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ORLICZ REGULARITY FOR NON-DIVERGENCE
PARABOLIC SYSTEMS WITH PARTIALLY

VMO COEFFICIENTS

MAOCHUN ZHU, PENGCHENG NIU and XIAOJING FENG∗

Abstract
This work treats the interior Orlicz regularity for strong solutions of a class of non-divergence
parabolic systems with coefficients just measurable in time and VMO in the spatial variables.

1. Introduction

Let us consider the following parabolic systems

(1) uαt +
N∑
β=1

n∑
i,j=1

a
ij

αβ(x, t)u
β
xixj

= f α

in some domain �T ⊂ Rn+1, where α, β = 1, . . . , N , i, j = 1, 2, . . . , n.
In this paper, the summation is understood for repeated indices. There were
many works on the W 2,p regularity for (1), that is, local or global Lp estim-
ates for the second order derivatives of strong solutions of (1). Let us mention
some of them. In the scalar case (N = 1), when the coefficients belong to
C0(�T ), Ladyzhenskaya in [13] showed that a solution of (1) actually belongs
toW 1,2

p (�T ) (2 < p < ∞) by Fourier multiplier theory; when the coefficients
are discontinuous but belong to VMO, Bramanti and Cerutti in [2] obtained
a similar result by using Coifman-Rochberg-Weiss commutator theorem. The
approach in [2] was further used in the study of Morrey regularity for non-
divergence parabolic problems with discontinuous coefficients, see [14], [15],
[16], [17], [18] and references therein. When the coefficients are just measur-
able in time and VMO in spatial variables, solvability of (1) in Sobolev spaces
was investigated by Krylov in [11] and [12]. Later, the results in [11] and [12]
were extended to parabolic systems (N �= 1) in [3].
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In this paper, we are interested in the Orlicz regularity problem, more accur-
ately, for anyYoung function φ ∈ �2 ∩	2 andQ′ � �T , if u = (u1, . . . , uN)

is a strong solution of (1) in Lφ(�T ; RN) and f α ∈ Lφ(�T ), whether |D2u|
still belongs to Lφ , at least locally? The main result of this paper will give an
affirmative answer to this problem and show that the results in [12] and [3] are
still valid in the setting of general Orlicz spaces. Unlike in [2], [12] and [3],
the approach used here is inspired by Wang [19] which is based on the weak
compactness, a version of Vitali’s covering lemma and maximal functions. We
remark that the method in [19] has been widely used to deal with the Lp or
Orlicz regularity in Reifenberg flat domains for divergence elliptic or parabolic
systems, see [8], [9], [4], [5], [6] and references therein.

This paper is organized as follows: in Section 2 we introduce the notations
and state precisely the assumptions and the main result of this paper. In Sec-
tion 3 we first prove some approximation results, and then deduce some local
estimates on the Hardy-Littlewood maximal function of |D2u|2. The last Sec-
tion is devoted to proving the regularity in Orlicz spaces for strong solutions
of (1).

1.1. Notations and definitions

Let � be an open bounded subset of Rn and set

�T = �× (0, T ]

for some fixed time T > 0.
Denote the open ball in Rn of radius r centered at x by Br(x), and define

the parabolic cylinder by

Qr(x, t) = Br(x)× (t, t + r2], r ∈ (0,∞)

with its boundary by

∂Qr(x, t) = Br(x)× {t = T } ∪ ∂Br(x)× [0, T ].

We also use the centered parabolic cylinder

Cr(x, t) = Br(x)×
(
t − r2

2
, t + r2

2

]

and adopt the convention of writingQr instead ofQr(x, t), when the “center”
(x, t) is not important or is clear from the context.
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In order to simplify notation, henceforth we will write z for (x, t), |D2u|
for |uxx |2 + |ut |2, and write

ut +
N∑
β=1

n∑
i,j=1

a
ij

αβ(x, t)uxixj = F

for the system (1). Denote the Lebesgue measure of �T by |�T | and set

‖u‖Lp(�T ;RN ) = ‖|u|‖Lp(�T ), with |u| =
( N∑
α=1

|uα|2
)1/2

,

‖D2u‖Lp(�T ;RN ) = ‖|D2u|‖Lp(�T ), with |D2u| =
( N∑
α=1

(|D2uα|2)
)1/2

,

‖F‖Lp(�T ;RN ) = ‖|F|‖Lp(�T ), with |F| =
( N∑
α=1

(|f α|2)
)1/2

and

‖ux‖Lp(�T ;RN ) = ‖|ux |‖Lp(�T ), with |ux | =
( N∑
α=1

n∑
i=1

(|uαxi |2)
)1/2

.

Definition 1 (VMOx and weakly (δ, R)-vanishing). Denote

osc(a,Qr(x, t)) = r−2|Br |−2
∫ t+r2

t

∫
y,z∈Br (x)

|a(y, s)− a(z, s)| dy dz ds,

a
�(x)

R = sup
(t,x)∈�T

sup
r≤R

osc(a,Qr(t, x)).

