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BUILDING MODULES FROM THE SINGULAR LOCUS

JESSE BURKE, LARS WINTHER CHRISTENSEN, and RYO TAKAHASHI∗

Abstract
A finitely generated module over a commutative noetherian ring of finite Krull dimension can be
built from the prime ideals in the singular locus by iteration of three procedures: taking extensions,
direct summands, and cosyzygies. In 2003 Schoutens gave a bound on the number of iterations
required to build any module, and in this note we determine the exact number. This building
process yields a stratification of the module category, which we study in detail for local rings that
have an isolated singularity.

Introduction

Let R be a commutative noetherian ring of finite Krull dimension. In [3]
Schoutens shows that starting from the set of singular primes in R, one can
build the entire category of finitely generated R-modules by way of exten-
sions, direct summands, and cosyzygies. Schoutens’s result gives a bound, in
terms of the Krull dimension of R, on the number of times these procedures
must be repeated to complete the building process. In this paper we give an
improved bound on this number and show that it is sharp. In the process we
give a condensed proof of the original result.

From the building process one gets a stratification of the module category
into full subcategories that we call “tiers”. Over a regular ring the tiers simply
sort the modules by projective dimension, but over singular rings the picture
remains opaque. We describe the tiers explicitly for a local ring with an isolated
singularity.

1. Tiers of modules

In this paper R is a commutative noetherian ring, and mod(R) denotes the
category of finitely generated R-modules. By a subcategory of mod(R) we al-
ways mean a full subcategory closed under isomorphisms. By Reg R we denote
the regular locus of R; that is, the set Reg R = {� ∈ Spec R | R� is regular}.
The singular locus of R is the complementary set Sing R = Spec R \ Reg R.

∗ Research partly supported by NSA grant H98230-11-0214 (L.W.C), and by JSPS Grant-in-
Aid for Young Scientists (B) 22740008 and JSPS Postdoctoral Fellowships for Research Abroad
(R.T).

Received 27 October 2012, in final form 6 February 2013.



24 jesse burke, lars winther christensen, and ryo takahashi

Definition 1. Let S be a subcategory of mod(R).

• Denote by 〈S〉 the smallest subcategory of mod(R) that contains S ∪ {0}
and is closed under extensions and direct summands.

• Denote by cosyz S the subcategory whose objects are modules X such
that there exists an exact sequence 0 → S → P → X → 0 where S is
in S and P is finitely generated and projective.

• Set tier−1 S = 〈S〉, tier0 S = 〈S ∪ cosyz〈S〉〉 and for n ∈ N set

tiern S = 〈tiern−1 S ∪ cosyz(tiern−1 S)〉.

Let S(R) be the subcategory of mod(R) with skeleton {R/� | � ∈ Sing R};
we consider the question of which, if any, of the subcategories in the chain

〈S(R)〉 = tier−1 S(R) ⊆ · · · ⊆ tiern S(R) ⊆ tiern+1 S(R) ⊆ · · ·
is the entire module category mod(R). In the rest of the paper, a subcategory
of mod(R) described as a set X is tacitly understood to be the subcategory
with skeleton X.

In terms of tiers, Schoutens’s result [3, Theorem VI.8] can be stated as
follows. If R has finite Krull dimension d, then one has tierd S(R) = mod(R),
and if R is local and singular, then one has tierd−1 S(R) = mod(R). For regular
rings, Schoutens’s bound is the best possible. Our theorem below sharpens the
bound for singular rings: We replace d (in the local case d − 1) by c =
codim(Sing R), the codimension of the singular locus, which is −1 if Reg R

is empty and otherwise given by

c = sup{htR � | � ∈ Reg R}.
Theorem 2. Let R be a commutative noetherian ring and set

S(R) = {R/� | � ∈ Sing R}.
If c = codim(Sing R) is finite, then there is an equality tierc S(R) = mod(R).

