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HOMEOMORPHISMS OF FINITE INNER DISTORTION:
COMPOSITION OPERATORS ON ZYGMUND-SOBOLEV

AND LORENTZ-SOBOLEV SPACES

F. FARRONI, R. GIOVA, G. MOSCARIELLO and R. SCHIATTARELLA

Abstract

Let p > n− 1 and α ∈ R and suppose that f : �
onto−−→ �′ is a homeomorphism in the Zygmund-

Sobolev space WLp logα Lloc(�,Rn). Define r= p
p−n+1 . Assume that u∈WLr log−α(r−1) Lloc(�).

Then u ◦ f−1 ∈ BVloc(�
′). We obtain a similar result whenever f is a homeomorphism in the

Lorentz-Sobolev space WLp,qloc (�, Rn) with p, q > n− 1 and u ∈ WLr,sloc(�) with r as before and
s = q

q−n+1 . Moreover, if we further assume that f has finite inner distortion we obtain in both

cases u ◦ f−1 ∈ W 1,1
loc (�

′).

1. Introduction

Let � and �′ be bounded open subsets of Rn, n ≥ 2 and let f : �
onto−−→ �′

be a Sobolev homeomorphism of the class W 1,p
loc (�, Rn) with p ≥ 1.

To each such homeomorphism we associate the composition operator Tf
generated by f and defined by the rule Tf (u) = u ◦ f , for each measurable
function u : �′ → R. It is well known (see [38]) that if f : � → Rn is a bi-
Lipschitz map, thenTf (u) ∈ W 1,p

loc (�) for any functionu ∈ W 1,p
loc (�

′)withp ≥
1. Moreover, Tf mapsW 1,n

loc (�
′) inW 1,n

loc (�) if f : � → �′ is a quasiconformal
mapping, see [5], [3]. It is worth pointing out that the Sobolev space W 1,n is
not the only one which is stable under quasiconformal changes of variables.
Indeed, quasiconformal mappings (and their suitable generalizations) turn to
be the class of homeomorphisms for which the composition operator acts
continously between spaces of functions of bounded mean oscillation [4],
[11], [35], spaces of exponentially integrable functions [9], [10], logarithmic
Orlicz-Sobolev spaces [22], fractional Sobolev spaces [24], [32], spaces of
functions which are absolutely continuous [21]. More than that, the study of
composition operators between Sobolev spaces seems to have a connection
with the problem of the regularity of the inverse of a Sobolev homemorphism
considered for instance in [7], [13], [25], [33]. Actually, in the previous cases
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the role of f and its inverse f −1 can be interchanged, but in general this is not
possible (see e.g. [23], [31]).

We recall that if f : � → �′ is a homeomorphism of the class W 1,p
loc with

n − 1 ≤ p < n, the inverse is only differentiable in a weak sense, namely it
has bounded variation, f −1 ∈ BVloc (see [7], [8]). Moreover if f has finite
inner distortion, then f −1 ∈ W 1,1

loc and has finite outer distortion (see [13]).

The goal of this paper is to find conditions on f under which u ◦ f −1 has
bounded variation or has derivative in a Zygmund space.

To this aim, we denote by WLp logα Lloc(�) the space of functions in
W

1,1
loc (�) with weak derivatives in the Zygmund space Lp logα Lloc(�) (see

Preliminaries). Our first result is the following

Theorem 1.1. Let p > n− 1 and α ∈ R. Let f : �
onto−−→ �′ be a homeo-

morphism and let f ∈ WLp logα Lloc(�, Rn). Assume that u ∈ WLr log−α(r−1)

Lloc(�) where
r = p

p − n+ 1
,

and we further assume that u is continuous for r > n or r = n and α < −1.
Then u ◦ f −1 ∈ BVloc(�

′). Moreover, for every E′ ⊂⊂ �′ we have

(1.1) |∇(u ◦ f −1)|(E′) ≤ C‖Df ‖n−1
Lp logα L(f −1(E′))‖∇u‖Lr log−α(r−1) L(f −1(E′)),

for some constant C depending only on n, p, α.

As it is well known, for r > n there is a continuous representative of u. This
is true also if r = n and α < −1, so that β = −α(r − 1) > n − 1, see [29].
Indeed, this can also be deduced easily using Hölder’s inequality in Zygmund
spaces (2.3).

Our next result shows that u◦f −1 ∈ W 1,1
loc (�

′) if one assumes the additional
assumption that f has finite inner distortion.

We say that the homeomorphismf ∈ W 1,1
loc (�, Rn)has finite inner distortion

if its Jacobian Jf ∈ L1
loc(�), Jf ≥ 0 a.e. and

Jf (x) = 0 �⇒ |adjDf (x)| = 0 a.e.,

where adjDf is the adjugate of the differential matrix Df of f .
Our result reads as follows.

