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SELF-SIMILAR AUTOMORPHISMS OF A FREE
GROUP OF COUNTABLE RANK

WITOLD TOMASZEWSKI

Abstract
We investigate self-similar automorphisms of a free group F of infinite countable rank, that is
automorphisms for which their actions on F and F ′ are similar. We show properties, examples and
counterexamples of self-similar automorphisms and study the subgroup generated by self-similar
automorphisms.

1. Introduction and Main Results

Let F be a free group of countable rank. As usual, F ′ denotes the commutator
subgroup of F and we define the terms of the derived series F (n) of F as
follows F (0) = F , F (1) = F ′, F (n+1) = [F (n), F (n)] for n > 0. We denote by
N the set of natural numbers {1, 2, 3, . . .}, and by Z the ring of integers.

We investigate self-similar automorphisms of a free group F of infinite
countable rank, that is automorphisms for which their actions on F and F ′
are similar. We show properties, examples of self-similar automorphisms and
study the subgroup generated by self-similar automorphisms.

The subgroups and the structure of the automorphism group of a free group
of finite rank have been studied intensively (cf. surveys [8], [10]). However, we
still know little about automorphisms of free groups of infinite rank. The group
Aut(F ) of automorphisms of a free group F of countable rank is “vast”. For
example, it contains an isomorphic copy of the group S(N) of all permutations
on natural numbers and an isomorphic copy of the group ZN

2 of the infinite
series with entries 0 and 1. Some subgroups of the group Aut(F ) are described
in [4] and [7]. Many properties of Aut(F ) can be found in [1], [2], [12], [13].

Throughout this paper if ξ is an automorphism of F then ξ ′ = ξ |F ′ denotes
the restriction of ξ on F ′. It is clear that ξ ′ is an automorphism of F ′. Generally
ξ (n) will denote the restriction of ξ on F (n).

Definition 1.1. We say that ξ is self-similar (or that ξ is similar to ξ ′)
if there exists an isomorphism α : F → F ′, such that the following diagram
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commutes (ξα = αξ ′):
F α−−−−−−→ F ′

ξ ξ ′

F α−−−−−−→ F ′

We denote by M the set of all self-similar automorphisms of F .

In terms of the language of operator groups (cf. [11]), α is an isomorphism
from the operator group (F, ξ) to (F ′, ξ ′).

Definition 1.2. Let X be a fixed basis of F . An automorphism τ ∈ Aut(F )

is an elementary simultaneous Nielsen automorphism if it satisfies one of the
following conditions:

(1) τ permutes the set X.

(2) τ inverts some elements of X and acts trivially on the rest of elements
of X.

(3) There exists the subset U of X such that uτ = uv or vu for u ∈ U and
some v in X \ U and vτ = v for every v ∈ X \ U .

The notion of elementary simultaneous Nielsen automorphisms was intro-
duced by Cohen in [4]. Bogopolski and Singhof in [1] call automorphisms
of type (1) and (2) monomial automorphisms. The set of monomial auto-
morphisms is a subgroup of Aut(F ). We use the notation EX for the subgroup
generated by elementary simultaneous Nielsen automorphisms, and E for the
subgroup generated by all EX, where X is a basis of F . The conjecture of D.
Solitar states that EX coincides with the subgroup of bounded automorphisms
(see [4]).

We fix a basis (i.e. a free generator set) X of F and introduce the class
PX of automorphisms of F . An automorphism ξ belongs to PX if there exist
three pairwise disjoint, countable subsets A = {a1, a2, . . .}, B = {b1, b2, . . .},
C = {c1, c2, . . .}, such that X = A ∪ B ∪ C and for every n ∈ N a

ξ
n = bn,

b
ξ
n = an and c

ξ
n = c−1

n . Clearly, all automorphisms in PX have order two
and any two of them are conjugate. Shortly, we write that ξ acts on the basis
X = A ∪ B ∪ C as follows: A ↔ B, C → C−1. Let P be the subgroup
generated by the union of all PX, where X is a basis of the group F .

Let SX consist of automorphisms permuting the basis X. Clearly, SX is a
subgroup of EX and SX is isomorphic to the group S(N) of all permutations
of natural numbers. We use the symbol S for the subgroup generated by all
SX, where X is a basis of F .

