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EQUATIONS RELATED TO SUPERDERIVATIONS
ON PRIME SUPERALGEBRAS

AJDA FOŠNER and MAJA FOŠNER

Abstract
In this paper we investigate equations related to superderivations on prime superalgebras. We
prove the following result. Let D = D0 +D1 be a nonzero superderivation on a prime associative
superalgebra A satisfying the relations Di(x)[Di(x), x]s = 0, [Di(x), x]sDi(x) = 0 for all
x ∈ A , i = 0, 1. Then one of the following is true: (a) A1 = 0 and D(A0) ⊆ Z(A ) or (b)
D(A0) = 0 and A is commutative or (c) D2 = 0. The research is a generalization of the results
in [10] and [4] by using the theory of superalgebras.

1. Introduction and preliminaries

This research is motivated by the work of Vukman [10], where the author
considers the relation [D(x), x] D(x) = 0 on noncommutative prime rings and
Banach algebras. We will consider this identity on the field of an associative
superalgebra.

Throughout the paper, by an algebra A we shall mean an algebra over a
fixed unital commutative ring � and we assume that � contains the element
1
2 (i.e., 1 + 1 is an invertible element). Recall that a derivation D on A is
a �-linear map D : A → A such that D(xy) = D(x)y + xD(y) for all
x, y ∈ A .

Over the last few decades there has been a considerable interest in associ-
ative superalgebras, especially concerning their Lie and Jordan structures (for
example, we refer the reader to [5], [6] and the references therein). For the sake
of the completeness we will write some basic definitions which we will need
in our further investigations. Let A be an associative superalgebra, that is a
Z2-graded associative algebra. This means that there exist �-submodules A0

and A1 of A such that A = A0 ⊕ A1 and A0A0 ⊆ A0 (A0 is a subalgebra
of A ), A0A1 ⊆ A1, A1A0 ⊆ A1 (A1 is an A0-bimodule), and A1A1 ⊆ A0.
We say that A0 is the even part and A1 is the odd part of A . An element
x ∈ Ai , i = 0 or i = 1, is said to be homogeneous of degree i. In this case we
write |x| = i. The set of all homogeneous elements of A will be denoted by
H (A ). If A1 = 0, then A is called a trivial superalgebra. For x, y ∈ H (A )
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we shall write [x, y]s = xy − (−1)|x||y|yx for the supercommutator of x and
y. We say that A is supercommutative if [x, y]s = 0 for all homogeneous
elements x, y ∈ A . The usual commutator xy − yx of x, y ∈ A will be
denoted by [x, y]. Of course, [x, y]s = [x, y] if at least one of the elements
x and y is homogeneous of degree 0. An ideal I of A is said to be graded if
I = I0 ⊕ I1, where I0 = I ∩ A0 and I1 = I ∩ A1. An associative super-
algebra A is called prime if the product of any two nonzero graded ideals in
A is nonzero, and is called semiprime if it does not contain nonzero nilpotent
graded ideals. A semiprime associative superalgebra A is also semiprime as
an algebra. In this case the even part A0 is semiprime as well. On the other
hand, a prime associative superalgebra A is not necessarily a prime algebra.
In this case either A is prime as an algebra or A0 is a prime algebra. Note that
a prime superalgebra is also a semiprime superalgebra. We refer the reader to
[8] for more details.

A superderivation of degree 0 is a �-linear map D0 : A → A such that
D0(A0) ⊆ A0, D0(A1) ⊆ A1, and D0(xy) = D0(x)y + xD0(y) for all
x, y ∈ H (A ). This is actually a derivation on A . A superderivation of degree
1 is a �-linear map D1 : A → A such that D1(A0) ⊆ A1, D1(A1) ⊆ A0, and
D1(xy) = D1(x)y + (−1)|x|xD1(y) for all x, y ∈ H (A ). A superderivation
D : A → A is a sum of superderivations D0 and D1.

Let A be a semiprime associative superalgebra. Since A is then semiprime
as an algebra, one can construct the extended centroid of A . For this construc-
tion and basic properties of the extended centroid we refer the reader to [1,
Chapter 2]. By C = C0 ⊕C1 we shall denote the extended centroid of a prime
associative superalgebra. The semiprime associative superalgebra is prime if
and only if all homogeneous elements of the extended centroid are invertible.
We refer the reader to [6] for more details on the extended centroid of a prime
associative superalgebra which will be used as the main tool in the research of
Theorem 1.