Theorem 1.2. Let p > n − 1 and α ∈ R. Let f : �
onto−−→ �′ be a

homeomorphism of finite inner distortion and let f ∈ WLp logα Lloc(�, Rn).
Assume that u ∈ WLr log−α(r−1) Lloc(�) where

r = p

p − n+ 1
,
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and we further assume that u is continuous for r > n or r = n and α < −1.
Then u ◦ f −1 ∈ W 1,1

loc (�
′). Moreover, for every E′ ⊂⊂ �′ we have

(1.2) ‖∇(u ◦ f −1)‖L1(E′)

≤ C‖Df ‖n−1
Lp logα L(f −1(E′))‖∇u‖Lr log−α(r−1) L(f −1(E′)),

for some constant C depending only on n, p, α.

Our next result may be regarded as a limit case of Theorem 1.2 (p = n−1)
and features the space of functions with gradient in the space exp 1

α
(�), that is

the closure in the Orlicz space Exp 1
α
(�) of functions which are bounded on�

(see [6] and Section 2.1 below).

Theorem 1.3. Let α > 0. Let f : �
onto−−→ �′ be a homeomorphism

of finite inner distortion and let f ∈ WLn−1 logα Lloc(�, Rn). Assume that
u ∈ W 1,1

loc (�) and |∇u| ∈ exp 1
α
(�). Then u ◦ f −1 ∈ W 1,1

loc (�
′). Moreover, for

every E′ ⊂⊂ �′ we have

(1.3) ‖∇(u ◦ f −1)‖L1(E′) ≤ C‖Df ‖n−1
Ln−1 logα L(f −1(E′))‖∇u‖Exp 1

α
(f −1(E′)),

for some constant C depending only on n, α.

We also prove that the analogous of Theorem 1.1 and Theorem 1.2 hold in
the framework of Lorentz spaces (see Section 3 and 4).

Observe that the composition is weakly differentiable, i.e. u ◦ f −1 ∈
W

1,1
loc (�

′), as long as we assume that f has finite inner distortion. Our results
generalize some already known facts in two directions. First, in the previous
papers [18], [19] the composition results are obtained under the assumption
that f has finite outer distortion, while we only require that f has finite inner
distortion. On the other hand, our setting is more general and recover previous
results when α = 0 (see [15]).

The paper is organized as follows. Section 2 is devoted to the preliminary
results and notation. The proof of Theorem 1.1 will be given in Section 3. The
proofs of Theorem 1.2 and Theorem 1.3 will be given in Section 4.

We remark that, under all the above assumptions, one cannot expect that
u◦f −1 ∈ W 1,1+δ

loc (�) for some δ > 0 (see Remark 4.1 and Remark 4.2 below).
However, in Section 4 we also prove Theorem 4.2 and Theorem 4.4 where a
better regularity foru◦f −1 is obtained under suitable integrability assumptions
on the inner distortion function.
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2. Preliminaries

2.1. Orlicz Spaces

We need to recall some basic properties of Orlicz spaces; for more details we
refer to [1].

Let � : [0,∞) → [0,∞) be a Young function, that is �(0) = 0, � is
increasing and convex. If � is a open subset of Rn, we define the Orlicz space
L�(�) generated by the Young function � as the set of measurable functions
u : � → R such that ∫

�

�

( |u|
λ

)
dx < ∞,

for some λ > 0. This space is equipped with the Luxemburg norm

‖u‖L�(�) = inf

{
λ > 0 :

∫
�

�

( |u|
λ

)
dx ≤ 1

}
.

We define the space WL�(�) as the set

WL�(�) = {u ∈ W 1,1(�) : |∇u| ∈ L�(�)}.
For further developments, we shall need to recall that a Young function � is
said to satisfy the �′-condition if

�(ab) ≤ C�(a)�(b) for every a, b ≥ 0,

for some constant C > 0.
Moreover, we say that �(t) satisfies the �2 condition if

�(2t) ≤ C�(t) for every t ≥ t0 ≥ 0,

for some constantC > 0. The Zygmund spaceLp logα L(�), for 1 ≤ p < ∞,
α ∈ R (α ≥ 0 forp = 1), is defined as the Orlicz spaceL�(�)when theYoung
function � is given by

(2.1) �(t) � tp logα(e + t) for every t ≥ t0 ≥ 0.

Therefore, a measurable function u on � belongs to Lp logα L(�) if
∫
�

|u|p logα(e + |u|) dx < ∞.

From the elementary inequalities

(2.2) log(e + ab) ≤ log((e + a)(e + b)) ≤ 2 log(e + a) log(e + b)
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for a, b ≥ 0, we see that, if α ≥ 0, then �(t) = tp logα(e + t), t ≥ 0, is a
Young function and satisfies the �′-condition. Indeed, for every s, t ≥ 1 we
have s + t

2
≤ st.

Inserting s = log(e + a) and t = log(e + b) in the equation above, we get

log(e + a)+ log(e + b)

2
≤ log(e + a) log(e + b).