We say that a is weakly (δ, R)-vanishing, if supr<R a
�(x)
r ≤ δ2; We say that

a ∈ VMOx , if
lim
R→0

a
�(x)

R = 0.

The function a�(x)R is called the local VMOx modulus of a.

Definition 2 (Sobolev space). Let 1 ≤ p ≤ ∞. A function u is said to
belong to the Sobolev space W 1,2

p (�T ), if |u|, |ux |, |D2u| ∈ Lp(�T ), and we
set ‖u‖W 1,2

p (�T )
:= ‖u‖Lp(�T ) + ‖D2u‖Lp(�T ) + ‖ux‖Lp(�T ).

By W̊ 1,2
p (�T ), we mean the subspace ofW 1,2

p (�T ) consisting of functions u(z)
vanishing near the parabolic boundary ∂�T .



144 maochun zhu, pengcheng niu and xiaojing feng

Definition 3. If u ∈ W 1,1
2 (�T ; RN) and satisfies∫

�T

utϕ dz−
∫
�T

a
ij

αβ(z)uxi ϕxj dz =
∫
�T

Fϕ dz,

for every ϕ ∈ W̊ 1,1
2 (�T ; RN), then u is called a weak solution of

ut +
(
a
ij

αβ(z)uxi
)
xj

= F.

Definition 4. We say that u ∈ W 1,2
2 (�T ; RN) is a strong solution of (1),

if there are sequences of smooth vector functions {un}, {fn} such that un →
u, fn → f in L2(�T ; RN) and

(
uαn

)
t
+

N∑
β=1

n∑
i,j=1

a
ij

αβ(x, t)
(
uβn

)
xixj

= f αn

for each n.

1.2. Orlicz spaces

Definition 5. A nonnegative real-valued function φ is said to be a Young
function if φ is increasing, convex and satisfies

φ(0) = 0; φ(∞) = lim
t→∞φ(t) = ∞; lim

t→0+

φ(t)

t
= lim

t→∞
t

φ(t)
= 0.

Definition 6. For a given Young function φ and a bounded domain�T ⊂
Rn+1, the Orlicz classKφ(�T ) is the set of all measurable functions f : �T →
R1 satisfying ∫

�T

φ(|f (z)|) dz < ∞.

The Orlicz space Lφ(�T ) is defined to be the linear hull of Kφ(�T ), that is,
the smallest linear space (under pointwise addition and scalar multiplication)
containing Kφ(�T ).

Definition 7. We say that a Young function φ satisfies the �2-condition,
denoted by φ ∈ �2, if for some number α > 0 and for all t > 0, φ(2t) ≤
αφ(t); A Young function φ is said to satisfy the 	2-condition, denoted by
φ ∈ 	2, if for some number β > 1 and for all t > 0, 2βφ(t) ≤ φ(βt).

Remark 8. We will write a Young function φ ∈ �2 ∩ 	2, if φ is assumed
to satisfy both �2 and 	2 conditions. This condition ensures that a Young
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function grows neither too slowly nor too fast. For any p > 1, the Young
function φ(t) = tp ∈ �2 ∩ 	2, thus Lebesgue spaces Lp(�T ) are special
cases of Orlicz spaces Lφ(�T ).

Definition 9. Given aYoung function φ ∈ �2 ∩	2, the Luxemburg norm
‖·‖Lφ(�T ) is defined by

‖f ‖Lφ(�T ) = inf

{
ρ > 0 :

∫
�T

φ(|f |/ρ) dz ≤ 1

}
.

With the norm ‖·‖Lφ(�T ), (Lφ(�T ), ‖·‖Lφ(�T )) is a Banach space.

Lemma 10. Let φ be a Young function. Then φ(t) ∈ �2 ∩ 	2 if and only
if there exist constants A2 ≥ A1 > 0 and α1 ≥ α2 > 1 such that for any
0 < s ≤ t ,

(2) A1

(
s

t

)α1

≤ φ(s)

φ(t)
≤ A2

(
s

t

)α2

.

Moreover, the condition (2) implies that for 0 < θ1 ≤ 1 ≤ θ2 < ∞,

φ(θ1t) ≤ A2θ
α2
1 φ(t) and φ(θ2t) ≤ A−1

1 θ
α1
2 φ(t).

Lemma 11 ([9]). Given a Young function φ ∈ �2 ∩ 	2, suppose f ∈
Lφ(�T ). Then

∫
�T
φ(|f (z)|) dz can be rewritten as an integral of the distri-

bution μf (λ) = |{z ∈ �T : |f | > λ}|. That is, for any N > 1,

∫
�T

φ(|f (z)|) dz =
∞∑

k=−∞

∫ Nk+1

Nk

μf (λ) dλ.