Let us see in some more details the background and the motivation of
Theorem 1. Let R be an associative ring with a center Z(R). A map F : R →
R is called centralizing on R if [F(x), x] ∈ Z(R) holds for all x ∈ R. In a
special case, when [F(x), x] = 0 is fulfilled for all x ∈ R, a map F is called
commuting on R. A classical result of Posner (Posner’s second theorem) [9]
asserts that the existence of a nonzero derivation D : R → R, where R is a
prime ring, which is centralizing on R, forces R to be commutative. Posner’s
second theorem in general cannot be proved for semiprime rings. It is also well
known and easy to prove that if D is a commuting derivation on a semiprime
ring R, then D maps R into Z(R). From the result of Deng and Bell [2] it
follows that if R is a n!-torsion free semiprime ring, where n > 1 is some fixed
integer and D : R → R a derivation satisfying the relation [D(x), xn] = 0
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for all x ∈ R, then D maps R into Z(R) (see also [7]). Vukman [11] has
proved the following result: Let m ≥ 1, n ≥ 1 be some fixed integers and let
R be a 2mn(m+n− 1)!-torsion free semiprime ring. Suppose that there exist
derivations D, G : R → R such that D(xm)xn + xnG(xm) = 0 is fulfilled
for all x ∈ R. Then D and G map R into Z(R). Moreover, D + G = 0. This
result has been fairly generalized by A. Fošner, M. Fošner, and Vukman [3].

If D is a derivation on a noncommutative prime ring R such that the map
x �→ D(x)2 is commuting on R, then one cannot prove in general that D = 0,
as shows the following example. Let R be a ring of all 2 × 2 matrices over
the field F and let D(x) = [a, x], a /∈ Z(R), be an inner derivation. Then
a simple calculation shows that the map x �→ D(x)2 is commuting on R,
but D 	= 0 since a /∈ Z(R). Here we are actually investigating the relation
[D(x)2, x] = 0, x ∈ R, which can be written in the form

[D(x), x]D(x) + D(x)[D(x), x] = 0, x ∈ R.

And the next natural question is what we can say about the Lie version of the
above relation.

In [4] the authors investigated the following identity

[[D(x), x], D(x)] = 0, x ∈ R.

They proved that if D is a derivation on a 2-torsion free semiprime ring satisfy-
ing the above relation for all x ∈ R, then D maps R into Z(R). And the aim of
the following paper is to investigate the superalgebra version of the above men-
tioned results. In particular, we will observe superderivations D = D0 +D1 on
an associative superalgebra A satisfying the relations Di(x)[Di(x), x]s = 0
and [Di(x), x]sDi(x) = 0 for all x ∈ H(A ), i = 0, 1.

Let us write our main result.

Theorem 1. Let A be a prime associative superalgebra and let D =
D0 + D1 be a nonzero superderivation on A . Suppose that D0 and D1 satisfy
the relations

(1) Di(x)[Di(x), x]s = 0 and [Di(x), x]sDi(x) = 0

for all x ∈ H(A ), i = 0, 1. Then one the following statements are true:

(a) A1 = 0 and D(A0) ⊆ Z(A ) or

(b) D(A0) = 0 and A is commutative or

(c) D2 = 0.

Before proving Theorem 1, let us write some basic characteristics of prime
associative superalgebras.
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Lemma 1 ([6, Lemma 2.1]). Let A = A0 ⊕ A1 be a prime associative
superalgebra.

(i) If a ∈ A is such that aA1 = 0 (or A1a = 0), then a = 0 or A is a
trivial superalgebra.

(ii) If a1A1a1 = 0, where a1 ∈ A1, then a1 = 0.

(iii) If a0 ∈ A0 and a1 ∈ A1 are such that a0Aia1 = a1Aia0 = 0, where
i = 0 or i = 1, then a0 = 0 or a1 = 0.

(iv) If a ∈ A and a1 ∈ A1 are such that a1Aia = 0 (or aAia1 = 0), where
i = 0 or i = 1, then a1A0a1 = 0 or a = 0.