This readily implies (2.2).
For α = 0 we have the ordinary Lebesgue spaces. We will need to use the

following Hölder type inequality for Zygmund spaces

(2.3) ‖u1 . . . uk‖Lp logα L ≤ C ‖u1‖Lp1 logα1 L . . . ‖uk‖Lpk logαk L,

where pi > 1, αi ∈ R, ui ∈ Lpi logαi L for i = 1, . . . , k, and

1

p
= 1

p1
+ · · · + 1

pk
,

α

p
= α1

p1
+ · · · + αk

pk
.

The following inclusions hold

Lp logβ L(�) ⊂ Lp(�) ⊂ Lp logα L(�)

with continuous embeddings if α < 0 < β. For α > 0, the dual Orlicz space to
L logα L(�) is the space Exp 1

α
(�) generated by a function	(t) � exp

(
t

1
α

)−1
for t ≥ t0 ≥ 0. For more details see [27, Section 4.12], [16] and [17].

As 	(t) does not have �2-property, then L∞(�) is not dense in Exp 1
α
(�).

Then we will denote by exp 1
α
(�) the closure in Exp 1

α
(�) of the space of

functions uwhich are bounded on� and have bounded support in �̄ (see [6]).
We recall that C∞

0 (�) is dense in exp 1
α
(�) (see [1], Theorem 8.20).

We define the space WLp logα L(�) as the set

WLp logα L(�) = {
u ∈ W 1,1(�) : |∇u| ∈ Lp logα L(�)

}
.

2.2. Lorentz Spaces

Our main source here will be [38]. Let � be a bounded domain in Rn and
g : � → R be a measurable function.

For 1 ≤ p < ∞, 0 < q < ∞ the Lorentz space Lp,q(�) consists of all
measurable functions g defined on � such that

‖g‖qLp,q (�) = p

∫ ∞

0

∣∣{x ∈ � : |g(x)| > t}∣∣ qp tq−1 dt < ∞.
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For p > 1 and q ≥ 1, ‖·‖Lp,q is equivalent to a norm under which Lp,q is a
Banach space. For p = q, the space Lp,p coincides with the usual Lp space
and if 1 < q < r < ∞, the following inclusions hold

Lp,1 ⊂ Lp,q ⊂ Lp,r .

For q = ∞, the class Lp,∞ is equivalent to the Marcinkiewicz space weak-Lp

and consists of all functions g defined on � such that

‖g‖pp,∞ = sup
t>0

tp
∣∣{x ∈ � : |g(x)| > t}∣∣ < ∞.

A useful property of the Lorentz norm is given by the following identities

(2.4) ‖|g|α‖pLp,∞ = ‖g‖αpLαp,∞ and ‖|g|α‖pLp,q = ‖g‖αpLαp,αq
for α > 0.

For 1 < r < p, 0 < q < ∞
Lp,q ⊂ Lp,∞ ⊂ Lr.

The Hölder-type inequality for Lorentz-space

(2.5) ‖u1 . . . uk‖L1 ≤ ‖u1‖Lp1 ,q1 . . . ‖uk‖Lpk,qk ,
holds if 1 < pi < ∞, 1 ≤ qi ≤ ∞, ui ∈ Lpi,qi for i = 1, . . . , k and

1

p1
+ · · · + 1

pk
= 1,

1

q1
+ · · · + 1

qk
= 1.

For a proof see [14].
We define the space WLp,q(�) as the set

WLp,q(�) = {
u ∈ W 1,1(�) : |∇u| ∈ Lp,q(�)}.

2.3. Homeomorphism of finite distortion

A homeomorphism f : �
onto−−→ �′ is said to be a bi-Sobolev map if f belongs

to the Sobolev spaceW 1,1
loc (�, Rn) and its inverse f −1 belongs toW 1,1

loc (�
′, Rn).

More specifically, if f ∈ W 1,p
loc (�, Rn) and f −1 ∈ W 1,p

loc (�
′, Rn), 1 ≤ p < ∞,

then we say that f is W 1,p-bi-Sobolev.
Bi-Sobolev maps have a close connection with the homeomorphisms with

finite distortion. Recall that a homeomorphism f ∈ W
1,1
loc (�, Rn) has finite

outer distortion if Jf ∈ L1
loc(�), Jf ≥ 0 a.e. and

Jf (x) = 0 �⇒ |Df (x)| = 0 a.e.
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Here and in what follows, |A| denotes the operator norm of the n×nmatrix
A defined as |A| = sup{|Aξ | : ξ ∈ Rn, |ξ | = 1}.

The outer distortion function is defined as

KO,f (x) =
⎧⎨
⎩

|Df (x)|n
Jf (x)

for Jf (x) > 0

1 otherwise.