Proof. As every R-module has a prime filtration and tiers are closed under
extensions, it is sufficient to prove that every cyclic module R/�, where � is a
prime ideal in R, is in tierc S(R). For a prime ideal � ∈ Reg R, set

n(�) = max{dim (�/�) | � ⊆ � and � is minimal in Sing R}.
For � ∈ Sing R, set n(�) = 0; we proceed by induction on n(�). By definition,
R/� is in S(R) and, therefore, in tierc S(R) if n(�) is 0. Let n ≥ 1 and assume
that R/� is in tierc S(R) for all � with n(�) < n. Fix a prime ideal � with
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n(�) = n and set h = htR �. Since R� is regular, one can choose elements
x1, . . . , xh in � such that the ideal I = (x1, . . . , xh) has height h and the
equality

(1) IR� = �R�

holds. As �/I is a minimal prime ideal in R/I , there exists an element a ∈ R

with � = (I : a), and it follows from (2) that a is not in �. It is now elementary
to verify the equality I = (I + (a)) ∩ �, which yields a Mayer-Vietoris exact
sequence

(2) 0 −→ R/I −→ R/� ⊕ R/(I + (a)) −→ R/(� + (a)) −→ 0.

The support of the module R/(� + (a)) consists of prime ideals that strictly
contain �. Thus, R/(� + (a)) has a prime filtration with subquotients of the
form R/�, where each � satisfies the inequality n(�) < n(�). By the induction
hypothesis, these subquotients R/� are in tierc S(R) whence so is R/(�+(a)).

By (2) it now suffices to show that R/I is in tierc S(R). To this end, consider
the Koszul complex K = K(x1, . . . , xh) on the generators of I . For � ∈
Reg R, the non-units among the elements x1/1, . . . , xh/1 in R� form a regular
sequence. It follows that the homology modules Hi (K) for i > 0 have support
in Sing R, see [2, Theorem 16.5], and therefore that they are in tier−1 S(R). Let
d1, . . . , dh denote the differential maps on K . The modules Ki in the Koszul
complex are free, and the module Ker dh = Hh(K) is in tier−1 S(R). It now
follows from the exact sequences

0 −→ Im di+1 −→ Ker di −→ Hi (K) −→ 0

0 −→ Ker di −→ Ki −→ Im di −→ 0

that Im di is in tierh−i S(R) for h ≥ i ≥ 1. In particular, the ideal I = Im d1

is in tierh−1 S(R). Thus the cosyzygy R/I is in tierh S(R) and clearly one has
h ≤ c.

The proof above is quite close to Schoutens’s original argument.

Remark 3. One cannot leave out of any of the three procedures – adding
cosyzygies, closing up under extensions, or closing up under summands – from
the definition of tiers and still generate the entire module category. For the sake
of the argument, let R be an isolated curve singularity, i.e. a one-dimensional
Cohen-Macaulay local ring R with S(R) = {k}, where k is the residue field of
R.

• Without adding cosyzygies, one does not move beyond the category
〈S(R)〉, which contains only the R-modules of finite length and hence
not R.
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• The R-module k is simple and cannot be embedded in a free R-module.
Furthermore, R is indecomposable as an R-module. It follows that after
adding cosyzygies and closing up under summands one is only left with
k and modules of projective dimension at most 1. Thus, extensions are
needed.

• Summands cannot be dispensed with either. The closure E of S(R) under
extensions is the subcategory of modules of finite length. Since no such
module can be embedded in a free R-module, cosyz E contains exactly
the finitely generated free modules. If the closure under extensions of
E∪ cosyz E is the entire module category mod(R) – or if mod(R) can be
attained by alternately closing up under extensions and taking syzygies
a finite number of times – then the Grothendieck group of R is generated
by k and R. However for any even integer n ≥ 4, the Grothendieck group
of the Dn singularity, C[[x, y]]/(x2y + yn−1), requires three generators;
see [4, Lemma (13.2) and Proposition (13.10)].

2. The codimension of Sing R is the best possible bound

We now show that the bound provided by Theorem 2 is optimal; that is,
tiern S(R) for n < c is a proper subcategory of mod(R). First note that if
R is regular, then Sing R and hence S(R) is empty. Thus tier−1 S(R) contains
only the zero module, and it follows from the definition that tiern S(R) for
n ≥ 0 contains precisely the modules of projective dimension at most n. The
next lemma shows that, to some extent, this simple observation carries over to
general rings.

Lemma 4. For a finitely generated R-module M the following assertions
hold.

(a) M is in tier−1 S(R) if and only if one has M� = 0 for every � ∈ Reg R.

(b) If M is in tiern S(R), then pdR�
M� ≤ n holds for every � ∈ Reg R.

Proof. As Sing R is a specialization closed subset of Spec R, one has
(R/�)� = 0 for every � ∈ Sing R and every � ∈ Reg R. It follows that M�

is 0 for every M ∈ tier−1 S(R) and every � ∈ Reg R. Conversely, if one has
M� = 0 for every � ∈ Reg R, then M has a prime filtration with subquotients
R/� in S(R), so M is in tier−1 S(R). This proves part (a).