1.3. Assumptions and main results

Assumption (H). The coefficients aijαβ(z) in (1) are real valued, bounded
measurable functions defined in�T and satisfy the strong Legendre-Hadamard
condition, that is, there exists a constant μ > 0 such that

(3) μ|ξ |2|ζ |2 ≤ a
ij

αβ(z)ξiξj ζ
αζ β ≤ μ−1|ξ |2|ζ |2

for any ξ ∈ Rn, ζ ∈ RN and a.e. z ∈ �T . Furthermore, we assume that the
coefficients belong to VMOx ∩ L∞.

Let us state the main result of this paper.
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Theorem 12. Under the assumption (H), suppose φ ∈ �2 ∩ 	2 and F ∈
Lφ(�T ; RN). If u ∈ W 1,2

2 (�T ; RN)∩Lφ(�T ) is a strong solution of (1), then
|D2u| ∈ Lφ(Q′); moreover,∫

Q′
φ(|D2u|2) dz ≤ c

(∫
�T

φ(|u|2) dz+
∫
�T

φ(|F|2) dz
)
,

where the constant c depends on μ, φ,Q′, �T and the local VMOx moduli of
the coefficients in Q′.

Throughout this paper, denote by the letter c some positive constant which
may vary from line to line.

2. Approximation and preliminary results

2.1. Approximation

Lemma 13 (Poincaré’s inequality, [19]). There exist positive constants r0 and
c, such that for any u ∈ W 1,2

2 (�T ), R < r0,

(4)
∥∥u− uQR

− (∇u)QR
· x∥∥

L2(QR)
≤ cR2‖D2u‖L2(QR).

Theorem 14. For any ε > 0, there is a small constant δ = δ(ε) > 0 such
that if u ∈ W 1,2

2 (QT ; RN) is a weak solution of (1) in Q4 � QT with

(5)

1

|Q4|
∫
Q4

|D2u|2dz ≤ 1,

1

|Q4|
∫
Q4

(
|F|2 + ∣∣aijαβ − (

a
ij

αβ

)
B4
(t)

∣∣2
)
dz ≤ δ2,

where
(
a
ij

αβ

)
B4
(t) = 1

|B4|
∫
B4
a
ij

αβ(x, t) dx, then there exists a solution v of the
system

(6) vt +
(
a
ij

αβ

)
B4
(t)vxixj (z) = 0 in Q4

such that

(7)
∫
Q4

|u− v|2dz ≤ ε2.

Proof. Just to simplify notations, assume that the center ofQr is the origin.
We prove this conclusion by the contradiction. If not, there exist a constant
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ε0 > 0, and sequences
{
a
ijk

αβ (z)
}∞
k=1, {uk}∞k=1, and {Fk}∞k=1 such that uk is a

strong solution of the system

(8) ukt + a
ijk

αβ (z)u
k
xixj

= Fk in Q4

with

(9)

1

|Q4|
∫
Q4

|D2uk|2 dz ≤ 1,

1

|Q4|
∫
Q4

(|Fk|2 + ∣∣aijkαβ − (
a
ijk

αβ

)
B4
(t)

∣∣2)
dz ≤ 1

k2
,

but

(10)
∫
Q4

|uk − vk|2 dz > ε2
0,

where vk is any strong solution of the system

(11) vt +
(
a
ijk

αβ

)
B4
(t)vxixj = 0 in Q4.

By Lemma 13,

1

|Q4|
∫
Q4

∣∣uk − ukQ4
− (∇uk)Q4 · x∣∣2

dz ≤ c

|Q4|
∫
Q4

|D2uk|2 dz ≤ c,

then by using the interpolation theorem, we know that {uk − ukQ4
− (∇uk)Q4 ·

x}∞k=1 is bounded in W 1,2
2 (Q4). Without loss of generality, we may assume

ukQ4
+ (∇uk)Q4 · x = 0, and then there exists a subsequence of {uk}∞k=1 which

still be denoted by {uk}∞k=1, such that for some u0 ∈ W 1,2
2 (Q4),

(12)
uk → u0 in L2,

ukxx, u
k
t → (u0)xx, (u0)t weakly in L2.

Since
{(
a
ijk

αβ

)
B4
(t)

}∞
k=1 is bounded in L∞(Q4), and so is in L2(Q4), there

exist a subsequence which still be denoted by
{(
a
ijk

αβ

)
B4
(t)

}∞
k=1, and some

function āijαβ(t) ∈ L2(Q4), such that

(13)
(
a
ijk

αβ

)
B4
(t) → ā

ij

αβ(t) weakly in L2, as k → ∞.

Now we claim that u0 itself is a solution of the system

(14) (u0)t + ā
ij

αβ(t)(u0)xixj = 0 in Q4.
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For this, fix a ϕ ∈ C∞
0 (Q4), then

(15)
∫
Q4

(
ukt + a

ijk

αβ (z)u
k
xixj

)
ϕ dz

=
∫
Q4

(
ukt + (

a
ijk

αβ (z)− (
a
ijk

αβ

)
B4
(t)

)
ukxixj + (

a
ijk

αβ

)
B4
(t)ukxixj

)
ϕ dz.