It is immediate to check that the inner and the outer distortion functions
coincide in the planar case, i.e. for n = 2, while for n > 2 they are related by
the inequality

KI,f (x) ≤ Kn−1
O,f (x),

which follows from the classical Hadamard’s inequality. On the other hand,
the reverse estimate

KO,f (x) ≤ Kn−1
I,f (x)

holds if Jf (x) > 0.
Here, we denote with KI,f the inner distortion function, namely

KI,f (x) =
⎧⎨
⎩

| adjDf (x)|n
Jf (x)n−1

for Jf (x) > 0

1 otherwise.

In the special case KO,f ∈ L∞(�) with KO,f (x) ≤ K for a.e. x ∈ �, we
say that f is a K-quasiconformal mapping.

The deep connection between bi-Sobolev mappings and mappings with
finite distortion is given in [26]. Finally we recall the following result that will
be very useful later.

Theorem 2.1 ([13]). Let f : �
onto−−→ �′ be a homeomorphism such that

f ∈ W 1,n−1
loc (�, Rn) and

|adjDf (x)|n ≤ K(x)Jf (x)
n−1 for a.e. x ∈ �,

for some Borel function K : � → [1,∞). Then, f −1 is a W 1,1
loc (�

′, Rn)
mapping of finite distortion. Moreover,

|Df −1(y)|n ≤ K(f −1(y))Jf −1(y) for a.e. y ∈ �′,

and ∫
�′

|Df −1(y)| dy =
∫
�

|adjDf (x)| dx.
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A homeomorphism f : �
onto−−→ �′ satisfies the Lusin (N ) condition if the

implication
|E| = 0 �⇒ |f (E)| = 0,

holds for any measurable set E ⊂ �. In [36] it is proved that each homeo-
morphism f ∈ W 1,n

loc (�, Rn) satisfies the Lusin (N ) condition, while may fail
if f ∈ W 1,p

loc (�, Rn) for 1 ≤ p < n (see [34]).

For a homeomorphism f in W 1,1
loc (�, Rn), it is well known the following

inequality ∫
B

η(f (x)) |Jf (x)| dx ≤
∫
f (B)

η(y) dy

where η is a nonnegative Borel measurable function on Rn and B ⊂ � is a
Borel set (see Theorem 3.1.8 in [12]). We say that the area formula holds for
the homeomorphism f in W 1,1

loc (�, Rn) if the equality

(2.6)
∫
B

η(f (x)) |Jf (x)| dx =
∫
f (B)

η(y) dy

is verified. If f is a homeomorphism that satisfies the Lusin (N ) condition on
B, then the area formula holds.

Remark 2.1 (Validity of the area formula). We recall that if f is a homeo-
morphism in W 1,1

loc (�, Rn) and Df is the set of points in � where f is differ-
entiable, then the area formula (2.6) holds in Df . Equality (2.6) is proved by
covering Df with a countable family of measurable sets such that the restric-
tion of f to each member of the family is a Lipschitz map [12, Theorem 3.1.8]
and by applying the usual area formula for Lipschitz maps. In particular, if
Zf is the subset of � where f is differentiable and Jf (x) = 0, we have that
|f (Zf )| = 0. This can be viewed as a weak version of the classical Sard’s
theorem.

3. On the weak differentiability of the composition

A function h ∈ L1(�) is of bounded variation, h ∈ BV(�), if the distributional
partial derivatives of h are measures with finite total variation in�, that is there
exists Radon signed measures D1h, . . . ,Dnh in � such that for i = 1, . . . , n,
|Dih|(�) < ∞ and

∫
�

hDiϕ dx = −
∫
�

ϕ dDih(x),
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for all ϕ ∈ C1
0(�). The gradient of h is a vector-valued measure with finite

total variation

|∇h|(�) = sup

{∫
�

h div ϕ dx : ϕ ∈ C1
0(�, Rn), ‖ϕ‖∞ ≤ 1

}
< ∞.

We say that f ∈ L1(�, Rn) is mapping of bounded variation, f ∈ BV(�, Rn),
if the coordinate functions of f belong to the space BV(�).

From now on we assume that�,�′ are bounded domains of Rn. The aim of
this section is to find conditions under which the composition u ◦f −1 belongs
to BV . In the setting of Zygmund spaces we are able to prove the following
result, which was known before for α = 0 (see [19]).

Proof of Theorem 1.1. Arguing as in the proof of Theorem 1.1 in [19],
for every ball B ⊂⊂ �′, we obtain

(3.1) |∇(w ◦ f −1)|(B) ≤ C

∫
f −1(B)

|∇w||Df |n−1 dx

for any smooth functionw defined in�. Using Hölder inequality in Zygmund
spaces (2.3), we deduce from (3.1) that

(3.2) |∇(w ◦ f −1)|(B) ≤ C ‖∇w‖Lr log−α(r−1) L(f −1(B)) ‖Df ‖n−1
Lp logα L(f −1(B))

.