(b): Assume that X is in cosyz(tier−1 S(R)), then there is exact sequence

0 −→ S −→ P −→ X −→ 0,

where P is a finitely generated projective module and S is in tier−1 S(R). It
follows that X is free at every � ∈ Reg R, and hence so are all modules in
tier0 S(R).
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Let n ≥ 1 and assume that the inequality pdR�
X� ≤ n − 1 holds for all

modules X in tiern−1 S(R) and for every � ∈ Reg R. It follows that every
module in cosyz(tiern−1 S(R)) has projective dimension at most n at every
� ∈ Reg R, and hence the desired inequality holds for all modules in tiern S(R).

Up to tierc S(R) each tier strictly contains the previous one.

Proposition 5. If c = codim(Sing R) is finite, then there are strict inclu-
sions

tier−1 S(R) ⊂ tier0 S(R) ⊂ · · · ⊂ tierc−1 S(R) ⊂ tierc S(R)

of subcategories of mod(R).

Proof. Let S be any subcategory of mod(R); if one has tiern S = tiern+1 S
for some n ≥ −1, then it follows from the definition that tiern S equals tierm S
for all m ≥ n.

Thus, it is sufficient to show that tierc−1 S(R) is not the entire category
mod(R). To this end choose a prime ideal � in Reg R of height c. By the
Auslander-Buchsbaum Equality one has pdR�

(R/�)� = c, so it follows from
Lemma 4 that R/� does not belong to tierc−1 S(R).

Our proof of Theorem 2 only shows that every finitely generated R-module
is in tierc S(R); it gives no information on the least tier to which a given module
M belongs, but Lemma 4 provides a lower bound; sup{ pdR�

M� | � ∈ Reg R}.
Recall that a module M ∈ mod(R) is called is maximal Cohen-Macaulay if

the equality depthR M = dim R holds. Such a module M is free on the regular
locus; indeed, the Auslander-Buchsbaum Equality yields pdR�

M� ≤ 0 for all
� in Reg R. We show in the next section that over certain Cohen-Macaualay
local rings R there are maximal Cohen-Macaulay modules which are not in
tier0 S(R). Thus, the lower bound provided by Lemma 4 is not sharp, and we
ask the question:

Question 6. Let R be a Cohen-Macaulay local ring and denote by CM(R)

the subcategory of mod(R) consisting of all maximal Cohen-Macaulay mod-
ules. What is the following number?

ε(R) = min{n ≥ −1 | CM(R) ⊆ tiern S(R)}.

If R is a regular local ring, then ε(R) is 0 and we show in the next section
that it may be as big as c = codim(Sing R) for a singular ring. A broader
question is, of course, given a module, how can one determine the least tier it
belongs to?
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3. Isolated singularities

A local ring R is Cohen-Macaulay if R is a maximal Cohen-Macaulay R-
module, and R is said to have an isolated singularity if R is singular but R�

is regular for every non-maximal prime ideal in R. In this section we give a
description of the subcategories tiern S(R) for a local ring R with an isolated
singularity; one that is explicit enough to answer Question 6 for a Cohen-
Macaualy local ring with an isolated singularity.

For a subcategory S of mod(R), every module in 〈S〉 can be reached by
alternately taking summands and extensions; to discuss this we recall some
notation from [1].

Definition 7. Let S and T be subcategories of mod(R).

(1) Denote by add S the additive closure of S, that is, the smallest sub-
category of mod(R) containing S and closed under finite direct sums
and direct summands.

(2) Denote by S ◦ T the subcategory of mod(R) consisting of the R-
modules M that fit into an exact sequence 0 → S → M → T → 0
with S ∈ S and T ∈ T.

(3) Set S • T = add (add S ◦ add T), and for integers m ≥ 1, set

|S|m =
{

add S for m = 1,

|S|m−1 • S for m ≥ 2.

Remark 8. Let S and T be subcategories of mod(R). A module M in
mod(R) belongs to S • T if and only if there is an exact sequence 0 → S →
E → T → 0 with S ∈ add S and T ∈ add T such that M is a direct summand
of E. Moreover, one has |S|m • |S|m′ = |S|m+m′ for all m, m′ ≥ 1; see [1].

