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APPLICATION OF LOCALIZATION TO THE
MULTIVARIATE MOMENT PROBLEM

MURRAY MARSHALL∗

Abstract
It is explained how the localization technique introduced by the author in [19] leads to a useful
reformulation of the multivariate moment problem in terms of extension of positive semidefinite
linear functionals to positive semidefinite linear functionals on the localization of R[x] at p =∏n

i=1(1 + x2
i ) or p′ = ∏n−1

i=1 (1 + x2
i ). It is explained how this reformulation can be exploited

to prove new results concerning existence and uniqueness of the measure μ and density of C[x]
in L s (μ) and, at the same time, to give new proofs of old results of Fuglede [11], Nussbaum
[21], Petersen [22] and Schmüdgen [27], results which were proved previously using the theory
of strongly commuting self-adjoint operators on Hilbert space.

1. Introduction

For n ≥ 1, we denote the polynomial ring R[x1, . . . , xn] by R[x] for short. For
a linear map L : R[x] → R, we consider the set of positive Borel measures μ

on Rn such that L(f ) = ∫
f dμ ∀ f ∈ R[x]. The multivariate moment problem

is to understand this set of measures, for a given linear map L : R[x] → R. In
particular, one wants to know:

(i) When is this set non-empty?

(ii) In case it is non-empty, when is it a singleton set?

For α = (α1, . . . , αn) ∈ Nn, we denote the monomial x
α1
1 . . . xαn

n by xα for
short. The positive Borel measures μ that we are interested in have finite
moments, i.e.,

∫
xα dμ is a finite real number ∀ α ∈ Nn. If μ is any positive

Borel measure on Rn having finite moments then Lμ : R[x] → R defined by
Lμ(f ) = ∫

f dμ ∀ f ∈ R[x] is a well-defined linear map. This is clear.
For positive Borel measures μ, ν on Rn, each having finite moments, we

write μ ∼ ν to indicate that μ and ν have the same moments, i.e., Lμ = Lν .
We say μ is determinate if μ ∼ ν ⇒ μ = ν and indeterminate if this is not
the case.
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A linear map L : A → R, where A is an R-algebra, is said to be PSD
(positive semidefinite) if L(f 2) ≥ 0 ∀ f ∈ A.

∑
A2 denotes the set of all

(finite) sums of squares of elements of A. For a linear map L : R[x] → R, a
necessary condition for the set in (i) to be non-empty is that L is PSD.

The multivariate moment problem has also been considered in the more
general context of semigroup algebras [2], [6]. There is a one-to-one corres-
pondence between functions s : Nn → R and linear maps L : R[x] → R given
by L(xα) = s(α) for all α ∈ Nn, and L is PSD if and only if s is positive
definite in the sense of [2], [6].

In the 1-dimensional case the literature on the moment problem is extensive;
see [1] and [28]. In particular, one has the following result:

Theorem 1.1. For a linear map L : R[x] → R:

(1) There exists a positive Borel measure μ on R such that L = Lμ iff L is
PSD.

(2) The measure μ in (1) is determinate iff there exists a sequence Qk of
polynomials in C[x] such that Qk(i) = 1 and L(|Qk|2) → 0 as k → ∞.

Proof. See [1, Theorem 2.1.1] and [1, Theorem 2.5.1].

For a positive Borel measure μ on a locally compact Hausdorff space X

and a Borel measurable function f : X → C, define ‖f ‖s,μ := [
∫ |f |sdμ]1/s ,

and define

L s(μ) := {f : X → C | f is Borel measurable and ‖f ‖s,μ < ∞}.
The condition that there exists a sequence Qk of polynomials in C[x] such

that Qk(i) = 1 and
∫ |Qk|2dμ → 0 as k → ∞ is equivalent to the assertion

that C[x] is dense in L 2((1+x2)μ).1 It implies, in particular, that C[x] is dense
in L 2(μ). This is well-known. See Corollary 3.4 for a more general result.

For a PSD linear map L : R[x] → R, the Carleman condition

∞∑
i=1

1
2i
√

L(x2i )
= ∞

is a well-known sufficient condition for the measure μ satisfying L = Lμ

(which exists by Theorem 1.1(1)) to be unique. In fact the following holds:

Theorem 1.2. If the Carleman condition holds then C[x] is dense in L s(μ)

for all real s ≥ 1.