By Hölder’s inequality and (9), we know

(16)

(∫
Q4

(
a
ijk

αβ (z)− (
a
ijk

αβ

)
B4
(t)

)
ukxixj ϕ dz

)2

≤
(∫

Q4

(
a
ijk

αβ (z)− (
a
ijk

αβ

)
B4
(t)

)2
dz

)
·
∫
Q4

(
ukxixj ϕ

)2
dz → 0.

Since
{(
a
ijk

αβ

)
B4
(t)

}∞
k=1 is uniformly bounded in L∞(Q4), we see that (12) and

(13) imply

(17)

∫
Q4

(
a
ijk

αβ

)
B4
(t)ukxixj ϕ dz−

∫
Q4

ā
ij

αβ(t)(u0)xixj ϕ dz

≤
∫
Q4

(
a
ijk

αβ

)
B4
(t)

(
ukxixj − (u0)xixj

)
ϕ dz

+
∫
Q4

((
a
ijk

αβ

)
B4
(t)− ā

ij

αβ(t)
)
u0ϕxixj dz

≤
∫
Q4

(uk − u0)
2 dz

∫
Q4

((
a
ijk

αβ

)
B4
(t)ϕxixj

)2
dz

+
∫
Q4

((
a
ijk

αβ

)
B4
(t)− ā

ij

αβ(t)
)
u0ϕxixj dz → 0,

as k → ∞, and

(18)
∫
Q4

ukt ϕ dz →
∫
Q4

u0
t ϕ dz, as k → ∞.

Summing up (15), (16), (17) and (18), it yields

(19) ukt + a
ijk

αβ (z)u
k
xixj

→ (u0)t + ā
ij

αβ(t)(u0)xixj , weakly in Q4.

This convergence and (9) give∫
Q4

(
(u0)t + ā

ij

αβ(t)(u0)xixj
)2
dz ≤ lim inf

∫
Q4

(
ukt + a

ijk

αβ (z)u
k
xixj

)2
dz

= lim inf
∫
Q4

|Fk|2 dz = 0,
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which means (u0)t + ā
ij

αβ(t)(u0)xixj = 0 a.e. in Q4, and then u0 is a strong
solution of (14).

Noting that

(u0)t +
(
a
ijk

αβ

)
B4
(t)(u0)xixj

= (u0)t + ā
ij

αβ(t)(u0)xixj + ((
a
ijk

αβ

)
B4
(t)− ā

ij

αβ(t)
)
(u0)xixj

= ((
a
ijk

αβ

)
B4
(t)− ā

ij

αβ(t)
)
(u0)xixj ,

and by using [3, Thm. 2.4], we know that the problem

(20)

{
hkt + (

a
ijk

αβ

)
B4
(t)hkxixj = ((

a
ijk

αβ

)
B4
(t)− ā

ij

αβ(t)
)
(u0)xixj ,

hk = 0, on ∂Q4

has a unique solution hk satisfying

(21)
∫
Q4

|D2hk|2 dz ≤
∫
Q4

(((
a
ijk

αβ

)
B4
(t)− ā

ij

αβ(t)
)
(u0)xixj

)2
dz.

From [3, Lemma 3.3], it follows

(22) sup
z∈Q3

|(u0)xixj | ≤ c
(‖(u0)x‖L2(Q4) + ‖u0‖L2(Q4)

)
.

Also, since
{
a
ijk

αβ

}∞
k=1 is bounded and āijαβ(t) ∈ L2, there is a positive constant

C such that

(23)
∥∥(
a
ijk

αβ

)
B4
(t)− ā

ij

αβ(t)
∥∥
L2(Q4)

≤ C.

Combining (21),(22) and (23), it obtains that
{|D2hk|}∞

k=1 is bounded in
L2(Q4), hence

(24) hk → h0, in L2

for some h0 ∈ L2(Q4).
Now we show h0 = 0 a.e. in Q4. In fact, since hk is also a weak solution

of the problem

(25)

{
hkt + ((

a
ijk

αβ

)
B4
(t)hkxi

)
xj

= ((
a
ijk

αβ

)
B4
(t)− ā

ij

αβ(t)
)
(u0)xixj ,

hk = 0, on ∂Qs
4,

where Qs
4 = B4(0)× (s, 16], we take hk as a test function in (25), and then∫

Qs
4

hkt h
k − (

a
ijk

αβ

)
B4
(t)hkxi h

k
xj
dx dt =

∫
Qs

4

((
a
ijk

αβ

)
B4
(t)− āijαβ(t)

)
(u0)xixj h

k dx dt,
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hence

(26) −
∫
B4(0)

(hk)2(x, s) dx −
∫
Qs

4

(
a
ijk

αβ

)
B4(0)

(t)hkxi h
k
xj
dx dt

=
∫
Qs

4

((
a
ijk

αβ

)
B4
(t)− ā

ij

αβ(t)
)
(u0)xixj h

k dx dt.