Lemma 9. For every subcategory S of mod(R) one has 〈S〉 = ⋃
m≥1 |S|m .

Proof. Set T = ⋃
m≥1 |S|m. Evidently one has S ⊆ T ⊆ 〈S〉, and T is by

construction closed under direct summands. Let

0 −→ T −→ E −→ T ′ −→ 0

be an exact sequence in mod(R) with T and T ′ in T. There are integers m, m′ ≥
1 with T ∈ |S|m and T ′ ∈ |S|m′ , and hence E is in |S|m+m′ . Thus, T is also
closed under extensions, and by the definition of 〈S〉 it follows that one has
T = 〈S〉.

Let R be a local ring with residue field k. Denote by fln(R) the subcat-
egory of mod(R) whose objects are all modules of finite length. For n ≥ −1
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denote by fpdn(R) the subcategory of mod(R) whose objects are all mod-
ules of projective dimension at most n. Note that one has fln(R) = 〈{k}〉 and
fpd−1(R) = {0}.

Theorem 10. Let R be a local ring with residue field k. For −1 ≤ n ≤
depth R − 1 there are equalities of subcategories of mod(R),

tiern{k} = 〈fln(R) ∪ fpdn(R)〉 = 〈{k} ∪ fpdn(R)〉,
and for −1 ≤ n ≤ depth R − 2 the category tiern{k} contains precisely the
modules M such that there is an exact sequence

0 −→ L −→ M ⊕ M ′ −→ P −→ 0

in mod(R) with L ∈ fln(R) and P ∈ fpdn(R).

Proof. First we show that every module in 〈fln(R) ∪ fpdn(R)〉 for −1 ≤
n ≤ depth R − 2 fits in an exact sequence 0 → L → M ⊕ M ′ → P → 0
with L ∈ fln(R) and P ∈ fpdn(R). The assertion is trivial for n = −1, so let
0 ≤ n ≤ depth R − 2. Fix a module M in 〈fln(R) ∪ fpdn(R)〉; by Lemma 9 it
belongs to | fln(R) ∪ fpdn(R)|m for some m ≥ 1. We now argue by induction
on m that M fits in an exact sequence of the prescribed form.

For m = 1 one has M ∈ add (fln(R) ∪ fpdn(R)), whence there is an
isomorphism M ⊕ M ′ ∼= L ⊕ P for modules M ′ ∈ mod(R), L ∈ fln(R), and
P ∈ fpdn(R).

For m ≥ 2 there is an exact sequence

(1) 0 −→ X −→ M ⊕ M ′ −→ Y −→ 0

in mod(R) with X ∈ | fln(R)∪fpdn(R)|m−1 and Y ∈ add (fln(R) ∪ fpdn(R)).
The base and hypothesis of induction yield an isomorphism Y ⊕ Y ′ ∼= L ⊕ P

and an exact sequence 0 → L′ → X ⊕ X′ → P ′ → 0, with L and L′ in
fln(R) and with P and P ′ in fpdn(R). Combined with (1) they yield an exact
sequence

0 −→ X ⊕ X′ −→ X′ ⊕ M ⊕ M ′ ⊕ Y ′ −→ L ⊕ P −→ 0.
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Set V = X′ ⊕ M ⊕ M ′ ⊕ Y ′. Consider the pushout diagram

(2)

0 0

L′ L′

0 X ⊕ X′ V L ⊕ P 0

0 −−−−→ P ′ −−−−→ W L ⊕ P 0

0 0

and the pullback diagram

(3)

0 0

0 P ′ P ′′ −−−−→ P −−−−→ 0

0 P ′ W L ⊕ P 0

L L

0 0

Note from the top row in (3) that the module P ′′ is in fpdn(R). From the in-
equality n ≤ depth R − 2 and the Auslander-Buchsbaum Equality one gets
depthR P ′′ ≥ 2. By the cohomological characterization of depth [2, The-
orem 16.6] this implies Ext1

R(k, P ′′) = 0 and, therefore, Ext1
R(L, P ′′) = 0.

Thus, the middle column in (3) is split exact, and the middle column in (2)
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becomes 0 → L′ → V → L ⊕ P ′′ → 0. Consider the pullback diagram

(4)

0 0

0 L′ L′′ −−−−→ L −−−−→ 0

0 L′ V L ⊕ P ′′ 0

P ′′ P ′′

0 0

Note from the top row that L′′ is in fln(R). As M is a direct summand of V ,
the middle column is a desired exact sequence.