Proof. See [4, Théorème 3].

1 gμ denotes the measure ν satisfying ν(E) := ∫
E

g dμ.
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The Carleman condition holds if μ drops off sufficiently rapidly as x →
±∞, e.g., this holds ifμhas compact support or, more generally, if

∫
ea|x| dμ <

∞ for some real a > 0 [10, p. 80].
For a subset K of Rn, denote by Pos(K) the set of polynomials f ∈ R[x]

such that f ≥ 0 on K (i.e., f (a) ≥ 0 for all a ∈ K). The following general
result is known; see [12] and [13].

Theorem 1.3 (Haviland). For a linear map L : R[x] → R and a closed
subset K in Rn, there exists a positive Borel measure μ on K such that L = Lμ

iff L(f ) ≥ 0 holds for all f ∈ Pos(K).

For n = 1,
∑

R[x]2 = Pos(Rn). For n ≥ 2,
∑

R[x]2 is a proper subset of
Pos(Rn) [14] and the condition that L : R[x] → R is PSD is no longer sufficient
for the set in (i) to be non-empty, see [5], [26].

For n ≥ 2 the theory is not very well developed. See [27, Section 3] for open
problems. A variety of partial results are known; see [23] for a survey. Some
of these results are about the uniqueness of the measure, e.g., the results of
Fuglede [11], Petersen [22] and Putinar and Vasilescu [25]. There are results
about the density of C[x] in L s(μ), 1 ≤ s < ∞, both in the case n = 1
and in the case n ≥ 2 in [3], [4], [11] and [22]. There are also results about
the existence of the measure, by Devinatz [8], Eskin [9], Nussbaum [21],
Putinar and Schmüdgen [23], and Schmüdgen [27]. All these results, with the
exception of [25] and the 1-dimensional results, are proved in the framework
of unbounded operators on Hilbert space.

In [25] a different approach is taken which is based on the localization
method developed in [24], but the localization method developed in [24] is
still essentially a functional-analytic one, since, in the end, it is based on the
theory of strongly commuting self-adjoint operators.

In [19] (also see [17] and [18]) the localization method is developed in a
purely algebraic setting. First and foremost a Positivstellensatz is developed
(see Theorem 2.1 below) which is based on Jacobi’s representation theorem
[15]. There is also a refined version of this Positivstellensatz (see Theorem 4.1
below) which is based on a result for cylinders with compact cross-section,
established in [17] and [19], which is itself a corollary of Jacobi’s representa-
tion theorem. There is very little functional analysis in the approach taken in
[19], the one exception being a certain extension of Haviland’s theorem [19,
Theorem 3.1] which seems to be useful.

In preparing the present paper, the immediate goal was to exploit the loc-
alization method in [19] to give new algebraic proofs of the various partial
results referred to above. The proofs were to be simpler than the existing ones.
It was also hoped that this new way of looking at things would allow one to
prove new results which were stronger than those that were previously known.
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We leave it to the reader to decide how well these various goals have been
accomplished.

We refer the reader to [20] for a more comprehensive treatment of pos-
itive polynomials, sums of squares and the moment problem. See [20, The-
orem 5.4.4] for a simple proof of Jacobi’s representation theorem. The paper
[16] of Krivine, only recently rediscovered, is one of the earliest to bridge
the gap between the moment problem and semialgebraic geometry. See [16,
Théorème 12] for an early version of Jacobi’s result.

In Section 2, we recall two results from [19] (see Theorems 2.1 and 2.3)
and use Theorem 2.3 to give a new formulation of the multivariate moment
problem in terms of localizations (see Corollary 2.5). We use Corollary 2.5
to prove a uniqueness result (Corollary 2.7) which extends results of Fuglede
[11, Theorem, Section 7] and Petersen [22, Theorem 3]. In Section 3, we prove
two results concerning density of C[x] and C[x]p in L s(μ) (see Theorem 3.1
and Corollary 3.2), results which may be well-known but don’t seem to be
explicitly mentioned anywhere. We apply these results to obtain several co-
rollaries, including a new proof of [4, Théorème 1] (see Corollary 3.5) and a
strengthened version of [22, Proposition] (see Corollary 3.6). In Section 4, we
apply the cylinder results from [19, Section 5] to obtain a new strengthened ver-
sion of Haviland’s Theorem (see Theorem 4.5). We use Theorem 4.5 to derive
some non-trivial corollaries including a new proof of Nussbaum’s multivariate
Carleman result [21, Theorem 10] (see Theorem 4.10) and a new proof of a
generalization of the Nussbaum result due to Schmüdgen [27, Proposition 1]
(see Theorem 4.11). An interesting question that remains open is whether it
is possible to prove the related results of Devinatz [8] and Eskin [9] by the
method introduced in Section 4. The author was not able to do this, but, of
course, this does not mean that it cannot be done.