(v) If a ∈ A and a0 ∈ A0 are such that a0Aia = 0 (or aAia0 = 0), where
i = 0 or i = 1, then a0A1a0 = 0 or a = 0.

(vi) If a0 ∈ A0 and a1 ∈ A1 are such that a0x1a1 = a1x1a0 for all x1 ∈ A1,
then a0xa1 = a1xa0 for all x ∈ A .

(vii) If [A0, A1] = 0, then either A is commutative (as an algebra) or it is
a trivial superalgebra.

(viii) A is supercommutative if and only if A is a trivial superalgebra and
commutative (as an algebra).

In the proof of our main theorem we will also need the following lemmas.

Lemma 2. Let A be an associative superalgebra and a0 ∈ A0, b1 ∈ A1 such
that a0x0b1 + b1x0a0 = 0 for all x0 ∈ A0. Then b1x0(a0z1b1 − b1z1a0) = 0
and (a0z1b1 − b1z1a0)x0b1 = 0 for all x0 ∈ A0 and z1 ∈ A1.

Proof. It is easy to see that from a0x0b1 + b1x0a0 = 0 we get

(−b1x0a0)z1b1 = a0(x0b1z1)b1 = −b1(x0b1z1)a0

for every z1 ∈ A1. Hence,

b1x0(a0z1b1 − b1z1a0) = 0

for every x0 ∈ A0 and z1 ∈ A1. Similarly we can show that

(a0z1b1 − b1z1a0)x0b1 = 0.

for every x0 ∈ A and z1 ∈ A1. The proof is completed.

Lemma 3. Let A be an associative superalgebra and a1, b1 ∈ A1 such that
a1x0b1 + b1x0a1 = 0 for all x0 ∈ A0. Then (a1x1b1 − b1x1a1)x0b1 = 0 for all
x0 ∈ A0 and x1 ∈ A1.
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Proof. According to our assumption we have

a1(x1b1x0)b1 = −b1x1(b1x0a1) = b1x1(a1x0b1)

for all x0 ∈ A0 and x1 ∈ A1. Thus,

(a1x1b1 − b1x1a1)x0b1 = 0.

The proof is completed.

Lemma 4. Let A be a nontrivial prime associative superalgebra and D :
A → A a nonzero superderivation of degree 0. Suppose that

D(x0)A1D(x0) = 0

for all x0 ∈ A0. Then either D(x0)A1D(y0) = 0 for all x0, y0 ∈ A0 or A is
commutative.

Proof. According to our assumptions we have

(D(x0)A1D(y0))A0D(x0) = 0

for all x0, y0 ∈ A0. Since D(x0)x1D(y0) = −D(y0)x1D(x0) for all x0, y0 ∈
A0, x1 ∈ A1, we also have

D(x0)A0(D(x0)A1D(y0)) = 0.

From the proof of Lemma 1 (iii) we obtain

D(x0)A1D(y0)AD(x0)A1D(y0) = 0

for all x0, y0 ∈ A0. The primeness of A yields D(x0)A1D(y0) = 0 for all
x0, y0 ∈ A . Thereby the proof is completed.

2. Proof of the main result

In this section we will prove our main theorem. We will split the proof into two
steps. First we will observe the case when D is a superderivation of degree 0. In
the second step we will prove Theorem 1 in the case whenD is a superderivation
of degree 1.

Proposition 1. Let A be a prime associative superalgebra and let D :
A → A be a nonzero superderivation of degree 0 satisfying the relations (1).
Then A is a trivial superalgebra and D(A0) ⊆ Z(A0).
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Proof. Write x+y+z, x, y, z ∈ H (A ), instead of x in D(x)[D(x), x]s =
0. We arrive at

(2)

0 = D(x)[D(y), z]s + D(x)[D(z), y]s
+ D(y)[D(x), z]s + D(y)[D(z), x]s
+ D(z)[D(x), y]s + D(z)[D(y), x]s .

Let x0 ∈ A0. According to our assumptions we have

0 = [[D(x0), x0]s , D(x0)] = [[D(x0), x0], D(x0)]

for all x0 ∈ A0. Note that A0 is a semiprime algebra. Using [4, Theorem 1]
we obtain

(3) [D(A0), A0] = 0.