We need one more set of automorphisms, LX. An automorphism α belongs
to LX if it inverts some elements from X, and does not change remaining
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elements. It is clear that LX is isomorphic to the group ZN
2 of all infinite series

with coordinates 0 or 1. As previously L is the subgroup generated by the
union of all LX, where X is a basis of the group F .

The intersection LX ∩SX is trivial. The product LXSX is the subgroup of
Aut(F ) and in fact it is the subgroup of monomial automorphisms on the set
X. In the group LXSX the subgroup LX is normal, while SX is not normal.
So, the product LXSX is a semidirect product LX � SX of LX by SX. If we
look closely we will see that this subgroup is isomorphic to the wreath product
Z2�S(N) (cf. [5]). Elements of this wreath product have a form (σ, (ε1, ε2, . . .)),
where σ ∈ S(N) and ((ε1, ε2, . . .) ∈ ZN

2 . Multiplication is given by

(σ, (ε1, ε2, . . .)) · (δ, (ε1, ε2, . . .)) = (σδ, (ε1δ , ε2δ , . . .)+ (ε1, ε2, . . .)),

and (σ, (ε1, ε2, . . .)) is associated with automorphism α ∈ LXSX acting on
X = {x1, x2, . . .} as follows: xα

i = x
(−1)εiσ

iσ .
The aim of this paper is to prove the following theorem.

Theorem 1.3.
(i) Every automorphism ξ from PX is self-similar, so P ⊆ 〈M〉.

(ii) 〈PX〉 = LXSX, LX ∩ SX = 1, so 〈PX〉 consists of all monomial
automorphisms on the set X and is isomorphic to the wreath product
Z2 � S(N).

(iii) E = P < 〈M〉 � Aut(F ).

Remark 1.4. It can be deduced from ([3], Theorem C) and Theorem 1.3 (iii)
that if 〈M〉 �= Aut(F ) then the index of 〈M〉 in Aut(F ) equals 2ℵ0 .

This work is inspired by research on automorphisms permuting generators
in free groups of finite rank (cf. [9], [15]). The following example shows the re-
lationship between self-similar automorphisms and automorphisms permuting
generators in the free group of rank two.

Example 1.5. Let F2 be a free group of rank 2, freely generated by x

and y and let σ be the automorphism of F2 permuting x and y. Then the
commutator subgroup F = F ′2 of F2 = 〈x, y〉 is a free group of infinite rank.
It can be deduced from [10] (4.3) that F = F ′2 is freely generated by the set
X = A ∪ B ∪ C, where A = {[xc, yd ] : c > d, c, d ∈ Z}, B = {[yc, xd ] :
c > d, c, d ∈ Z}, C = {[xc, yc] : c ∈ Z}. The automorphism ξ = σ |F , which
is the restriction of σ to F = F ′2, acts on this basis according to the schema
A↔ B, C → C−1. So, ξ belongs to PX. Then by Theorem 1.3 (i), ξ belongs
to M, that is ξ is similar to ξ ′ ∈ Aut(F ′) = Aut(F ′′2 ).
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2. Properties of the set M

Proposition 2.1. Let α be an isomorphism from F to F ′. Then

(i) For every w ∈ F we have wα ∈ F ′′ if and only if w ∈ F ′. Generally
wα ∈ F (n) for n ≥ 1 if and only if w ∈ F (n−1).

(ii) α has no nontrivial fixed points.

(iii) The restriction α′ = α|F ′ is an isomorphism between F ′ and F ′′.
(iv) The mapping β : F/F ′ → F ′/F ′′, given by (wF ′)β = wαF ′′, is the

isomorphism of free abelian groups.

Proof. (i) is clear.
(ii) Let g �= 1 be a fixed point of α and let n be such a number that g ∈ F (n−1)

but g �∈ F (n). Then by (i) we have g = gα ∈ F (n), which is a contradiction.
(iii) It follows from (i) that α′ is a bijection from F ′ onto F ′′, so it is an

isomorphism.
(iv) First, we show that wF ′ = uF ′ if and only if wαF ′′ = uαF ′′. Indeed

wF ′ = uF ′ if and only if wu−1 ∈ F ′, then by (i) it is equivalent to (wu−1)α ∈
F ′′, and so to wαF ′′ = uαF ′′. Thus, β is correctly defined and is an injection.

Since α is a surjection, β is also a surjection. So β is an isomorphism.