Clearly, one has 〈fln(R) ∪ fpdn(R)〉 = 〈{k} ∪ fpdn(R)〉; to finish the proof
we show by induction that tiern{k} = 〈fln(R)∪ fpdn(R)〉 holds for −1 ≤ n ≤
depth R − 1. For n = −1, one has tiern{k} = fln(R) = 〈fln(R) ∪ fpdn(R)〉.
Let n ≥ 0 and assume that tiern−1{k} = 〈fln(R) ∪ fpdn−1(R)〉 holds. By
definition one then has

tiern{k} = 〈〈fln(R) ∪ fpdn−1(R)〉 ∪ cosyz〈fln(R) ∪ fpdn−1(R)〉〉,
whence it suffices to establish the equality

cosyz〈fln(R) ∪ fpdn−1(R)〉 = fpdn(R).

The inclusion “⊇” is clear because a module in fpdn(R) is a cosyzygy of its
first syzygy, which is in fpdn−1(R). For the opposite inclusion, let M be a
module in cosyz〈fln(R) ∪ fpdn−1(R)〉. There is an exact sequence

0 −→ N −→ F −→ M −→ 0,

where F is free and N is in 〈fln(R) ∪ fpdn−1(R)〉. From the inequalities
−1 < n ≤ depth R−1 follows that R and hence F has positive depth, whence
also N has positive depth. Moreover, one has −1 ≤ n − 1 ≤ depth R − 2,
so it follows from the first part of the proof that there is an exact sequence in
mod(R),

0 −→ L
(α

β)−−→ N ⊕ N ′ −→ P −→ 0,
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with L ∈ fln(R) and P ∈ fpdn−1(R). Since L has finite length and N has
positive depth, the map α is zero. Thus, there is an isomorphism P ∼= N ⊕ C,
where C is the cokernel of β. Thus N belongs to fpdn−1(R), and hence M is
in fpdn(R).

For a local ring R with an isolated singularity one has S(R) = {k}, so
Theorems 2 and 10 combine to yield:

Corollary 11. Let R be a d-dimensional local ring with an isolated sin-
gularity. For every n ≥ −1 one has

tiern S(R) = 〈{k} ∪ fpdn(R)〉;
in particular, one has

mod(R) = 〈{k} ∪ fpdd−1(R)〉.

To answer Question 6 for a Cohen-Macaualy local ring with an isolated
singularity, we record another consequence of Theorem 10. Denote by dep(R)

the subcategory of mod(R) whose objects are all modules of positive depth;
it includes the zero module as it has infinite depth by convention.

Proposition 12. Let R be a local ring. For −1 ≤ n ≤ depth R − 2 one has

tiern{k} ∩ dep(R) = fpdn(R).

Proof. By Theorem 10 one has tiern{k} = 〈fln(R) ∪ fpdn(R)〉 and it
follows from the inequality n ≤ depth R − 2 and the Auslander-Buchsbaum
Equality that every module in fpdn(R) has positive depth. This proves the
inclusion “⊇”. To show the opposite inclusion, fix a module M in 〈fln(R) ∪
fpdn(R)〉∩dep(R). It follows from Theorem 10 that there is an exact sequence
in mod(R)

0 −→ L
(α

β)−−→ M ⊕ M ′ −→ P −→ 0

with L ∈ fln(R) and P ∈ fpdn(R). Since M has positive depth, the map α is
zero and it follows that M is a direct summand of P , whence M is in fpdn(R).

Corollary 13. Let R be a d-dimensional Cohen-Macaulay local ring.

(a) If d ≥ 1, then every maximal Cohen-Macaulay module in tierd−2{k} is
free.

(b) If R has an isolated singularity, then one has

ε(R) = d − 1.



building modules from the singular locus 33

Proof. (a) By Proposition 12 one has

CM(R)∩tierd−2{k} = CM(R)∩(tierd−2{k}∩dep(R)) = CM(R)∩fpdd−2(R).

In CM(R) ∩ fpdd−2(R) is only 0 if d = 1 and precisely the free R-modules if
d ≥ 2.

(b) The equality is trivial for d = 0 and it follows from (a) for d ≥ 1.

The corollary shows that the lower bound that Lemma 4 gives for which
tier a module M can belong to, sup{ pdR�

M� | � ∈ Reg R}, is far from being
sharp.
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