Regarding the assumptions we have

D(x1)[x1, D(x1)]s = [x1, D(x1)]sD(x1) = 0

for all x1 ∈ A1. Note that [x1, D(x1)]s = D(x2
1 ) and x2

1 ∈ A0. Using (3) it
follows that

D(x1)x0[x1, D(x1)]s = 0

and
[x1, D(x1)]sx0D(x1) = 0

for all x0 ∈ A0, x1 ∈ A1. Using Lemma 1 (iii) we get

[x1, D(x1)]sAD(x1) = 0.

In particular,
[x1, D(x1)]sA [x1, D(x1)]s = 0

for all x1 ∈ A1. The primeness of A yields

[D(x1), x1]s = 0

for all x1 ∈ A1. Write x1 + y1, x1, y1 ∈ A1, instead of x1 in this relation. It
follows that

[x1, D(y1)]s + [y1, D(x1)]s = 0

for all x1, y1 ∈ A1. In particular,

[x1x0, D(y1)]s + [y1, D(x1x0)]s = 0
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for all x0 ∈ A0, x1, y1 ∈ A1, which implies

0 = x1[x0, D(y1)]s + [x1, D(y1)]sx0

+ [y1, D(x1)]sx0 − D(x1)[y1, x0]s
+ [y1, x1]sD(x0) − x1[y1, D(x0)]s

= x1[x0, D(y1)]s − D(x1)[y1, x0]s
+ [y1, x1]sD(x0) − x1[y1, D(x0)]s .

Multiplying the obtained identity by z0 ∈ A0 on the left side we obtain

0 = z0x1[x0, D(y1)]s − z0D(x1)[y1, x0]s
+ z0[y1, x1]sD(x0) − z0x1[y1, D(x0)]s .

On the other hand we have

0 = z0x1[x0, D(y1)]s − D(z0x1)[y1, x0]

+ [y1, z0x1]sD(x0) − z0x1[y1, D(x0)]s

for all x0, z0 ∈ A0, x1, y1 ∈ A1. Comparing both identities we arrive at

0 = −z0D(x1)[y1, x0] + D(z0x1)[y1, x0]

+ z0[y1, x1]sD(x0) − [y1, z0x1]sD(x0)

= D(z0)x1[y1, x0]s − [y1, z0]sx1D(x0)

for all x0, z0 ∈ A0, x1, y1 ∈ A1. Assume first that C1 = 0. Then from [6,
Theorem 3.5 (i)] we get

D(z0)x1[y1, x0]s = [y1, z0]sx1D(x0) = 0

for all x0, z0 ∈ A0, x1, y1 ∈ A1. According to Lemma 1 (iii) we have D(A0) =
0 or [A1, A0] = 0. In the second case we obtain that A is commutative (as an
algebra) or A is a trivial superalgebra (by Lemma 1 (vii)). If A is commutative
then [D(x1), x1] = 0. Since [D(x1), x1]s = 0 as well, we have D(x1)x1 = 0
for all x1 ∈ A1. Thus, D(x1)Ax1 = 0, which yields D = 0 or A is a trivial
superalgebra.

If D(A0) = 0 we have D(x1)y1 + x1D(y1) = 0 for all x1, y1 ∈ A1. In
particular, D(D(x1)y1 + x1D(y1)) = 0, which implies D(x1)D(y1) = 0.
Thus, D(x1)A1D(y1) = 0 and consequently D = 0, a contradiction.

Suppose now that C1 	= 0. Using [6, Lemma 3.5 (ii)] we arrive at

(4) D(z0)x[y1, x0] − [y1, z0]xD(x0) = 0
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for all x ∈ A and x0, z0 ∈ A0, x1, y1 ∈ A1. Pick a nonzero λ1 ∈ C1 and
choose an essential graded ideal I of A such that λ1I ⊆ A . Since λ1x0 ∈ A1

for every x0 ∈ I0 we have from (4)

0 = D(z0)x[λ1x0, x0] − [λ1x0, z0]xD(x0)

= λ1(D(z0)x[x0, x0] − [x0, z0]xD(x0))

= λ1[x0, z0]xD(x0).