An automorphism ξ induces the automorphism ξ̄ of the free abelian group
F/F ′ and similarly ξ ′ induces the automorphism ξ̄ ′ of F ′/F ′′. Moreover, it
follows from Proposition 2.1 (iv) that the following diagram:

F/F ′ β−−−−−−→ F ′/F ′′

ξ̄ ξ̄ ′

F/F ′ β−−−−−−→ F ′/F ′′

commutes, that is ξ̄β = βξ̄ ′ or equivalently:

(2.1) β−1ξ̄β = ξ̄ ′

Now we show examples of automorphisms not belonging to M.

Example 2.2. Let ξ be the automorphism of F which inverts every element
of basis {x1, x2, x3, . . .}, that is for i = 1, 2, 3, . . ., x

ξ

i = x−1
i . Then groups

with operators (F, ξ) and (F ′, ξ ′) are not isomorphic. So, ξ does not belong
to M.

Proof. It is clear that ξ induces the automorphism ξ̄ of the free abelian
group F/F ′, which sends every element into its inverse. But ξ̄ ′ does not, since
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for example [x−1
1 , x−1

2 ] �= [x1, x2]−1 mod F ′′ and the equation (2.1) does not
hold.

Example 2.3. An inner automorphism ig(w) = g−1wg belongs to M only
for g = 1.

Proof. Let α : F → F ′ be an isomorphism, for which igα = αi ′g . Thus
for every w ∈ F we have (g−1wg)α = g−1wαg. From this we get gg−αwα =
wαgg−α . Since α is an isomorphism, gg−α lies in the center of F ′, so gα = g.
By Proposition 2.1 (ii) g = 1.

Proposition 2.4. Let ξ be a self-similar automorphism of F . Then

(i) ξ−1 also belongs to M.

(ii) If ζ is an automorphism of F , conjugate to ξ then ζ belongs to M.

(iii) M is not a subgroup.

(iv) For every natural number n the automorphism ξ is similar to ξ (n), where
ξ (n) = ξ |F (n) is the restriction of ξ to F (n). If α : F → F ′ is an iso-
morphism such that ξα = αξ ′ then αn : F → F (n) is an isomorphism
such that ξαn = αnξ (n).

Proof. (i) If α : F → F ′ is an isomorphism such that ξα = αξ ′ then
α−1ξα = ξ ′ and α−1ξ−1α = ξ ′−1. Since ξ ′−1 is the restriction of ξ−1 to F ′,
the statement follows.

(ii) If ζ = β−1ξβ then ζ ′ = β ′−1ξ ′β ′. If ξ = αξ ′α−1 then

ζ = β−1αξ ′α−1β = β−1αβ ′β ′−1ξ ′β ′β ′−1α−1β

= (β ′−1α−1β)−1ζ ′β ′−1α−1β,

and since β ′−1α−1β is an isomorphism mapping F onto F ′, ζ is self-similar.
(iii) We shall show in Section 3 that the automorphism inverting all elements

of the basis X is the product of automorphisms from PX and we shall show
in Section 5 that the subgroup generated by PX is contained in the subgroup
generated by M. But as it is shown in Example 2.2 the automorphism inverting
all elements of a fixed basis does not belong to M. So M is not a subgroup.

(iv) It follows from Proposition 2.1 (i) that αn is an isomorphism that maps
F onto F (n). The equality ξαn = αnξ (n) can be proved by induction on n.

3. Proof of Theorem 1.3 (ii)

We recall that α belongs to PX if there are three countable, pairwise disjoint
subsets A = {a1, a2, . . .}, B = {b1, b2, . . .}, C = {c1, c2, . . .}, such that
X = A∪B ∪C and for every natural n we have aα

n = bn, bα
n = an, cα

n = c−1
n .

We use the short notation α : A↔ B, C → C−1.
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Proof of Theorem 1.3 (ii). Our aim is to prove that 〈PX〉 = LXSX.
Every automorphism from the set 〈PX〉 belongs to LXSX. So it remains to
prove that LXSX is contained in 〈PX〉.

First we show that LX ⊆ 〈PX〉.
We split X into three infinite, pairwise disjoint subsets X = A∪B ∪C. Let

α, β, γ be automorphisms acting on these sets as follows: α : A ↔ B, C →
C−1, β : A ↔ C, B → B−1, γ : B ↔ C, A → A−1. The automorphisms
α, β, γ belong to PX and αβαγ is the automorphism acting identically on A

and inverting elements in B ∪ C.
So we have proved that every automorphism δ for which there is a partition

of the set X = X1 ∪ X2 into two infinite, disjoint subsets such that δ acts
trivially on X1 and inverts all elements in X2, belongs to 〈PX〉. We define such
automorphisms by giving these two sets and show now that the set of these
automorphisms generates LX.