By (22), we know
((
a
ijk

αβ

)
B4
(t)− āijαβ(t)

)
(u0)xixj → 0 weakly inL2. Also since

hk → h0 in L2, it follows that

(27)
∫
Qs

4

((
a
ijk

αβ

)
B4
(t)− ā

ij

αβ(t)
)
(u0)xixj h

k dx dt → 0, in L2,

which and (3) give

μ

∫
Qs

4

|hkx |2 dx dt ≤
∫
B4

|hk|2(x, s) dx +
∫
Qs

4

(
a
ijk

αβ

)
B4
(t)hkxi h

k
xj
dx dt → 0,

as k → ∞. Thus (h0)x = 0 a.e. inQ4, which means that h0 is independent of
x in Q4. Also we have by (26) and (27) that∫

B4

|h0|2(s) dx =
∫
B4

|h0|2(x, s) dx

≤ lim inf
∫
B4

|hk|2(x, s) dx

≤ lim inf
∫
Qs

4

((
a
ijk

αβ

)
B4
(t)− ā

ij

αβ(t)
)
(u0)xixj h

k dx dt

= 0,

then
h0(s) = 0 a.e. in (0, 16),

which implies h0(z) = 0 a.e. in Q4.
Combining (24) and (12), we have

(28)
∫
Q4

|uk − (u0 − hk)|2 dz ≤ c

(∫
Q4

|uk − u0|2 dz+
∫
Q4

|hk|2 dz
)

→ 0.

On the other hand, u0 − hk is still a solution of (11), it follows from (10) that∫
Q4

|uk − (u0 − hk)|2dz ≥ ε0,

which contradicts (28).
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Lemma 15 ([7]). Letψ(t) be a nonnegative bounded function defined on the
interval [T0, T1], where T1 > T0 ≥ 0. Suppose that for any T0 ≤ t ≤ s ≤ T1,
ψ satisfies

ψ(t) ≤ ϑψ(s)+ A

(s − t)α
+ B,

where ϑ , A, B, α are nonnegative constants, and ϑ < 1. Then for any T0 ≤
ρ < R ≤ T1,

ψ(ρ) ≤ cα

[
A

(R − ρ)α
+ B

]
,

where cα only depends on α.

Lemma 16. There exists a constant N0 > 0, such that

(29) sup
z∈Q2

|D2v| ≤ N0,

where v is the function in Theorem 14.

Proof. From [3, Lemma 3.3], we know

(30) sup
z∈Q2

|D2v| ≤ c
(‖vx‖L2(Q3) + ‖v‖L2(Q3)

)
.

Now, we try to remove the term ‖vx‖L2(Q3). Since v is a strong solution of (6)
and the coefficients are independent of x, one sees that v is a weak solution of

(31) vt +
((
a
ij

αβ

)
B4
(t)vxj

)
xi

= 0 in Q4.

For 2 ≤ l < s ≤ 3, we choose a cutoff function ϕ(x) satisfying

0 < ϕ(x) ≤ 1 in B4, ϕ(x) ≡ 1 in Bl,

ϕ(x) ≡ 0 in B3\Bs, |ϕx | ≤ c

s − l
in B4,

and η with the form

η(t) =

⎧⎪⎨
⎪⎩
s2 − t

s2 − l2
∈ [l2, s2),

1, t ∈ [0, l2).

Taking vη(t)ϕ2(x) as a test function in (31), we have∫
Q4

(
vtvηϕ

2 − (
a
ij

αβ

)
B4
(t)vxj (vηϕ

2)xi
)
dz = 0.
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Since ∫
Q4

vtvηϕ
2 dz =

∫
Q4

(
1

2
v2η

)
t

ϕ2 dz−
∫
Q4

1

2
v2ηtϕ

2 dz

= −
∫
B4

1

2
v2ϕ2 dx −

∫
Q4

1

2
v2ηtϕ

2 dz

and∫
Q4

(
a
ij

αβ

)
B4
(t)vxj (vηϕ

2)xi dz

=
∫
Q4

((
a
ij

αβ

)
B4
(t)vxj vxi ηϕ

2 + 2
(
a
ij

αβ

)
B4
(t)vηϕvxj ϕxi

)
dz,

it follows∫
Q4

(
a
ij

αβ

)
B4
(t)vxj vxi ηϕ

2 dz+
∫
B4

1

2
v2ϕ2 dx

= −2
∫
Q4

(
a
ij

αβ

)
B4
(t)vηϕvxj ϕxi dz−

∫
Q4

1

2
v2ηtϕ

2 dz.

Because of
∫
B4

1
2v

2ϕ2dx ≥ 0 , then Young’s inequality, (3) and the properties
of η and ϕ imply

μ

∫
Ql

|vx |2 dz ≤
∫
Q4

(
a
ij

αβ

)
B4
(t)vxj vxi ηϕ

2 dz

≤
∫
Qs

1

2
|v2ηtϕ

2| dz+ 2
∫
Qs

∣∣(aijαβ)B4
(t)vηϕvxj ϕxi

∣∣ dz
≤ c

(s − l)2

∫
Qs

v2 dz+ 1

4

∫
Qs

|vx |2 dz.