Since λ1 	= 0 it follows that [x0, z0]xD(x0) = 0 for all z0 ∈ A0, x0 ∈ I0,
x ∈ A . Note that the primeness of A bring us D(I0) = 0 or [I0, A0] = 0.
In both cases it is easy to verify that D(A0) = 0 or [A0, A0] = 0. Since
we already proved that the first case can not occur, we have, according to
the second case, [λ1I1, A0] = 0, which yields [I1, A0] = 0. Note that this
implies [A1, A0] = 0. Thus, A is commutative (as an algebra) or A is a trivial
superalgebra. In case of commutativity the same procedure as above shows us
that D = 0 or A1 = 0. Again, because D is a nonzero superderivation, the
superalgebra A is trivial. Thereby the proof is completed.

Proposition 2. Let A be a prime associative superalgebra and let D :
A → A be a nonzero superderivation of degree 1 satisfying the relations (1).
Then D(A0) = 0 and A is commutative, or D2 = 0.

Proof. Write x = x0 ∈ A0 and y = z = y0 ∈ A0 in (2). We obtain

(5) 0 = D(x0)[D(y0), y0]s + D(y0)[D(x0), y0]s + D(y0)[D(y0), x0]s .

Multiplying the identity on the right side by D(y0) we get

(6) 0 = D(y0)([D(x0), y0]s + [D(y0), x0]s)D(y0)

for all x0, y0 ∈ A0 since [D(y0), y0]sD(y0) = 0. In particular,

(7) 0 = D(y0)([D(x0), y0]s + [D(y0), x0]s)y0D(y0)
2.

If we write x0y0 instead of x0 in the above relation (6), we get

0 = D(y0)([D(x0)y0 + x0D(y0), y0]s + [D(y0), x0y0]s)D(y0)

= D(y0)([D(x0), y0]sy0 + [x0, y0]sD(y0) + [D(y0), x0]sy0)D(y0).

In particular,

0 = D(y0)([D(x0), y0]sy0 + [x0, y0]sD(y0) + [D(y0), x0]sy0)D(y0)
2.

Using (7) it follows that

(8) 0 = D(y0)[x0, y0]sD(y0)
3
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for all x0, y0 ∈ A0. Let x1 ∈ A1. Note that x1D(y0) ∈ A0. Then we have

0 = D(y0)[x1D(y0), y0]sD(y0)
3 = D(y0)[x1, y0]sD(y0)

4

for all y0 ∈ A0 and x1 ∈ A1. Using this relation together with (8) we arrive at

0 = D(y0)[A , y0]sD(y0)
4

for all y0 ∈ A0. This can be written as

(9) 0 = (D(y0)y0)zD(y0)
4 − D(y0)z(y0D(y0)

4)

for all z ∈ A . Analogously we can prove that

0 = D(y0)
4[A , y0]sD(y0),

which can be written as

(10) 0 = D(y0)
4z(y0D(y0)) − (D(y0)

4y0)zD(y0)

for all z ∈ A .
Case 1. Suppose that D(y0)

4 	= 0 for some y0 ∈ A0. According to (9) and
[6, Theorem 3.3] there exists 0 	= λ0 ∈ C0 such that

(11) D(y0)y0 = λ0D(y0).

In particular we have D(y0)
4y0 = λ0D(y0)

4. Putting this in (10) we obtain

0 = D(y0)
4z(y0D(y0) − λ0D(y0)),

for all z ∈ A . The primeness of A implies D(y0)
4 = 0 or y0D(y0) =

λ0D(y0). Since D(y0)
4 	= 0 we have y0D(y0) = λ0D(y0). By (11) we obtain

[D(y0), y0]s = 0.

By (5) we get

(12) D(y0)[D(x0), y0]s + D(y0)[D(y0), x0]s = 0

for all x0 ∈ A0. In particular,

0 = D(y0)[D(y0x0), y0]s + D(y0)[D(y0), y0x0]s
= D(y0)[D(y0)x0 + y0D(x0), y0]s + D(y0)y0[D(y0), x0]s

= D(y0)
2[x0, y0]s + D(y0)y0[D(x0), y0]s + D(y0)y0[D(y0), x0]s

= D(y0)
2[x0, y0]s
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for all x0 ∈ A0. Therefore,

(13) D(y0)
2A0[x0, y0]s = 0

for all x0 ∈ A0. Now putting x = x1 ∈ A1 and y = z = y0 ∈ A0 in (2) we
obtain

(14) D(y0)[D(x1), y0]s + D(y0)[D(y0), x1]s = 0.