For every automorphism η in LX there exist subsets U and V (not neces-
sarily infinite, and even one of them can be empty), such that η acts trivially
on U and inverts elements from V . If U and V are infinite then η is among
generators for X1 = U and X2 = V .

If U is finite (or empty) then V must be infinite. We partition V into two
infinite, disjoint subsets V = V1 ∪ V2. Then η is a composition of two gener-
ators. For the first one X1 = U ∪V1, X2 = V2, and for the other X1 = U ∪V2,
X2 = V1.

If V is finite then U is infinite. Let V1 and V2 be infinite, disjoint subsets such
that X = V1∪V2 and V ⊆ V2. Then η is the product of two generators. For the
first one X1 = V2, X2 = V1, and for the second X1 = V2 \ V , X2 = V ∪ V1.
Since V is finite, in the second case both sets are also infinite.

Now we prove that SX ⊆ 〈PX〉.
By [5] (Lemma 8.1A, p. 256) every permutation is a product of two invol-

utions. So, it suffices to prove that every permutation of order two belongs to
〈PX〉.

We have shown above that every automorphism α for which there exist three
infinite, pairwise disjoint subsets A = {a1, a2, . . .}, B = {b1, b2, . . .}, C =
{c1, c2, . . .} such that aα

n = bn, bα
n = an, cα

n = cn for every natural n, belongs
to 〈PX〉. As previously, we use the notation α : A↔ B, C → C. To define α

it is enough to indicate sets A, B and C. Throughout this proof we call such
automorphisms generators.

Further part of the proof is similar to the one above. Let β be any involution
in SX for which there exist three subsets U, V, W (not necessarily infinite),
such that η : U ↔ V , W → W . If U, V, W are infinite then η is among the
generators.

If U, V are infinite and W is finite then we partition U into two disjoint
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subsets U = U1 ∪ U2. Thus, we get the partition of the set V : V = Uη =
(U1∪U2)

η = U
η

1 ∪U
η

2 = V1∪V2. Then η is the composition of two generators.
The first one is defined by A = U1, B = V1, C = U2∪V2∪W , and the second
one is defined by A = U2, B = V2, C = U1 ∪ V1 ∪W .

If U, V are finite then W is infinite. We partition W into three infinite,
disjoint subsets W = U1 ∪ V1 ∪W1. Then η is a product of two generators.
The first is defined by sets A = U1 ∪U , B = V1 ∪V , C = W1 and the second
is defined by A = U1, B = V1, C = U ∪ V ∪W1.

Since LX ⊆ 〈PX〉 and SX ⊆ 〈PX〉 we have that LXSX is contained in
〈PX〉.

4. Proof of Theorem 1.3 (iii)

Lemma 4.1. EX = 〈PXτ
, τ ∈ EX〉.

Proof. Let τ belong to EX. We partition X into three pairwise disjoint
subsets X = U ∪ V ∪ W . Subset W is non ”active”, that is if w ∈ W then
wτ = w. Also for v ∈ V we have vτ = v but elements from this set act
on elements from U . Let V = {v1, v2, v3, . . .}. We partition U into subsets
U = U1 ∪ U2 ∪ . . .. If u ∈ Ui then uτ = uvi . Let Ui consist of elements
ui1, ui2, . . . for i = 1, 2, . . .. Now we define a new basis Y which is the union
U ′ ∪W , where U ′ = U ′1∪U ′2 ∪ . . . and Ui = {ui1, ui1vi, ui2u

−1
i1 , ui3u

−1
i1 , . . .}.

One can check that Y is a free generator set of F and that the automorphism σ

defined by mapping X→ Y is bounded in X (and in Y ), so σ belongs to EX.
Now we define an automorphism η. The automorphism η changes ui1 and ui1vi

for i = 1, 2, . . . and acts identically on other elements. By Theorem 1.3 (ii) η

belongs to PY . How does η act on elements of the basis X? Let us calculate
v

η

i = (u−1
i1 ui1vi)

η = (ui1vi)
−1ui1 = v−1

i , u
η

i1 = ui1vi , and for k > 1 u
η

ik =
[(uiku

−1
i1 )(ui1)]η = uiku

−1
i1 ui1vi = uikvi . Thus τ = ϑη, where ϑ inverts all vi

and acts trivially on other elements. Since ϑ ∈ LX and by Theorem 1.3 (ii)
LX ⊆ PX we get τ ∈ 〈PX, PY 〉. For other variants of the mapping τ the
reasoning is analogous. This completes the proof.