It follows by Lemma 15 that

∫
Q2

|vx |2 dz ≤ c

∫
Q3

v2 dz,

hence

(32) sup
z∈Q2

|D2v| ≤ c‖v‖L2(Q4).
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From (4), we know

sup
z∈Q2

|D2v| ≤ sup
z∈Q2

∣∣D2(v − uQ4 − (∇uQ4) · x)∣∣
≤ ∥∥|(v − uQ4 − (∇uQ4) · x)|∥∥

L2(Q4)

≤ c
(∥∥|v − u|∥∥

L2(Q4)
+ ∥∥(u− uQ4 − (∇uQ4) · x)∥∥

L2(Q4)

)
≤ c

(∥∥|v − u|∥∥
L2(Q4)

+ ∥∥|D2u|∥∥
L2(Q4)

)
.

By (7) and (5), we have

sup
z∈Q2

|D2v| ≤ c(ε + 1) ≤ N0

for some positive constant N0.

Theorem 17. For any ε > 0, there is a small δ = δ(ε) > 0 such that if
u ∈ W 1,2

2 (Q4; RN) is a strong solution of (1) inQ4 ⊂ �T with (5) holds, then
there exists a strong solution v of (6) such that

1

|Q2|
∫
Q2

∣∣D2(u− v)
∣∣2
dz ≤ ε2.

Proof. From Theorem 14, it shows that for any η > 0, there exist a small
δ = δ(η) > 0 and a solution v of (6) in Q4, such that

(33)
∫
Q4

|u− v|2 dz ≤ η2.

Let us first note that u− v is a strong solution of the system

(34) (u−v)t +
(
a
ij

αβ(z)(u−v)xixj (z)
) = (

F(z)− (
a
ij

αβ(z)−
(
a
ij

αβ

)
B4
(t)

)
vxixj

)
in Q4. Using a priori L2 estimates in [3, Thm. 2.4], we have∥∥|D2(u− v)|∥∥

L2(Q2)

≤ ∥∥|u− v|∥∥
L2(Q3)

+ ∥∥∣∣F − (
a
ij

αβ(z)− (
a
ij

αβ

)
B4
(t)

)
vxixj

∣∣∥∥
L2(Q3)

≤ ∥∥|u− v|∥∥
L2(Q3)

+ ∥∥|F|∥∥
L2(Q3)

+ ∥∥(
a
ij

αβ(z)− (
a
ij

αβ

)
B4
(t)

)
vxixj

∥∥
L2(Q3)

≤ ∥∥|u− v|∥∥
L2(Q4)

+∥∥|F|∥∥
L2(Q4)

+ sup
Q3

|D2v| · ∥∥aijαβ(z)− (
a
ij

αβ

)
B4
(t)

∥∥
L2(Q3)

.



154 maochun zhu, pengcheng niu and xiaojing feng

By (33), (5) and Lemma 16, we have∥∥|D2(u− v)|∥∥
L2(Q2)

≤ η + δ +N0δ = ε,

for suitable choice of η and δ. This ends the proof.

2.2. Local estimates of M(D2u)(z)

In this subsection, we will use the parabolic maximal function defined by

Mf (z) = sup
z∈�T ,r>0

1

|Cr(z) ∩�T |
∫
Cr (z)∩�T

f (y, s) dy ds.

The following lemma gives a characterization of those functions φ ∈ �2 ∩	2.

Lemma 18 ([10]). If f ∈ L1
loc(�T ), then for every α > 0,

∣∣{z ∈ �T : (Mf )(z) > α}∣∣ ≤ c

α

∫
�T

|f (z)| dz;

if φ ∈ �2 ∩ 	2 and f ∈ Lφ(�T ), then (Mf )(z) ∈ Lφ(�T ) and∫
Rn+1

φ(M(f )) dz ≤ c

∫
Rn+1

φ(cf ) dz,

where the bound c depends only on φ.

Theorem 19. For any ε > 0 and C1(z
′) ⊂ Q6 ⊂ �T , there exist a positive

constant N1 and a small δ = δ(ε) > 0, such that if u is a strong solution of
(1) in �T with
(35)
C1(z

′) ∩ {
z ∈ Q6 : M(|D2u|2)(z) ≤ 1

} ∩ {
z ∈ Q6 : M(|F|2)(z) ≤ δ2

} �= ∅

and the coefficients aijαβ(z) being weakly (δ, 6)-vanishing, then

(36)
∣∣C1(z

′) ∩ {
z ∈ Q6 : M

(|D2u|2)(z) > N2
1

}∣∣ < ε|C1(z
′)|.