Let now u be an arbitrary function in WLr logL−α(r−1)
loc (�) and let {uj } be a

sequence of smooth functions which approximate u by standard mollification.
We take two indices i, j and we apply (3.2) to w = ui − uj . We see that
{∇(uj ◦ f −1)} is a Cauchy sequence in the space of Radon measures. Hence,
uj ◦ f −1 forms a Cauchy sequence in L1(B).

If n− 1 < p < n and thus r > n, we assume that u ∈ C(�). By standard
approximation uj converges to u locally uniformly and then uj ◦f −1 converges
to u ◦ f −1 locally uniformly. Since uj ◦ f −1 is a Cauchy sequence in BV(B)
thenu◦f −1 ∈ BV(B) (see [2]). In the same way we can argue whenp = r = n

and α < −1 (see [29]).
Ifp ≥ n and α ≥ −1 then f satisfies the Lusin (N) condition (see [30]) and

hence u◦f −1 does not depend on the representative of u. Since uj converges to
u in L1(f −1(B)), we may assume, up to a non-relabeled subsequence, that uj
converges to u a.e. in f −1(B). It follows that uj ◦f −1 converges to u◦f −1 a.e.
in B. Since uj ◦ f −1 is a Cauchy sequence in BV(B) then uj ◦ f −1 converges
to u ◦ f −1 in BV(B).

We apply (3.2) to w = uj and we obtain

(3.3) |∇(uj ◦ f −1)|(B) ≤ C ‖∇uj‖Lr log−α(r−1) L(f −1(B)) ‖Df ‖n−1
Lp logα L(f −1(B))

.
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By lower semicontinuity and passing to liminf as j → ∞ in (3.3), we obtain
(1.1). This ends the proof.

In the setting of Lorentz spaces we are able to prove the following.

Theorem 3.1. Let n− 1 < p < ∞ and n− 1 < q < ∞, f : �
onto−−→ �′

be a homeomorphism and let f ∈ WLp,qloc (�, Rn). Assume that u ∈ WLr,sloc(�)

where
r = p

p − n+ 1
and s = q

q − n+ 1
,

and we further assume that u is continuous for r > n. Then u ◦ f −1 ∈
BVloc(�

′). Moreover, for every E′ ⊂⊂ �′ we have

(3.4) |∇(u ◦ f −1)|(E′) ≤ C‖Df ‖n−1
Lp,q (f −1(E′))‖∇u‖Lr,s (f −1(E′)),

for some constant C depending only on n, p, q.

For r > n it is well known that u ∈ WLr,sloc(�) admits a continuous repres-
entative since ∇u ∈ Lr,s implies ∇u ∈ Lγ for γ ∈ (n, r). The choice of u
continuous avoids problems in defining u ◦ f −1.

Proof of Theorem 3.1. Arguing as in the proof of Theorem 1.1 in [19],
for every ball B ⊂⊂ �′, we obtain

(3.5) |∇(w ◦ f −1)|(B) ≤ C

∫
f −1(B)

|∇w||Df |n−1 dx,

for any smooth function w defined in �. Using Hölder inequality in Lorentz
spaces (2.5), we deduce from (3.5) that

(3.6) |∇(w ◦ f −1)|(B) ≤ C ‖∇w‖Lr,s (f −1(B)) ‖Df ‖n−1
Lp,q (f −1(B))

.

Let now u be an arbitrary function in WLr,sloc(�) and let {uj } be a sequence of
smooth functions which approximate u by standard mollification. We take two
indices i, j and we apply (3.6) to w = ui − uj . We see that

{∇(uj ◦ f −1)
}

is
a Cauchy sequence in the space of Radon measures. Hence, uj ◦ f −1 forms a
Cauchy sequence in L1(B).

If n− 1 < p < n and thus r > n, we assume that u ∈ C(�). By standard
approximation uj converges to u locally uniformly and then uj ◦f −1 converges
to u ◦ f −1 locally uniformly. Since uj ◦ f −1 is a Cauchy sequence in BV(B)
then u ◦ f −1 ∈ BV(B) (see [2]).

If p ≥ n and thus r ≤ n, we make use of the following inclusion (see [17])

L
p,q

loc (�) ⊂ Lp log−1 Lloc(�),
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and we see that |Df | ∈ L
p,q

loc (�) implies |Df | ∈ Lp log−1 Lloc(�). Then,
f satisfies the Lusin (N) condition (see [28]) and hence u ◦ f −1 does not
depend on the representative of u. Since uj converges to u in L1(f −1(B)), we
may assume, up to a non-relabeled subsequence, that uj converges to u a.e. in
f −1(B). It follows that uj ◦f −1 converges to u◦f −1 a.e. in B. Since uj ◦f −1

is a Cauchy sequence in BV(B) then uj ◦f −1 converges to u ◦f −1 in BV(B).
We apply (3.6) to w = uj and we obtain

(3.7) |∇(uj ◦ f −1)|(B) ≤ C ‖∇uj‖Lr log−α(r−1) L(f −1(B)) ‖Df ‖n−1
Lp logα L(f −1(B))

.