Proof of Theorem 1.3 (iii). By Theorem 1.3 (i) (which will be proved in
the following section) and Lemma 4.1 we have E = P < 〈M〉 so the statement
is true. By Proposition 2.4 (ii), 〈M〉 is normal in Aut(F ).

5. Proof of Theorem 1.3 (i)

Now we are ready to prove the point (i) of Theorem 1.3. Let ξ belong to
PX. So, X is a union A ∪ B ∪ C of three infinite, pairwise disjoint subsets
A = {a1, a2, a3, . . .}, B = {b1, b2, b3, . . .}, C = {c1, c2, c3, . . .} and ξ acts on
this basis as follows: a

ξ

i = bi, b
ξ

i = ai, c
ξ

i = c−1
i , for all i ∈ N. To prove that
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ξ is self-similar we have to show that F ′ has a basis of the form � ∪ � ∪ � in
F ′, on which ξ ′ acts in similar way as ξ on X, that is ξ ′ : �↔ �, �→ �−1. We
call such a basis P -basis. It is clear that ξ 2 = id.

A similar basis can be constructed by using Dyer-Scott Theorem (see [6],
Theorem 3) but this theorem does not imply that all sets �, � and � are infinite.

We use the following order in the set of nontrivial powers of generators
{aki

i : ki ∈ Z \ {0}, i ∈ N} ∪ {bli
i : li ∈ Z \ {0}, i ∈ N} ∪ {cmi

i : mi ∈
Z \ {0}, i ∈ N}:
(5.1) a

k1
1 < b

l1
1 < c

m1
1 < · · · < a

ki

i

< b
li
i < c

mi

i < a
ki+1
i+1 < b

li+1
i+1 < c

mi+1
i+1 < · · · ,

and if k < l then ak
i < al

i , bk
i < bl

i and ck
i < cl

i for every i ∈ N. It can be
deduced from [14] that F ′ is freely generated by the set of all commutators

of the form [yk, zl]x
d1
1 x

d2
2 ...x

dk
k such that y, z, x1, . . . , xk ∈ A ∪ B ∪ C, y < z,

y < x1 ≤ x2 ≤ · · · ≤ xk and z �∈ {x1, x2, . . . , xk}, and k, l, d1, . . . , dk are
integers. Let us denote this basis of F ′ by �. This basis is not P -basis. We
have to reconstruct � to get the proper one.

We use the common, possibly trivial, symbols αi , βi , γi for elements of the
subgroup 〈ai〉, 〈bi〉, 〈ci〉, respectively. We use the symbols μi or μ′i for elements
of the set {αi, βi, γi}. Then the basis � consists of commutators of the form
[μi, μ

′
j ]μi1 ...μik , where i ≤ j , i1 ≤ i2 ≤ · · · ≤ ik and μ′j �∈ {μi1 , . . . , μik }.

We split the basis � into three disjoint subsets:

� = T ∪Q ∪ P

where
T = {[αi, βi]

h},
Q = {[αi, γi]

βih, [αi, μj ]βih, i < j},
P = � \ (T ∪Q),

where h is an ordered word in the alphabet A∪B∪C. We say that the word h in
the alphabet A∪B∪C is ordered if h = x

d1
1 x

d2
2 . . . x

dk

k , x1, . . . , xk ∈ A∪B∪C,
d1, . . . , dk are integers and x1 < x2 < · · · < xk . Let H denote a set of all
ordered words. Ordered words appear in exponents of commutators of the
basis �.

Lemma 5.1. For every word w ∈ F there exists a unique ordered word w̄

and an element t ∈ F ′, such that w = w̄t .

Proof. We can change the letters modulo F ′, so every word can be uniquely
ordered modulo F ′.
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We say that the ordered word w̄ is the ordered image of w if there exists
t ∈ F ′, such that w = w̄t . If w ∈ F and t ∈ F ′ then wt = w̄. It is clear that if
h is an ordered word then h̄ = h.