Proof. From (35), there exists a point z0 ∈ C1(z
′) such that for any ρ > 0,

1

|Cρ(z0)|
∫
Cρ(z0)

|D2u|2 dz ≤ 1,(37)

1

|Cρ(z0)|
∫
Cρ(z0)

|F|2 dz ≤ δ2.(38)
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Since C4(z
′) ⊂ C5(z0), we derive by (38) that

(39)

1

|C4(z′)|
∫∫

C4(z′)
|F|2 dy ds ≤ |C5(z0)|

|Q4(z′)|
1

|C5(z0)|
∫∫

C5(z0)

|F|2 dy ds

≤
(

5

4

)n+2

δ2.

Similarly, one finds by (37) that

(40)
1

|C4(z′)|
∫∫

C4(z′)
|D2u|2 dy ds ≤

(
5

4

)n+2

.

By (39), (40) and the assumption on aijαβ(z) (weakly (δ, 6)-vanishing), we

apply Theorem 17 (with u replaced by u′ = (
4
5

)n+2
u and F replaced by F′ =(

4
5

)n+2
F) and obtain that for any η > 0, there exist a small δ(η) > 0 and a

strong solution v′ of the system

v′
t +

(
a
ij

αβ

)
B4(x ′)(t)v

′
xixj

= 0 in Q4(z
′)

such that

(41)
1

|C2(z′)|
∫
C2(z′)

|D2(u′ − v′)|2 dz ≤ η2.

Recall that

(42) ‖D2v′‖2
L∞(C2(z′)) ≤ N2

0 ,

we claim

(43)
{
z ∈ Q6 : M

(|D2u′|2)(z) > N2
1

} ∩ C1(z
′)

⊂ {
z ∈ Q6 : M

(|D2(u′ − v′)|2)(z) > N2
0

} ∩ C1(z
′),

where N2
1 = sup{4n+2, 4N2

0 }.
In fact, to see this, suppose

(44) z1 ∈ {
z ∈ Q6 : M

(|D2(u′ − v′)|2)(z) ≤ N2
0

} ∩ C1(z
′).
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When ρ ≤ 1, it follows Cρ(z1) ⊂ C2(z
′), and then (42) and (44) imply

(45)

1

|Cρ(z1)|
∫
Cρ(z1)

|D2u′|2 dz

≤ 2

|Cρ(z1)|
∫
Cρ(z1)

|D2(u′ − v′)|2 dz+ 2

|Cρ(z1)|
∫
Cρ(z1)

|D2v′|2 dz

≤ 4N2
0 ;

when ρ > 1, we conclude Cρ(z1) ⊂ C4ρ(z0), and then by (38),

(46)

1

|Cρ(z1)|
∫
Cρ(z1)

|D2u′|2 dz ≤ C4ρ(z0)

|Cρ(z1)|
1

|C4ρ(z0)|
∫
C4ρ(z0)

|D2u′|2 dz

≤ 4n+2 1

|C4ρ(z0)|
∫
C4ρ(z0)

|D2u′|2 dz

≤ 4n+2.

Summing up (45) and (46), it shows

(47) z1 ∈ {
z ∈ Q6 : M

(|D2u′|2)(z) ≤ N2
1

} ∩ C1(z
′).

Thus (43) follows from (44) and (47).
By (43), Lemma 18 and (41), we have∣∣{z ∈ Q6 : M

(|D2u′|2) > N2
1

} ∩ C1(z
′)
∣∣

≤ ∣∣{z ∈ Q6 : M
(|D2(u′ − v′)|2) > N2

0

} ∩ C1(z
′)
∣∣

≤ c

N2
0

∫
C2(z′)

(∣∣D2(u′ − v′)
∣∣2)
dz ≤ cη2 ≤ ε|C1(z

′)|,

for suitable choice of η. This completes the proof.

With a scaling argument, we obtain the following

Corollary 20. For any ε > 0, there exist a positive constant N1 and a
small δ = δ(ε) > 0 such that if u is a strong solution of (1) in �T with∣∣{z ∈ Q1 : M

(|D2u|2)(z) > N2
1

} ∩ Cr(z′)
∣∣ ≥ ε|Cr(z′)|,

and the coefficients being weakly (δ, 6)-vanishing. Then

Cr(z
′)∩Q1 ⊂ {

z ∈ Q1 : M
(|D2u|2)(z) > 1

}∪{
z ∈ Q1 : M

(|f |2)(z) > δ2
}
.
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3. Regularity in Orlicz spaces

In this section, we prove the main result of this paper.

Lemma 21 ([19]). Let 0 < ε < 1,C andD be two measurable sets satisfying
C ⊂ D ⊂ Q1,|C| < ε|Q1| and the following property: for every z ∈ Q1 with
|C ∩ Cr(z)| ≥ ε|Cr(z)|, it follows Cr(z) ∩Q1 ⊂ D. Then

|C| ≤ 20n+2ε|D|.