The author wishes to thank Jaka Cimprič for his useful comments and
suggestions concerning the paper, made during the author’s visit in Ljubljana,
in November 2011.

2. Reformulation of the problem

For A a commutative ring with 1 and p ∈ A, we denote by Ap the localization
of A at p, i.e.,

Ap :=
{

a

pk

∣∣∣∣ a ∈ A, k ≥ 0

}
.

The ring operations on Ap are defined in the standard way. If A is an R-algebra
then so is Ap. We are interested here in the case A = R[x]. The results in
[19] which we use are valid for various choices of p and various choices of
a quadratic module. We restrict our attention here to the quadratic module
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∑
R[x]2 of R[x] and its extension

∑
R[x]2

p to R[x]p, and we always take

p :=
n∏

i=1

(1 + x2
i ).

We recall the Positivstellensatz from [19].

Theorem 2.1. Suppose f ∈ R[x]p. The following are equivalent:

(1) f ≥ 0 on Rn.

(2) ∃ k ≥ 0 such that ∀ real ε > 0 f + εpk ∈ ∑
R[x]2

p.

Proof. See [19, Corollary 4.3].

Remark 2.2. (1) In the proof of Theorem 2.1 given in [19] one considers
the subalgebra B of R[x]p consisting of algebraically bounded elements, i.e.,

B :=
{
f ∈ R[x]p

∣∣∣ ∃k ∈ N such that k ± f ∈
∑

R[x]2
p

}
,

and the preordering M := B∩∑
R[x]2

p of B. M is an archimedean preordering
of B. Let

XM := {
α : B → R | α is a (unitary) ring homomorphism, α(M) ⊆ R≥0

}
,

define f̂ , for f ∈ B, by f̂ (α) = α(f ), and give XM the weakest topology such
that each f̂ , f ∈ B, is continuous. Since M is archimedean, XM is compact.
Rn is naturally embedded in XM via a �→ αa where αa(f ) := f (a). XM\Rn

consists of those α ∈ XM such that α( 1
p
) = 0. In particular, XM\Rn is closed

in XM (so Rn is open in XM ). All this is explained in detail in [19].
(2) Fix f ∈ R[x]p. Write f in the form f = g

pm , g ∈ R[x], m ≥ 0. Say
g = ∑

gαxα , gα ∈ R, α = (α1, . . . , αn) ∈ Nn. We claim that the following
are equivalent:

(i) f ∈ B.

(ii) f is geometrically bounded, i.e., ∃ k ∈ N such that |f (a)| ≤ k ∀ a ∈ Rn.

(iii) ∀α ∈ Nn, gα �= 0 ⇒ αj ≤ 2m, j = 1, . . . , n.

(iv) f ∈ R
[

1
1+x2

j

,
xj

1+x2
j

∣∣ j = 1, . . . , n
]

Proof. Since k ± f ∈ ∑
R[x]2

p ⇒ |f (x)| ≤ k ∀ x ∈ Rn, we see that
(i) ⇒ (ii). Suppose now that (iii) fails, i.e., ∃ α such that gα �= 0 but αj >

2m for some j . Reindexing, we can assume j = 1. Then g = ∑k
i=0 aix

i
1,

with k > 2m, ai ∈ R[x2, . . . , xn], ak �= 0. Fixing x2, . . . , xn ∈ R so that
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ak(x2, . . . , xn) �= 0 and letting x1 → ∞, we obtain |f (x)| → ∞, so (ii) fails.
This proves (ii) ⇒ (iii). Suppose now that (iii) holds. Thus

f =
∑

α

hα

n∏
j=1

x
αj

j

(1 + x2
j )m

with αj ≤ 2m for each j . If αj ≤ m write

x
αj

j

(1 + x2
j )m

=
[

xj

1 + x2
j

]αj
[

1

1 + x2
j

]m−αj

.