Our plan is to change the basis consequently:

� = T ∪Q∪P → �′ = T ′∪Q∪P → �′′ = T ′∪Q′∪P → �′′′ = T ′∪Q′∪P ′

where �, �′, �′′, �′′′ are bases of F ′ and sets T ′, Q′, P ′ are parts of the new
P -basis. So the last set �′′′ is a P -basis of F ′.

In every step we use elementary simultaneous Nielsen transformations (see
Section 1). These transformations are invertible and hence change any basis
of F into a new basis. We call these transformations, for short, Nielsen trans-
formations.

By the length |w| of a word w ∈ F we mean its length in the alphabet
A ∪ B ∪ C.

Let us partition the set H of all ordered words into three disjoint subsets
H<, H> and H=, where:

H< = {h : h < hξ }, H> = {h : h > hξ }, H= = {h : h = hξ },
where < is the lexicographical order in H induced by the order (5.1) and hξ

is the order image of hξ .

Lemma 5.2.
(i) If w ∈ F then wξ = wξ .

(ii) h ∈ H< if and only if hξ ∈ H>.

(iii) If h ∈ H= then hξ = ht , where t ∈ F ′ and t ξ = t−1.

(iv) For every h′ ∈ H there exist t ∈ F ′ and h ∈ H such that h′t = hξ .

(v) Let h ∈ H and μ ∈ A ∪ B ∪ C then μh = h′v, where h′ is an ordered
word and v is a product of elements from � or their inverses, for which
words in exponents are shorter than h.

Proof. (i) If w ∈ F then there exists t ∈ F ′, such that w = w̄t , hence
wξ = (wt)ξ = wξ tξ = wξ , since t ξ ∈ F ′.

(ii) If h ∈ H< then h < hξ , and by (i):

hξ > h = (hξ )ξ

so hξ ∈ H>. The converse is clear.
(iii) Let h ∈ H= then h = hξ . There exists t ∈ F ′, such that hξ = hξ t = ht

and
h = (hξ )ξ = (ht)ξ = httξ ,
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so t t ξ = 1.
(iv) There exist t ′ ∈ F ′ and h ∈ H , such that (h′)ξ = ht ′, so h′ = hξ (t ′)ξ

and
hξ = h′t, for t = (t ′)−ξ .

(v) If μh is ordered then h′ = μh and v = 1. If μh is not ordered then
h = h1μ

dh2, where h1 contains all symbols less then μ, h2 all symbols greater
then μ and d is an integer (possible that d = 0). Then

μh = μh1μ
dh2 = h1μ[μ, h1]μdh2 = h1μ

d+1h2[μ, h1]μ
dh2

and h′ := h1μ
d+1h2 is ordered, v = [μ, h1]μ

dh2 = [μd+1, h1]h2 [μd, h1]−h2 . If
h1 = μ1 . . . μk then for every integer n:

v = [μn, h1]h2 = [μn, μ1 . . . μk]h2

= [μn, μ1]h2 [μn, μ2]μ1h2 . . . [μn, μk]μ1...μk−1h2

and all words in exponents are shorter than h.

5.1. The subset T

Let us remind that

T = {[αi, βi]
h : h ∈ H and h begins with a symbol greater then βi, i ≥ 1}

We denote by � the subgroup generated by T .

Lemma 5.3. Let h ∈ H . Then there exists t ∈ � such that hξ = hξ t and if
t =∏

[αi, βi]hi then every hi is shorter than h.

Proof. If h is ordered, then

h = (α1β1γ1)(α2β2γ2) . . . (αkβkγk),

hence

hξ = (α
ξ
1β

ξ
1 γ

ξ
1 )(α

ξ
2β

ξ
2 γ

ξ
2 ) . . . (α

ξ

k β
ξ

k γ
ξ

k )

= (β ′1α
′
1γ
−1
1 )(β ′2α

′
2γ
−1
2 ) . . . (β ′kα

′
kγ
−1
k )