Theorem 22. Suppose that u is a strong solution of (1) in �T satisfying∣∣{z ∈ Q1 : M
(|D2u|2)(z) > N2

1

}∣∣ < ε|Q1|.
Then for any positive integer m,∣∣{z ∈ Q1 : M|D2u|2(z) > N

2(m+1)
1

}∣∣(48)

≤ ε1

{∣∣{z ∈ Q1 : M|F|2(z) > δ2N2m
1

}∣∣
+ ∣∣{z ∈ Q1 : M|D2u|2(z) > N2m

1

}∣∣},
where ε1 = 20n+2ε.

Proof. We only prove for the case m = 0, otherwise replace u by u
Nm

1
and

F by F
Nm

1
. Let

C = {
z ∈ Q1 : M

(|D2u|2)(z) > N2
1

}
and

D = {
z ∈ Q1 : M

(|F|2)(z) > δ2
} ∪ {

z ∈ Q1 : M
(|D2u|2)(z) > 1

}
.

Since N1 ≥ 1, C ⊂ D ⊂ Q1 and |C| < εQ1, let z ∈ Q1 such that

|C ∩ Cr(z)| ≥ ε|Cr(z)|.
Then by Corollary 20,

Cr(z) ∩Q1 ⊂ D,

and by Lemma 21, |C| ≤ 20(n+2)ε|D|,
which is the conclusion for m = 0.

Proof of Theorem 12. For any ε > 0 to be chosen later, let us pick δ as in
Theorem 22. Since the aijαβ’s belong to VMOx(�T ), there exists R depending
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on Q′, �T and δ such that the aijαβ’s are weakly (δ, 4R)-vanishing. Without

loss of generality, we may assume that the aijαβ’s are weakly (δ, 4)-vanishing.
By using Lemma 11 with f = M(|D2u|2)(z) and N = N2

1 , a computation
gives∫

Q1

φ
(|D2u|2) dz ≤ c

∫
Q1

φ
(∣∣M(|D2u|2)∣∣) dz

=
∞∑

k=−∞

∫ N
2(k+1)
1

N2k
1

∣∣{z ∈ Q1 : M
(|D2u|2) > λ

}∣∣ dφ(λ)

≤
∞∑

k=−∞
φ(N2k

1 )
∣∣{z ∈ Q1 : M

(|D2u|2) > N2k
1

}∣∣,
hence∫

Q1

φ
(|D2u|2) dz
≤

M∑
k=−∞

φ
(
N

2(k+1)
1

)∣∣{z ∈ Q1 : M
(|D2u|2)(z) > N

2(k+1)
1

}∣∣

≤
( ∞∑
k=M

+
M−1∑
k=−∞

)
φ
(
N

2(k+1)
1

)∣∣{z ∈ Q1 : M
(|D2u|2)(z) > N

2(k+1)
1

}∣∣
= I + II.

We take M such that N2(M+1)
1 = c

∫
�T

(|u|2 + |F|2) dz > 1, and have by
Jensen’s inequality that

(49) II ≤ cφ

(∫
�T

(|u|2 + |F|2) dz) ≤ c

∫
�T

(
φ(|u|2)+ φ(|F|2)) dz.

Now, we estimate I . By Theorem 22,

I ≤
∞∑
k=M

φ
(
N

2(k+1)
1

)∣∣{z ∈ Q1 : M
(|D2u|2)(z) > N

2(k+1)
1

}∣∣

≤
∞∑
k=M

φ
(
N2k+2

1

){
ε1

∣∣{z ∈ Q1 : M
(|F|2)(z) > δ2N2k

1

}∣∣
+ ε1

∣∣{z ∈ Q1 : M
(|D2u|2)(z) > N2k

1

}∣∣}.
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Since φ ∈ �2 ∩ 	2, N1 > 1, we see by Lemma 10 that

φ
(
N2k+2

1

) = φ
(
N2k

1 ·N2
1

) ≤ A−1
1 N

2α1
1 φ

(
N2k

1

)
,

and by Lemma 11 and Lemma 18,

I ≤ ε1N
2α1
1

∞∑
k=M

φ
(
N2k

1

){
ε1

∣∣{z ∈ Q1 : M
(|F|2)(z) > δ2N2k

1

}∣∣
+ ∣∣{z ∈ Q1 : M

(|D2u|2)(z) > N2k
1

}∣∣}

≤ ε1N
2α1
1

∞∑
k=M

φ

(
δ2N2k

1

δ2

){
ε1

∣∣{z ∈ Q1 : M
(|F|2)(z) > δ2N2k

1

}∣∣}

+ ε1N
2α1
1

∫
Q1

φ
(
(|D2u|)2) dz.

Using Lemma 10 and selecting ε > 0 small enough such that N2α1
1 ε1 < 1/2,

it follows

(50) I ≤ 1

2

∫
Q1

φ
(
(|D2u|)2) dz+ δ−2α2

∫
Q1

φ
(|F|2) dz.

Combining (49) and (50), we have∫
Q1

φ
(|D2u|2) dz ≤ c

(∫
�T

φ
(|u|2) dz+

∫
�T

φ
(|F|2) dz).
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