In particular,

(15)

0 = D(y0)[D(y0x1), y0]s + D(y0)[D(y0), y0x1]s
= D(y0)[D(y0)x1 + y0D(x1), y0]s + D(y0)y0[D(y0), x1]s

= D(y0)
2[x1, y0]s + D(y0)y0[D(x1), y0]s + D(y0)y0[D(y0), x1]s

= D(y0)
2[x1, y0]s .

It follows that

0 = D(y0)
2[x1x0, y0]s = D(y0)

2x1[x0, y0]s + D(y0)
2[x1, y0]sx0

for all x0 ∈ A0 and x1 ∈ A1. Therefore,

D(y0)
2A1[x0, y0]s = 0.

Using (13) we have
D(y0)

2A [x0, y0]s = 0.

Consequently, D(y0)
2 = 0 or [A0, y0]s = 0. Since D(y0)

4 	= 0 it follows that
[A0, y0]s = 0. Using (15) we obtain

D(y0)
2A [x1, y0]s = 0.

Therefore we arrive at
[A1, y0]s = 0,

which together with [A0, y0]s = 0 implies

[A , y0]s = 0.

By (12) and (14) we get

D(y0)[D(y0), x1]s = D(y0)[D(y0), x0]s = 0

for all x0 ∈ A0 and x1 ∈ A1. In particular,

0 = D(y0)[D(y0), zw]s = D(y0)z[D(y0), w]s



equations related to superderivations 313

for all z, w ∈ H (A ). Consequently,

[D(y0), A ]s = 0.

From (2) we arrive at

D(y0)([D(x1), z1]s + [D(z1), x1]s) = 0

for all x1, z1 ∈ A1. It follows that

D(y0)A ([D(x1), z1]s + [D(z1), x1]s) = 0.

Hence, [D(x1), z1]s + [D(z1), x1]s = 0, which yields

[D(y0x1), z1]s + [D(z1), y0x1]s = 0

for all x1, z1 ∈ A1. Therefore, D(y0)[x1, z1]s = 0 for all x1, z1 ∈ A1. Since
D(y0)

4 	= 0 we have [x1, z1]s = 0, which implies [A0, A1] = 0. It follows
that A is commutative (as an algebra) or A is a trivial superalgebra. Note that
in the first case A is a trivial superalgebra as well. But if A is trivial, then
D = 0, a contradiction.

Case 2. Now assume that D(y0)
4 = 0 for all y0 ∈ A0. A complete lineari-

zation of this identity gives us
∑
π∈S4

D(zπ(1))D(zπ(2))D(zπ(3))D(zπ(4)) = 0,

where z1, z2, z3, z4 ∈ A0. Now let y0 = z1 = z2 = z3 and x0 = z4. Then we
have

(16)
0 = D(x0)D(y0)

3 + D(y0)D(x0)D(y0)
2

+ D(y0)
2D(x0)D(y0) + D(y0)

3D(x0).

Write x0y0 instead of x0 in the above relation. Then

0 = D(x0)y0D(y0)
3 + D(y0)D(x0)y0D(y0)

2 + D(y0)x0D(y0)
3

+ D(y0)
2D(x0)y0D(y0) + D(y0)

2x0D(y0)
2 + D(y0)

3x0D(y0)

+ D(y0)
3D(x0)y0.

In particular,

0 = D(x0)D(y0)
4y0 + D(y0)D(x0)D(y0)

3y0 + D(y0)x0D(y0)
4

+ D(y0)
2D(x0)D(y0)

2y0 + D(y0)
2x0D(y0)

3 + D(y0)
3x0D(y0)

2

+ D(y0)
3D(x0)y0D(y0).
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Using D(y0)
3D(x0)[y0, D(y0)]s = 0 by (5) we have

0 = (D(x0)D(y0)
3 + D(y0)D(x0)D(y0)

2 + D(y0)
2D(x0)D(y0)

+ D(y0)
3D(x0))D(y0)y0 + D(y0)

2x0D(y0)
3 + D(y0)

3x0D(y0)
2.