= α′1β
′
1[β ′1, α

′
1]γ−1

1 α′2β
′
2[β ′2, α

′
2]γ−1

2 . . . α′kβ
′
k[β ′k, α

′
k]γ−1

k

= α′1β
′
1[β ′1, α

′
1]γ−1

1 α′2β
′
2[β ′2, α

′
2]γ−1

2 . . . α′kβ
′
kγ
−1
k [β ′k, α

′
k]γ

−1
k

= α′1β
′
1γ
−1
1 α′2β

′
2γ
−1
2

. . . α′kβ
′
kγ
−1
k [β ′1, α

′
1]γ

−1
1 α′2β ′2γ

−1
2 ...γ−1

k [β ′2, α
′
2]γ

−1
2 ...γ−1

k . . . [β ′k, α
′
k]γ

−1
k
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where α′i = β
ξ

i ∈ A, β ′i = α
ξ

i ∈ B. Thus we have hξ = α′1β ′1γ
−1
1 α′2β ′2γ

−1
2

. . . α′kβ
′
kγ
−1
k and

t = [β ′1, α
′
1]γ

−1
1 α′2β ′2γ

−1
2 ...γ−1

k [β ′2, α
′
2]γ

−1
2 α′3β ′3γ

−1
2 ...γ−1

k . . . [β ′k, α
′
k]γ

−1
k ∈ �,

and the longest word which can appear in the exponent is γ−1
1 α′2β ′2γ

−1
2 . . . γ−1

k

and it is shorter than h.
It may happen that α1 or β1 is equal to 1. But then [β1, α1] = 1 and the

longest word in the exponent is equal to γ−1
2 α′3β ′3γ

−1
2 . . . γ−1

k which also is
shorter then h.

It follows from Lemma 5.3 that the subgroup � = 〈T 〉 is ξ -invariant, so we
change the basis T inside the subgroup �.

Lemma 5.4. The subgroup � possesses a P -basis.

Proof. We split T into disjoint subsets, with respect to the length of the
words in the exponent:

T = T0 ∪ T1 ∪ T2 ∪ T3 ∪ . . .

where Tk = {[αi, βi]h : h has the length equal to k, i ≥ 1}. We show, by
induction on n, that every subgroup 〈T0∪ . . .∪Tn〉 has a P -basis An∪Bn∪Cn.
It is clear that 〈T0〉 has a P -basis (this construction is similar to the one in
Example 1.5). Let us assume that 〈T0 ∪ . . .∪ Tn〉 has a P -basis. Let w ∈ Tn+1

then w = [αi, βi]h, |h| = n+ 1. We split Tn+1 into three disjoint subsets:

Tn+1 = T< ∪ T> ∪ T=

where
T< = {[αi, βi]

h : |h| = n+ 1, h ∈ H<},
T> = {[αi, βi]

h : |h| = n+ 1, h ∈ H>},
T= = {[αi, βi]

h : |h| = n+ 1, h ∈ H=}.
If h ∈ H<, then by Lemma 5.3 we have hξ = h′t , where t ∈ 〈T0 ∪ . . . ∪ Tn〉,
and by Lemma 5.2 (ii) we have h′ = hξ ∈ H>. So for [αi, βi]h ∈ T< we have:

([αi, βi]
h)ξ = [β ′i , α

′
i]

h′t

Hence we put [αi, βi]h ∈ T< into An+1 and we transform every element
[α′i , β

′
i]

h′ by t ∈ 〈T0 ∪ . . . ∪ Tn〉, inverse and put the element obtained in
that way into Bn+1. Hence we get:

An+1 � [ak
i , b

l
i]

h ξ−→[bk
i , a

l
i ]

hξ = [al
i , b

k
i ]−h′t ∈ Bn+1.
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Let us note that above transformations are Nielsen transformations because we
act on elements from Tn+1 by elements from 〈T0 ∪ . . . ∪ Tn〉.

If [ak
i , b

l
i]

h ∈ T= then h ∈ H=, and by Lemma 5.2 (iii) hξ = ht where
t ∈ � is such that t ξ = t−1. We have two possibilities: k = l or k �= l. If k �= l

then for k < l we put [ak
i , b

l
i]

h into An+1 and for k > l we transform [ak
i , b

l
i]

h

by t , inverse and we put the element obtained in that way into Bn+1.
If k = l then we change all elements [ak

i , b
k
i ]h into [ak

i , b
k
i ]ht and we put

this element into Cn+1. Hence:

Cn+1 � [ak
i , b

k
i ]ht

ξ−→[bk
i , a

k
i ]ht t ξ = t−1[bk

i , a
k
i ]httξ = ([ak

i , b
k
i ]ht)−1∈C−1

n+1.

All transformations are Nielsen transformations, so we change Tn+1 into a
P -basis.