By lower semicontinuity and passing to liminf as j → ∞ in (3.7), we obtain
(3.4). This ends the proof.

4. On the weak differentiability and the regularity of the composition

4.1. The composition operator in Zygmund spaces

We are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. The homeomorphism f satisfies the assumptions
of Theorem 2.1 and therefore f −1 belongs toW 1,1

loc (�
′, Rn) and has finite outer

distortion. Let w ∈ C∞(�), we have w ◦ f −1 ∈ W 1,1
loc (�

′) (see Lemma 8.31
in [1]) and the chain rule formula holds

∇(w ◦ f −1)(y) = ∇w(f −1(y))Df −1(y) for a.e. y ∈ �′.

We decompose the domain � as follows

� = Rf ∪ Zf ∪ Ef

where

Rf = {x ∈ � : f is differentiable at x and Jf (x) �= 0},
Zf = {x ∈ � : f is differentiable at x and Jf (x) = 0},
Ef = {x ∈ � : f is not differentiable at x}.

Recall [37] that f is differentiable a.e. in �, that is |Ef | = 0. Using the area
formula we see that ∫

f (Ef )

Jf −1(y) dy ≤ |Ef | = 0.

Therefore, Jf −1 = 0 a.e. in f (Ef ). Since f −1 is a mapping of finite outer
distortion, we deduce that ∇(w ◦ f −1)(y) = 0 for a.e. y ∈ f (Ef ). By the
weak version of Sard’s theorem (see Remark 2.1) |f (Zf )| = 0 and therefore
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∇(w ◦ f −1)(y) = 0 for a.e. y ∈ �′ \ f (Rf ). Moreover, for all x ∈ Rf we
have

Df −1(f (x)) = [Df (x)]−1, Jf −1(f (x)) = 1

Jf (x)
.

Let B ⊂⊂ �′ be an open ball and A = B ∩ f (Rf ). Using the area formula it
follows that

(4.1)

∫
B

|∇(w ◦ f −1)| dy =
∫
A

|∇(w ◦ f −1)| dy

≤
∫
A

|∇w(f −1(y))| |Df
−1(y)|

Jf −1(y)
Jf −1(y) dy

≤
∫
f −1(A)

|∇w(x)| |Df
−1(f (x))|

Jf −1(f (x))
dx

=
∫
f −1(A)

|∇w(x)||adjDf (x)| dx

≤
∫
f −1(B)

|∇w(x)||Df (x)|n−1 dx.

Using the elementary inequality

log(e + tn−1) ≤ C(n) log(e + t) for t ≥ 0,

we get

|Df |n−1 logα(e + |Df |n−1) ≤ C|Df |n−1 logα(e + |Df |)
and we conclude that |Df |n−1 ∈ L logα(f −1(B)) with

‖|Df |n−1‖L logα L(f −1(B)) ≤ C‖Df ‖n−1
Ln−1 logα L(f −1(B))

and then, by a duality argument, we deduce from (4.1) that

(4.2)
∫
B

|∇(w ◦ f −1)| dx ≤ C ‖∇w‖Exp 1
α
(f −1(B)) ‖Df ‖n−1

Ln−1 logα L(f −1(B))
.

Let now u be an arbitrary function in W 1,1(f −1(B)) such that |∇u| ∈
exp 1

α
(�). By Theorem 8.20 in [1], there exists a sequence of standard mollifiers

ρj such that

(4.3) lim
j→∞ ‖(∇u) ∗ ρj − ∇u‖Exp 1

α
(f −1(B)) = 0.
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Clearly,

(4.4)
∫
f −1(B)

[(∇u) ∗ ρj ]ϕ dx = −
∫
f −1(B)

[u ∗ ρj ]∇ϕ dx

for every test function ϕ ∈ C∞
0 (f

−1(B)). From (4.3) we have

(4.5) lim
j→∞ ‖∇(u ∗ ρj )− ∇u‖Exp 1

α
(f −1(B)) = 0.

We set uj = u∗ρj and we take two indices i, j . We apply (4.2) tow = ui−uj .
We see that {∇(uj ◦ f −1)} is a Cauchy sequence in L1(B, Rn) and we can find
g ∈ L1(B, Rn) such that ∇(uj ◦ f −1) converges strongly in L1(B, Rn) to g.
On the other hand, by Sobolev-Poincaré inequality and by (4.2), the sequence
{uj ◦ f −1} is a Cauchy sequence in L1(B) and converges to u ◦ f −1. After
passing to a limit, we get

∫
B

g(y)ψ(y) dy = −
∫
B

(u ◦ f −1)(y)∇ψ(y) dy

for every test function ψ ∈ C∞
0 (B). It follows that {∇(uj ◦ f −1)} converges

in L1(B) to ∇(u ◦ f −1). The estimate (1.3) follows from (4.2).