From (16) we arrive at

0 = D(y0)
2x0D(y0)

3 + D(y0)
3x0D(y0)

2

for all x0, y0 ∈ A0. According to Lemma 2 we have D(y0)
3 = 0 for all

y0 ∈ A0 or
D(y0)

2x1D(y0)
3 = D(y0)

3x1D(y0)
2

for all y0 ∈ A0 and x1 ∈ A1. If the last relation holds true we have

D(y0)
3x1D(y0)

3 = D(y0)
4x1D(y0)

2 = 0

for all y0 ∈ A0 and x1 ∈ A1. Using Lemma 1 (ii) it follows that D(y0)
3 = 0

for all y0 ∈ A0. A complete linearization of this identity gives us

∑
π∈S4

D(zπ(1))D(zπ(2))D(zπ(3)) = 0,

where z1, z2, z3 ∈ A0. Now let y0 = z1 = z2 and x0 = z3. It follows that

(17) D(x0)D(y0)
2 + D(y0)D(x0)D(y0) + D(y0)

2D(x0) = 0

for all x0, y0 ∈ A0. If we write x0y0 instead of x0 in this relation, we get

0 = D(x0)y0D(y0)
2 + D(y0)D(x0)y0D(y0)

+ D(y0)x0D(y0)
2 + D(y0)

2D(x0)y0 + D(y0)
2x0D(y0).

Using D(y0)
2D(x0)[y0, D(y0)]s = 0 by (5) it follows that

0 = (D(x0)D(y0)
2 + D(y0)D(x0)D(y0) + D(y0)

2D(x0))D(y0)y0

+ D(y0)
2x0D(y0)

2.

Using (17) we get
D(y0)

2x0D(y0)
2 = 0

and, by semiprimeness of A0,

D(y0)
2 = 0
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for all y0 ∈ A0. Therefore,

(18) D(x0)D(y0) + D(y0)D(x0) = 0

for all x0, y0 ∈ A0. If we write x0y0 instead of x0 in the above relation, we
obtain

D(x0)y0D(y0) + D(y0)D(x0)y0 + D(y0)x0D(y0) = 0

for all x0, y0 ∈ A0. Note that from (18) we get

D(x0)y0D(y0) − D(x0)D(y0)y0 + D(y0)x0D(y0) = 0

for all x0, y0 ∈ A0. Multiplying this identity on the left side by D(x0) we
arrive at

D(x0)D(y0)x0D(y0) = 0.

Again using (18) we obtain

D(y0)D(x0)x0D(y0) = 0

for all x0, y0 ∈ A0. Similarly we can show that

D(y0)x0D(x0)D(y0) = 0.

Hence,
D(y0)D(z0)x0D(x0)D(y0) = 0

for all x0, y0, z0 ∈ A0. It is easy to verify that

0 = D(y0)D(z0)z0D(x0)D(y0) + D(y0)D(z0)x0D(z0)D(y0)

= −D(y0)D(z0)z0D(y0)D(x0) + D(y0)D(z0)x0D(z0)D(y0)

= D(y0)D(z0)x0D(z0)D(y0).

Thus,
D(y0)D(z0)x0D(y0)D(z0) = 0

for all x0, y0, z0 ∈ A0. Therefore,

D(y0)D(z0) = 0

for all y0, z0 ∈ A0 by the semiprimeness of A0. In particular,

0 = D(x0y0)D(x0) = D(x0)y0D(x0),
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which yields

(19) D(x0)A0D(x0) = 0

for all x0 ∈ A0.
Let x0 ∈ A0 and y1, z1, w1 ∈ A1. We have

0 = D(y1z1)D(x0) = D(y1)z1D(x0) − y1D(z1)D(x0).

Putting D(y0) = y1 ∈ A1 in the above relation we obtain

0 = D(D(y0))z1D(x0) − D(y0)D(z1)D(x0) = D(D(y0))z1D(x0).

Analogously we can prove that D(x0)z1D(D(y0)) = 0 for all x0 ∈ A0 and
y1, z1, w1 ∈ A1. Using Lemma 1 (iii) we arrive at D(A0) = 0 or D(D(A0)) =
0.

