = ∅.

(b) Consider the Euclidean space Rn for some n > 1. A Vitali set of Rn

is any set S = ∏n
j=1 S(j), where S(j) is a Vitali set of R for each

j = 1, . . . , n. The family V n of all Vitali sets of Rn as A , the family
O n of all open sets of Rn as B and the family Mn of all meager sets of
Rn as I satisfy the conditions of Proposition 3.3. Let V n

1 be the family
of all finite unions of Vitali sets of Rn, V n

2 = V n
1 ∗ Mn and Bn

p be the
family of all sets of Rn with the Baire property. Note that SV n = V n

1 ,
SOn = O n, Bn

p = O n ∗ Mn and V n
2 ∩ Bn

p = ∅.
There is even a generalization of the result for the products Rn × Rm

S ,
where RS is the Sorgenfrey line (see [3] for the definition).

4. Applications

In [2, Theorem 3.2] one can find the following statements about the families
V n, V n

1 , V n
2 , where n ≥ 1.

(i) V n ⊂ V n
1 ⊂ V n

2 ⊂ (Bn
p)C .

(ii) For each U ∈ V n
1 , dim U = 0, and for each W ∈ V n

2 , dim W ≤ n − 1.

(iii) The families V n, V n
1 , V n

2 are invariant under translations of Rn.

(iv) The families V n
1 , V n

2 are semigroups of sets.

4.1. Two nested families of semigroups of sets

It follows easily from Corollary 3.1 and Proposition 3.2 that the family Mn∗V n
1

is another semigroup of sets invariant under translations of Rn such that V n
1 ⊂

Mn ∗ V n
1 ⊂ V n

2 . The following statement extends the variety of semigroups
of sets without the Baire property based on the family V n

1 .

Theorem 4.1. Let n > 1. Then there are two finite families {L n,k}n−1
k=0 ,

{Rn,k}n−1
k=0 of pairwise distinct semigroups of sets invariant under translations

of the Euclidean space Rn such that

(a) for each 0 ≤ k ≤ n − 2 we have L n,k ⊂ L n,k+1 and Rn,k ⊂ Rn,k+1,

(b) for each L ∈ L n,k and R ∈ Rn,k we have dim L ≤ k and dim R ≤ k and
there are L0 ∈ L n,k and R0 ∈ Rn,k such that dim L0 = dim R0 = k,
where 0 ≤ k ≤ n − 1,

(c) for each 0 ≤ k ≤ n − 1 we have L n,k ⊂ Rn,k but Rn,k−1 does not
contain L n,k ,

(d) Rn,n−1 ⊂ V n
2 but Rn,n−1 �= V n

2 , L n,n−1 ⊂ Mn∗V n
1 but L n,n−1 �= Mn∗

V n
1 and Mn ∗ V n

1 does not contain Rn,0, V n
1 ⊂ L n,0 but V n

1 �= L n,0.
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Proof. For each 0 ≤ k < n let us consider the family Fk of all closed k-
dimensional subsets of Rn. Note that every family Fk is a semigroup of sets, and
the inclusion IFk

⊂ IFk+1 holds for each 0 ≤ k ≤ n − 2. Since every element
of IFn−1 is nowhere dense in the Euclidean space Rn we have IFn−1 ⊂ Mn.
For each 0 ≤ k < n put Rn,k = V n

1 ∗IFk
and L n,k = IFk

∗V n
1 . The point (a)

is evident. It follows from Proposition 3.1 and Corollary 3.1 that the families
Rn,k, L n,k are semigroups of sets for each 0 ≤ k < n. It is also clear that
the families Rn,k, L n,k consist of sets which are invariant under translations
of Rn and which have dimension dim ≤ k. Since for each Vitali set S of Rn

the union S ∪ I k = (I k \ S) ∪ S = (S \ I k) ∪ I k , where I k is any subset of
Rn homeomorphic to the k-dimensional cube [0, 1]k , belongs to both families
L n,k, Rn,k and dim(S∪I k) = k, we have (b). Note that Proposition 3.2 implies
the inclusion of (c), and (b) implies that L n,k−1 �= L n,k , Rn,k−1 �= Rn,k and
that the family Rn,k−1 cannot contain the family L n,k . On the other hand for
each Vitali set S of Rn the difference S \ {p}, where p ∈ S, cannot belong to
the family Mn ∗ V n