We are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. We start by observing that f satisfies the assump-
tions of Theorem 2.1 and therefore f −1 belongs toW 1,1

loc (�
′, Rn) and has finite

outer distortion. If w is smooth, then arguing as in the proof of Theorem 1.3
(see (4.1)) we get

(4.6)
∫
B

|∇(w ◦ f −1)| dy ≤
∫
f −1(B)

|∇w(x)||Df (x)|n−1 dx

for every ball B ⊂⊂ �′. Thus, using Hölder inequality in Zygmund spaces,
by (4.6), we get

(4.7)
∫
B

|∇(w ◦ f −1)| dx
≤ C ‖∇w‖Lr log−α(r−1) L(f −1(B)) ‖Df ‖n−1

Lp logα L(f −1(B))
.

Let now u be an arbitrary function in WLr logL−α(r−1)
loc (�) and let {uj } be a

sequence of smooth functions which approximate u by standard mollification.
Given B ⊂⊂ �′ a ball, if w = ui − uj we may conclude that ∇(uj ◦ f −1) is
a Cauchy sequence in L1(B) and that converges in L1(B) to ∇(u ◦ f −1). The
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argument used at the end of Theorem 1.1 leads us to the desired result. The
estimate (1.2) follows by (4.7).

Now, we prove the following result.

Proposition 4.1. Let f : �
onto−−→ �′ be a homeomorphism of finite inner

distortion and let f ∈ W
1,n−1
loc (�, Rn). Assume that u ∈ W

1,∞
loc (�). Then

u ◦ f −1 ∈ W 1,1
loc (�

′). Moreover, for every E′ ⊂⊂ �′ we have

‖∇(u ◦ f −1)‖L1(E′) ≤ ‖Df ‖n−1
Ln−1(f −1(E′))‖∇u‖L∞(f −1(E′)).

Proof. The proof follows by Theorem 2.1 and by Lemma 8.31 in [1] to the
mapping f −1.

Under suitable assumptions onKI,f we obtain a better regularity foru◦f −1,
as it is shown in next result.

Theorem 4.2. Let f : �
onto−−→ �′ be a homeomorphism of finite inner

distortion and let f ∈ WLn log−1 Lloc(�, Rn). Assume that u ∈ W 1,∞
loc (�) and

that

(4.8) KI,f ∈ L1+α
loc (�),

with α ≥ 0. Then u ◦ f −1 ∈ WLn logα Lloc(�
′).

Proof. From Theorem 2.1 we see that f −1 is a homeomorphism with finite
outer distortion which belongs to W 1,1

loc (�
′, Rn). By the assumption (4.8) and

appealing to Lemma 4.2 in [18] we conclude thatf −1 ∈ WLn logα Lloc(�
′, Rn).

We set for simplicity�(t) = tn logα(e+ t). We start by proving that for every
E ⊂⊂ �′ we have

(4.9)
∫
E

�

( |∇(u ◦ f −1)|
λ

)
dy ≤ C�(1)

∫
E

�

( |Df −1|
λ

)
dy,

for every λ > 0, if we further assume ‖∇u‖L∞(f −1(E)) ≤ 1. Using chain rule,
the monotonicity of � and the �′-condition for �, we get

∫
E

�

( |∇(u ◦ f −1)(y)|
λ

)
dy ≤

∫
E

�

( |∇u(f −1(y))||Df −1(y)|
λ

)
dy

≤ C

∫
E

�(|∇u(f −1(y))|)�
( |Df −1(y)|

λ

)
dy

≤ C�(1)
∫
E

�

( |Df −1|
λ

)
dy,
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hence (4.9) is established. Note that in the steps above we use the fact that both
f and f −1 satisfy the Lusin (N) condition. We fix λ > ‖Df −1‖Ln logα L(E).
Therefore ∫

E

�

( |Df −1|
λ

)
dy ≤ 1,

and hence from (4.9) we deduce
∫
E

�

( |∇(u ◦ f −1)(y)|
λ

)
dy ≤ C�(1).

The condition above clearly implies

‖∇(u ◦ f −1)‖Ln logα L(E) ≤ Cλ.

Taking the limit as λ → ‖Df −1‖Ln logα L(E) we conclude that

‖∇(u ◦ f −1)‖Ln logα L(E) ≤ C‖Df −1‖Ln logα L(E).

This in turn proves that

‖∇(u ◦ f −1)‖Ln logα L(E) ≤ C‖Df −1‖Ln logα L(E).‖∇u‖L∞(f −1(E))

for every u ∈ W 1,∞
loc (�).

Remark 4.1. The assumptions of both Theorem 1.2 and Theorem 4.1 lead
to f ∈ W 1,n−1

loc (�, Rn). This type of condition can not be weakened; indeed, in
view of Example 1.3 in [20] there exists a homeomorphism of finite outer distor-
tion f ∈ WLn−1 log−α Lloc(�, Rn) with α > 0 such that f −1 �∈ W 1,1

loc (�
′, Rn).