We have proved that every subgroup 〈T0 ∪ . . . ∪ Tn〉 has the P -basis An ∪
Bn ∪ Cn and it is clear that:

A0 ∪ B0 ∪ C0 ⊂ A1 ∪ B1 ∪ C1 ⊂ A2 ∪ B2 ∪ C2 ⊂ . . .

So the subgroup � = 〈T 〉 =⋃
n〈T0∪. . .∪Tn〉 has a P -basis

⋃
n(An∪Bn∪Cn).

We have shown in Lemma 5.4 that the basis � = T ∪Q∪P can be changed
into the basis �′ = T ′ ∪ Q ∪ P , where T ′ is a P -basis. The next step is to
change Q into a P -basis Q′.

5.2. The subset Q

We have to change the set Q into Q′ = � ∪� ∪ 	, which is a P -basis.
We split Q into two subsets:

Q = Q+ ∪Q−

where
Q+ = {[αi, μj ]βih : μj = ad

j ∨ μj = cl
j , for l > 0},

Q− = {[αi, μ
ξ

j ]βih : μj = ad
j ∨ μj = cl

j , for l > 0}.
There exists a bijection between Q+ and Q−:

[αi, μj ]βih←→ [αi, μ
ξ

j ]βih
′

where hξ = h′t .
We put every element from Q+ into � and we replace every element

[αi, μ
ξ

j ]βih
′

(such that hξ = h′t) from Q− with [βi, μ
ξ

j ]αih
′
, then we trans-

form [βi, μ
ξ

j ]αih
′
by t , then invert and put the element obtained in that way into
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�. So, now it is enough to prove that using Nielsen transformations we can
change every element [αi, μ

ξ

j ]βih ∈ Q− into [βi, μ
ξ

j ]αih.

Lemma 5.5. Every element [αi, μ
ξ

j ]βih ∈ Q− can be replaced by [βi, μ
ξ

j ]αih,
using Nielsen transformations.

Proof. We use an induction on the length of the word h. Let h = 1. We
use the commutator identity:

[a, c]b = [b, a][b, c]a[a, c][a, b]c[c, b]

and get:

[αi, μ
ξ

j ]βi = [βi, αi][βi, μ
ξ

j ]αi [αi, μ
ξ

j ][αi, βi]
μ

ξ

j [μξ

j , βi]

Underlined elements belong to �′ \Q, so using Nielsen transformation we can
remove them getting [βi, μ

ξ

j ]αi . Let now |h| > 1 then:

[αi, μ
ξ

j ]βih = [βi, αi]
h[βi, μ

ξ

j ]αih[αi, μ
ξ

j ]h[αi, βi]
μ

ξ

j h[μξ

j , βi]
h

Since [βi, αi]h ∈ T and [μξ

j , βi]h ∈ P (so they are not in Q) we can remove
them, obtaining the new element:

(5.2) [βi, μ
ξ

j ]αih[αi, μ
ξ

j ]h[αi, βi]
μ

ξ

j h

The word μ
ξ

j h may be not ordered, but by Lemma 5.2 (v) we have μ
ξ

j h = h̄v,

where h̄ is ordered and v is a product of commutators from � or their inverses,

for which words in exponents are shorter than h. So we can remove [αi, βi]
μ

ξ

j h

by multiplying (5.2) by elements from �′ \Q and by elements from Q− but
with shorter exponents than h. Finally we can remove [αi, μ

ξ

j ]h because it
belongs to P .

So we can change the basis �′ into �′′ = T ′ ∪Q′ ∪ P , such that T ′, Q′ are
P -bases. Finally we change the subset P .

5.3. The subset P

Let us remind that:

P = � \ (T ∪Q)

= {[αi, γi]
h, [αi, μj ]h: h does not contain βi, i < j}

∪ {[γi, μj ]h, [βi, γi]
h, [βi, μj ]h, i < j}
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Lemma 5.6. The subset P can be changed into P ′ which is a P -basis.

Proof. We split P into two subsets:

P = P1 ∪ P2

where P1 = {[μ, μ1]h : μ = αi ∨μ = cl
i , for l > 0}, P2 = {[μξ , μ

ξ
1]h : μ =

αi ∨ μ = cl
i , for l > 0}. We have to change P into P ′ = � ∪ � ∪ 	. We put

elements from P1 into � and transform the elements from P2 by t , such that
hξ = h′t , inverse them and put the element obtained in that way into �.

The Lemma 5.6 finishes transformations of the basis � and we get a P -basis
�′′′ for ξ in F ′.
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