Subcase 2.1. First suppose that D(A0) = 0. Then we have

(20) 0 = D(x1y1) = D(x1)y1 − x1D(y1)

for all x1, y1 ∈ A1. Hence,

(21) 0 = D(x1)x0y1 − x1x0D(y1)

for all x0 ∈ A0 and x1, y1 ∈ A1. In particular, 0 = D(x1)x0x1 − x1x0D(x1)

for all x0 ∈ A0 and x1 ∈ A1. In the case C1 = 0 we have 0 = D(x1)x0x1 =
x1x0D(x1) for all x0 ∈ A0 by [6, Theorem 3.5 (i)]. Using Lemma 1 (iii) it
follows that D(A1) = 0 or A is a trivial superalgebra. In both cases D = 0,
a contradiction.

Assume that C1 	= 0. By [6, Theorem 3.5 (ii)] we have 0 = D(x1)xx1 −
x1xD(x1) for all x ∈ A and x1 ∈ A1. Suppose that x1 	= 0. Hence, D(x1) =
λ1x1 for some λ1 ∈ C1. Using (20) we obtain

(22) 0 = x1(λ1y1 − D(y1))

for all y1 ∈ A1. Note that this yields

0 = x1A0(λ1y1 − D(y1)).

Analogously we can show that

0 = (λ1y1 − D(y1))A0x1.

Therefore, D(y1) = λ1y1 for all y1 ∈ A1 by Lemma 1 (iii). If we write
x = x0 ∈ A0 and y = z = y1 ∈ A1 in (2), we get

0 = D(y1)[D(y1), x0]s = λ2
1y1[y1, x0]s .



equations related to superderivations 317

In particular, we have
0 = y1A0[y1, x0]s .

Since C1 	= 0 we also have

0 = y1λ1z1[y1, x0]s

for all z1 ∈ I1, where I is some essential ideal of A such that λ1I ⊆ A .
Note that this yields

0 = y1I1[y1, x0]s .

Consequently,
0 = y1I [y1, x0]s

for all x0 ∈ A0 and y1 ∈ A1. The primeness of A yields [A1, A0]s = 0 or
A1 = 0. Since D 	= 0 the last case can not occur. Therefore, A is commutative
(it can not be trivial, since D 	= 0) and we are done in this case.

Subcase 2.2. Suppose that D(A0) 	= 0 and D(D(A0)) = 0. Hence,

0 = D(D(x1y1)) = D(D(x1))y1 + x1D(D(y1))

for all x1, y1 ∈ A1. Multiplying this relation on the right side by z1D(x0) and
using (19) we arrive at 0 = x1D(D(y1))z1D(x0). Hence, D(D(y1))z1D(x0) =
0 by Lemma 1 (i). Again using (19) it follows that

D(D(y1))AD(x0) = 0.

Thus, D(A0) = 0 or D(D(A1)) = 0. Since D(A0) 	= 0 we have D(D(A )) =
0, as desired. The proof is completed.

The next example will show that there exist nontrivial noncommutative
superalgebras A and nonzero superderivations D : A → A of degree 1 such
that D(x)[D(x), x]s = 0 and [D(x), x]sD(x) = 0 for all x ∈ A and D2 = 0.

Example 1. Let A = M2(C) a prime superalgebra with Z2-grading

A0 =
[

C 0
0 C

]
and A1 =

[
0 C
C 0

]
.

Let us fix A1 =
[

0 1
0 0

]
and define a map D : A → A by

D(X) = [A1, X]s , X ∈ A .

Note that D is a superderivation of degree 1. It is also easy to verify that D

satisfies (1) and D2 = 0.
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Proof of Theorem 1. Note that D is a sum of a superderivation of degree 0
and a superderivation of degree 1. According to Proposition 1 and Proposition 2
the result follows.

Conjecture. In this paper we deal with prime superalgebras. We do not
know if the same result holds true for semiprime superalgebras. Below we give
a nontrivial example of a superderivation on a semiprime superalgebra which
satisfies the conjectures of our main theorem.

Example 2. Let p 	= q be be two prime numbers, A = M2(Zpq), and
consider A as a superalgebra with

A0 =
[

Zpq 0
0 Zpq

]
and A1 =

[
0 Zpq

Zpq 0

]
.

Let
A1 =

[
0 p

q 0

]
∈ A1.

Define a superderivation D : A → A by

D(X) = [A1, X]s , X ∈ H(A ).

It is easy to show that

D(X)[D(X), X]s = 0 and [D(X), X]sD(X) = 0

for all X ∈ H(A ). On the other hand, A is not commutative or a trivial
superalgebra.
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