If m < αj ≤ 2m write

x
αj

j

(1 + x2
j )m

=
[

xj

1 + x2
j

]tj
[

1 − 1

1 + x2
j

]uj

,

where tj + 2uj = αj , tj + uj = m. This proves that (iii) ⇒ (iv). Finally, since
1 ± 1

1+x2
j

and 1 ± xj

1+x2
j

are sum of squares in R[x]p, 1
1+x2

j

and xj

1+x2
j

belong to

B, so (iv) ⇒ (i).

(3) One can also check that M = ∑
B2.

Proof. Let f ∈ M , say f = ∑�
k=1[ gk

pm ]2, gk ∈ R[x], k = 1, . . . , �. The

degree of
∑�

k=1 g2
k in the variable xj is equal to the maximum of the degrees

of the g2
k in the variable xj , k = 1, . . . , �. Since f ∈ B, the implication

(i) ⇒ (iii) in (2) shows the degree of
∑�

k=1 g2
k in xj is ≤ 4m. It follows that

degxj
(gk) ≤ 2m, j = 1, . . . , n, k = 1, . . . , � so, by the implication (iii) ⇒ (i)

in (2), gk

pm ∈ B.

(4) It is a consequence of (2) and (3) that XM is identified with the real
variety consisting of all points (y1, z1, . . . , yn, zn) ∈ R2n satisfying

(
yj − 1

2

)2

+ z2
j = 1

4
, j = 1, . . . , n,

(an n-torus), B is identified with the coordinate ring of this variety, and the
embedding Rn ↪→ XM is identified with the n-fold stereographic projection

(x1, . . . , xn) �→
(

1

1 + x2
1

,
x1

1 + x2
1

, . . . ,
1

1 + x2
n

,
xn

1 + x2
n

)
.

(5)Analogs of (2), (3) and (4) for the localization of R[x] at p = 1+∑n
i=1 x2

i

are established in [19, Example 8.1]. The real variety in this case is theVeronese
variety, see [19, Example 8.1] and [24, Section 3].
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(6) The non-trivial implication in the proof of Theorem 2.1 is (1) ⇒ (2). k

is chosen so that f

pk ∈ B. From (4) one sees that Rn is dense in XM , so f

pk is
non-negative on all of XM (not just on Rn). Jacobi’s representation theorem
[15] implies that for any real ε > 0, f

pk + ε ∈ M . Multiplying by pk yields
(2).

Theorem 2.3. If L : R[x]p → R is a PSD linear map there exists a unique
positive Borel measure μ on Rn such that L(f ) = ∫

f dμ for all f ∈ R[x]p.

Proof. See [19, Corollary 4.4]. Let f ∈ R[x]p, f ≥ 0 on Rn. By The-
orem 2.1 ∃ k ≥ 0 such that ∀ real ε > 0 f + εpk ∈ ∑

R[x]2
p. Thus

L(f + εpk) ≥ 0. Letting ε → 0, we see that L(f ) ≥ 0. By the extension
of Haviland’s Theorem proved in [19, Theorem 3.1], there exists a positive
Borel measure μ on Rn such that L(f ) = ∫

f dμ for all f ∈ R[x]p.2 To prove
uniqueness of μ, let φ : Rn → R be any continuous function with compact sup-
port. We use the notation of Remark 2.2(1). Extend φ to XM by setting φ = 0
on XM\Rn. By the Stone-Weierstrass approximation theorem ∃ a sequence
fk ∈ B such that |f̂k − φ| ≤ 1

k
pointwise on XM . This implies, in particular,

that | ∫ (fk − φ) dμ| ≤ 1
k
μ(Rn), so

∫
φ dμ = limk→∞ L(fk). Uniqueness of

μ follows now, by the Riesz representation theorem.

Remark 2.4. The measure μ in Theorem 2.3 has finite moments. Con-
versely, if μ is any positive Borel measure on Rn having finite moments, then
L : R[x]p → R defined by L(f ) = ∫

f dμ ∀ f ∈ R[x]p is a well-defined map
which is linear and PSD. This is clear.

Corollary 2.5. For any linear map L : R[x] → R, the set of positive Borel
measures μ on Rn such that L = Lμ is in natural one-to-one correspondence
with the set of PSD linear maps L′ : R[x]p → R extending L.