1 but it belongs to the family Rn,0. Hence, L n,k �= Rn,l

for each 0 ≤ k, l < n − 1. Note that Rn,n−1 ⊂ V n
2 , L n,n−1 ⊂ Mn ∗ V n

1 and
V n

1 ⊂ L n,0. In order to finish the proof of (d) let us recall (see [2, Lemma 3.4])
that for each element U ∈ V n

1 there are elements V1, . . . , Vn ∈ V1 such
that U ⊂ ∏n

i=1 Vi . This easily implies that no element of V n
1 can contain a

countable subset of Rn consisting of points with rational coordinates. Thus
the set Cn ∪ S = (Cn \ S) ∪ S ∈ L n,0, where C is the standard Cantor set
of [0, 1] and S is any Vitali set of Rn, is not an element of V n

1 , and the set
Qn ∪ S = (Qn \ S) ∪ S ∈ Mn ∗ V n

1 , where Q is the set of all rational numbers
of R and S is any Vitali set of Rn, is no element of Rn,n−1. This completes the
proof of (d).

4.2. Supersemigroups based on the Vitali sets

Let Q be a countable dense subgroup of the additive group of the real numbers.
One can consider the Vitali construction ([7]) with the group Q instead of the
group Q of rational numbers (cf. [4]). The analogue of aVitali set with respect to
the group Q we will call a Vitali Q-selector of R. One can introduce in the same
way as above a Vitali Q-selector of Rn, n ≥ 1 and the corresponding families
V n(Q), V n

1 (Q), Mn∗V n
1 (Q), V n

2 (Q), L n,k(Q), Rn,k(Q), where 0 ≤ k < n.
Note that similar statements as in part 4.1 are valid for the families.

Let F be the family of all countable dense subgroups of the additive group
of the real numbers.

Set V sup = {V : V ∈ V 1(Q), Q ∈ F }, V
sup

1 = SV sup and V
sup

2 =
V

sup
1 ∗ M.
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It is easy to see that

(i) for each Q ∈ F we have V 1
2 (Q) ⊂ V

sup
2 .

(ii) V
sup

1 , V
sup

2 are semigroups of sets invariant under translations of R.

(One can even show that for each Q ∈ F we have V 1(Q) ⊆ V sup but
V 1(Q) �= V sup, resp. V 1

1 (Q) ⊆ V
sup

1 but V 1
1 (Q) �= V

sup
1 . We do not know if

V 1
2 (Q) �= V

sup
2 for each Q ∈ F .)

We will call the family V
sup

1 the supersemigroup of sets based on the Vitali
sets.

Lemma 4.2. For any set U ∈ V
sup

1 and any non-empty open set O of R there
is a set V ∈ V sup such that V ⊂ O \ U .

Proof. Let U = ∪n
i=1Vi , where Vi ∈ V 1(Qi) and Qi ∈ F . Note that the

statement is valid when Q1 = · · · = Qn (see [2, Lemma 3.1]). Now we will
consider the general case. Put Q = ∑n

i=1 Qi = {∑n
i=1 qi : qi ∈ Qi

}
and note

that Q ∈ F .

Claim 4.3. For each x ∈ R we have |Qx ∩ (O \ U)| ≥ 1.
(In fact, |Qx ∩ (O \ U)| = ℵ0.)

Proof. For n = 1 the statement evidently holds ([2, Lemma 3.1]).
Let n ≥ 2. Let Oi, i ≤ n, be non-empty open sets of R such that x + O1 +

· · · + On = {x + x1 + · · · + xn : xi ∈ Oi, i ≤ n} ⊂ O. For each i ≤ n choose
n + 1 different points qi(j), j ≤ n + 1, of Oi ∩ Qi .