Hence
Tf −1

(
W

1,∞
loc (�)

) �⊂ W
1,1
loc (�

′).

The regularity assumption on f of Theorem 1.2 is stronger than the one in
Theorem 4.1. The advantage of this better regularity is that Tf −1 acts on the
space WLr log−α(r−1) Lloc(�) which properly contains W 1,∞

loc (�).

Remark 4.2. Under the assumptions of both Theorem 1.2 and Theorem 4.1,
we cannot expect any inclusion of the type

(4.10) Tf −1

(
W

1,∞
loc (�)

) ⊂ W
1,1+δ
loc (�′)

for some δ > 0. To this aim, let us recall that for every δ > 0 and n−1 < p <

∞ there exists a homeomorphism of finite distortion f ∈ W
1,p
loc (�, Rn) such

that f −1 �∈ W
1,1+δ
loc (�′, Rn) (see Example 6.1 in [25]). The inclusion (4.10)

fails for such a homeomorphism.
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4.2. The composition operator in Lorentz spaces

Theorem 4.3. Let n− 1 < p < ∞ and n− 1 < q < ∞. Let f : �
onto−−→ �′

be a homeomorphism of finite inner distortion and let f ∈ WLp,qloc (�, Rn).
Assume that u ∈ WLr,sloc(�) where

r = p

p − n+ 1
and s = q

q − n+ 1
,

and we further assume that u is continuous for r > n. Then, u ◦ f −1 ∈
W

1,1
loc (�

′). Moreover, for every E′ ⊂⊂ �′ we have

‖∇(u ◦ f −1)‖L1(E′) ≤ ‖Df ‖n−1
Lp,q (f −1(E′))‖∇u‖Lr,s (f −1(E′)).

Proof of Theorem 4.3. Arguing as in the proof of Theorem 1.2, we
deduce that

(4.11)
∫
B

|∇(w ◦ f −1)|dy ≤
∫
f −1(B)

|∇w(x)||Df (x)|n−1 dx,

for every ball B ⊂⊂ �′ and for every w ∈ C∞(�).
Using Hölder inequality in Lorentz spaces (2.5), we deduce from (4.11)

that

(4.12)
∫
B

|∇(w ◦ f −1)| dx ≤ ‖∇w‖Lr,s (f −1(B)) ‖Df ‖n−1
Lp,q (f −1(B))

.

Let now u be an arbitrary function in WLr,sloc(�) and let {uj } be a sequence of
smooth functions which approximate u by standard mollification. We take two
indices i, j and we apply (4.12) to w = ui − uj . We see that {∇(uj ◦ f −1)}
is a Cauchy sequence in L1(B, Rn) and converges strongly in L1(B, Rn). By
means of Theorem 3.47 in [2], it follows that {uj ◦ f −1} is a Cauchy sequence
in L1(B). The argument used at the end of Theorem 3.1 leads us to the desired
result.

Theorem 4.4. Let f : �
onto−−→ �′ be a homeomorphism of finite inner

distortion and let f ∈ WLn−1,1
loc (�, Rn) with

KI,f ∈ L1,∞
loc (�).

Assume that u ∈ W 1,∞
loc (�). Then, u ◦ f −1 ∈ W 1,n−1

loc (�′). Moreover, for every
E′ ⊂⊂ �′ we have

(4.13) ‖∇(u ◦ f −1)‖Ln−1(E′) ≤ ‖Df −1‖Ln−1(E′)‖∇u‖L∞(f −1(E′)).



50 f. farroni, r. giova, g. moscariello and r. schiattarella

Proof. From |Df | ∈ Ln−1,1
loc (�), Hadamard’s inequality

|adjDf | ≤ |Df |n−1 a.e in �,

and from (2.4) we get

‖adjDf ‖
1
n−1

L
1, 1
n−1 (E)

≤ ‖|Df |n−1‖
1
n−1

L
1, 1
n−1 (E)

= ‖Df ‖Ln−1,1(E)

for every E ⊂⊂ �. Thus |adjDf | ∈ L
1, 1
n−1

loc (�). Now, we are in position to
apply Theorem 1.2 in [33] and we obtain |Df −1| ∈ Ln−1

loc (�). Finally, the
claimed result follows from Theorem 2.1 in [15].

It remains to prove the estimate (4.13). To this end, let u ∈ W 1,∞
loc (�); we

observe that

∇(u ◦ f −1)(y) = ∇u(f −1(y))Df −1(y) for a.e y ∈ �′.

Hence, for every E′ ⊂⊂ �′ we have

(4.14)

∫
E′

|∇(u ◦ f −1)(y)|n−1 dy

≤
∫
E′

|∇(u(f −1(y))|n−1|Df −1(y)|n−1 dy

≤ ‖Df −1‖n−1
Ln−1(E′)‖∇u‖n−1

L∞(f −1(E′))

Therefore (4.13) holds, and the proof is complete.
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