Proof. If μ is a positive Borel measure on Rn such that L = Lμ, the
corresponding extension of L to a PSD linear map L′ : R[x]p → R is defined
by L′(f ) = ∫

f dμ. The correspondence μ �→ L′ has the desired properties
by Theorem 2.3.

Remark 2.6. Corollary 2.5 allows one to reformulate the multivariate mo-
ment problem as follows: The multivariate moment problem is to understand
the set of extensions of L to a PSD linear map L′ : R[x]p → R, for a given
linear map L : R[x] → R. In particular, one wants to know:

(i) When is this set non-empty?

(ii) In case it is non-empty, when is it a singleton set?

2 Alternatively, existence of μ can be deduced by applying Haviland’s theorem to L : R[x, y] →
R defined by L(f (x, y)) = L

(
f

(
x, 1

p(x)

))
and K ⊆ Rn+1 defined by K = {(a, 1

p(a)

) | a ∈ Rn}.
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Our next result explains how one half of Theorem 1.1(2) is valid for arbitrary
n.

Corollary 2.7. Suppose L : R[x] → R is linear and, for each j ∈
{1, . . . , n}, there exists a sequence pjk ∈ C[x] such that L(|1−(xj −i)pjk|2) →
0 as k → ∞. Then there is at most one positive Borel measure μ on Rn such
that L = Lμ.

Proof. Suppose μ and ν are positive Borel measures on Rn such that L =
Lμ = Lν . In view of Theorem 2.3 it suffices to show that

∫
f dμ = ∫

f dν ∀
f ∈ C[x]p, where p := ∏n

j=1(1 + x2
j ). Observe that 1 + x2

j = (xj − i)(xj + i)

so 1
xj −i

, 1
xj +i

are elements of C[x]p. The proof is by induction on the number
of factors of the form xj ± i appearing in the denominator of f . Suppose
xj − i appears in the denominator of f . By assumption ∃ pjk ∈ C[x] so that
L(|Qjk|2) → 0 as k → ∞ where Qjk := 1 − (xj − i)pjk . By induction,

∫
(xj − i)pjkf dμ =

∫
(xj − i)pjkf dν.

Applying the Cauchy-Schwartz inequality,
∣∣∣∣
∫

Qjkf dμ

∣∣∣∣ ≤ L(|Qjk|2)1/2

[∫
|f |2dμ

]1/2

→ 0 as k → ∞,

so ∫
(xj − i)pjkf dμ →

∫
f dμ as k → ∞.

Similarly,
∣∣∣∣
∫

Qjkf dν

∣∣∣∣ ≤ L(|Qjk|2)1/2

[∫
|f |2dν

]1/2

→ 0 as k → ∞,

so ∫
(xj − i)pjkf dν →

∫
f dν as k → ∞.

It follows that
∫

f dμ = ∫
f dν. The case where xj + i appears in the denom-

inator of f is dealt with similarly, replacing Qjk by Qjk .

Remark 2.8. (1) In [22, Theorem 3] Petersen proves that a positive Borel
measure μ on Rn with finite moments is determinate if each of the projection
measures πj (μ), j = 1, . . . , n is determinate. Since Lπj (μ) = Lμ|R[xj ], The-
orem 1.1(2) implies that πj (μ) is determinate iff ∃ a sequence pjk in C[xj ] such
that

∫ |1 − (xj − i)pjk|2dμ → 0 as k → ∞. In this way [22, Theorem 3] can
be viewed as a special case of Corollary 2.7.
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(2) In [11, Section 7] Fuglede proves that a positive Borel measure μ on
Rn with finite moments is determinate if C[x] is dense in L 2((1 + x2

j )μ) for
each j = 1, . . . , n. Since C[x] dense in L 2((1 + x2

j )μ) ⇒ 1
xj −i

belongs to

the closure of C[x] in L 2((1 + x2
j )μ) ⇔ ∃ a sequence pjk ∈ C[x] such that∫ |1 − (xj − i)pjk)|2dμ → 0 as k → ∞, Fuglede’s result is a special case of

Corollary 2.7.

3. Density results

We fix a positive Borel measure μ on Rn having finite moments.