Let now Qi = {qj

i : j ≥ 1}, i = 1 ≤ n, and q
j

i = qi(j), i ≤ n; j ≤ n + 1.
Observe that for each i ≤ n and each j1, . . . , ĵi , . . . , jn (the notation â means
that a is not there) the set {x + q

j1
1 + · · · qk

i + · · · + q
jn
n : k ≥ 1} consists of

countably many different points (a coset of Qi) and only one of them belongs
to Vi .

Consider now an n-dimensional digital box B = {(j1, . . . , jn) : ji ≤
n + 1, i ≤ n}. Note that |B| = (n + 1)n and call the elements of B by cells.
Put in each cell (j1, . . . , jn) of B the sum x + q

j1
1 + · · · + q

jn
n .

Fix i ≤ n and observe that each interval I (j1, . . . , ĵi , . . . , jn) = {(j1, . . . ,

k, . . . , jn) : k ≤ n + 1} of cells contains at most one element of Vi . So the
whole box B contains at most (n+1)n−1 elements of Vi . Summarizing we have
at most n(n+1)n−1 elements of U in the box B. Since (n+1)n > n(n+1)n−1

for n ≥ 2, there are points p in B which are not elements of U . But such p

must be elements of the set Qx ∩ O by our choice. The claim is proved.

Let us finish the proof of the lemma. For each equivalence class Qx choose
a point from the set Qx ∩ (O \U). The set of such points is a Vitali Q-selector
V of R such that V ⊂ O \ U .
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Theorem 4.4.
(a) V

sup
2 ⊂ BC

p .

(b) for each A ∈ V
sup

2 we have dim A = 0.

(c) for each Q ∈ F we have V 1
2 (Q) ⊂ V

sup
2 .

(d) V
sup

2 is a semigroup of sets invariant under translations of R.

Proof. (a) and (b) follow Lemma 4.1 and Proposition 3.3. (c) and (d) were
observed in (i) and (ii) of this section.

Remark 4.5.
(a) Considering different ideals of sets in the real line R (the ideal of finite

sets, the ideal of countable sets, the ideal of closed discrete sets, the ideal
of nowhere dense sets, etc) we can produce many different semigroups of
sets in BC

p by the use of the operation ∗ and the semigroups V 1
1 (Q), Q ∈

F , and V
sup

1 .

(b) Let us note that one can define supersemigroups of sets based on the
Vitali sets in Rn, n ≥ 2, by a similar argument as above.

4.3. A nonmeasurable case

In [5] Kharazishvili proved that each element U of the family V1 is nonmeas-
urable in the Lebesgue sense. Let N be the family of all measurable sets in the
Lebesgue sense on the real line R and N0 ⊂ N be the family of all sets of the
Lebesgue measure zero. Recall that the family N0 is an ideal of sets (in fact, a
σ -ideal). It follows from Propositions 3.1 and 3.2 that the families V1, N0 ∗ V1

and V1 ∗ N0 are three different semigroups of sets invariant under translations
of R and V1 ⊂ N0 ∗ V1 ⊂ V1 ∗ N0. We have the following generalization of
Kharazishvili’s result.

Proposition 4.6. Each element of the family V1 ∗ N0 is nonmeasurable in
the Lebesgue sense.

Proof. In fact, let A ∈ V1 ∗N0 and assume that A ∈ N . By Proposition 3.2
there are an U ∈ V1 and an N ∈ N0 such that A = U � N . It is known that
if A1, A2 are sets such that A1 ∈ N and the set A1 � A2 is of the Lebesgue
measure zero then the set A2 must belong to the family N (see [1]). But
A � U = (U � N) � U = N , hence U ∈ N . This is a contradiction with [5].
So A /∈ N .

Question 4.7. Is each element U of the family V
sup

1 nonmeasurable in the
Lebesgue sense?
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