Theorem 3.1. For any 1 ≤ s < ∞, C[x]p is dense in L s(μ), equivalently,
R[x]p is dense in the real part of L s(μ).

Proof. It suffices to show that the step functions
∑m

j=1 ajχAj
, aj ∈ C, Aj ⊆

Rn a Borel set, belong to the closure of C[x]p. Using the triangle inequality we
are reduced further to the case m = 1, a1 = 1. Let A ⊆ Rn be a Borel set.
Choose K compact, U open such that K ⊆ A ⊆ U , μ(U\K) < ε. We make
use of the terminology introduced in Remark 2.2(1). By Urysohn’s lemma there
exists a continuous function φ : XM → R such that 0 ≤ φ ≤ 1 on XM , φ = 1
on K , φ = 0 on XM\U . Extend μ to a positive Borel measure μ′ on XM defined
by μ′(E) := μ(E ∩Rn). Then ‖χA −φ‖s,μ′ ≤ ε1/s . Use the Stone-Weierstrass
approximation theorem to get f ∈ B such that ‖φ − f̂ ‖∞ < ε, where ‖·‖∞
denotes the sup-norm. Then ‖φ − f̂ ‖s,μ′ ≤ εμ(Rn)1/s . Putting these things
together yields ‖χA −f ‖s,μ = ‖χA − f̂ ‖s,μ′ ≤ ‖χA −φ‖s,μ′ + ‖φ − f̂ ‖s,μ′ ≤
ε1/s + εμ(Rn)1/s .

Corollary 3.2. For 1 ≤ s < ∞, the following are equivalent:

(1) C[x] is dense in L s(μ).

(2) C[x] is dense in C[x]p in the topology induced by the norm ‖·‖s,μ.

Suppose now that n = 1, so μ is a positive Borel measure on R having finite
moments, C[x] = C[x] and p = 1 + x2. Observe that 1 + x2 = (x − i)(x + i)

so 1
x−i

, 1
x+i

are elements of C[x]1+x2 .

Corollary 3.3. For 1 ≤ s < ∞, the following are equivalent:

(1) C[x] is dense in L s(μ).

(2) ∃ a sequence qk ∈ C[x] such that
∥∥qk − 1

x−i

∥∥
s,μ

→ 0 as k → ∞.

(3) ∃ a sequence Qk ∈ C[x] such that Qk(i) = 1 and
∥∥ Qk

x−i

∥∥
s,μ

→ 0 as
k → ∞.

Proof. Clearly (1) ⇒ (2) and (2) ⇔ (3), so it remains to show (2) ⇒ (1).
In view of Corollary 3.2 it suffices to show C[x] is dense in C[x]1+x2 . Denote
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by C[x] the closure of C[x] in C[x]1+x2 . By (2), 1
x−i

∈ C[x]. Conjugating,
1

x+i
∈ C[x]. Using the identities

1

1 + x2
= 1

2i

[
1

x − i
− 1

x + i

]
and

x

1 + x2
= 1

2

[
1

x − i
+ 1

x + i

]
,

and the division algorithm, we see that f (x)

1+x2 ∈ C[x], for each f (x) ∈ C[x].

Fix f (x) ∈ C[x] and choose gk(x) ∈ C[x] so that ‖gk(x) − f (x)

1+x2 ‖s,μ → 0 as
k → ∞. Using the fact that 1 + x2 ≥ 1 on R, we see that for each � ≥ 1,∥∥ gk(x)

(1+x2)�
− f (x)

(1+x2)�+1

∥∥
s,μ

→ 0 as k → ∞. If follows by induction on � that
f (x)

(1+x2)�
∈ C[x] for all � ≥ 1.

Corollary 3.4. For 1 ≤ s < ∞, consider the conditions:

(1) ∃ a sequence Qk in C[x] such that Qk(i) = 1 and ‖Qk‖s,μ → 0 as
k → ∞.

(2) C[x] is dense in L s((1 + x2)s/2μ).

(3) C[x] is dense in L s(μ).

(4) ∃ a sequence Qk in C[x] such that Qk(i) = 1 and, ∀ 1 ≤ s ′ < s,
‖Qk‖s ′,μ → 0 as k → ∞.

Then (1) ⇔ (2) ⇒ (3) ⇒ (4).

Proof. (1) ⇔ (2): Apply Corollary 3.3 to the measure (1 + x2)s/2μ. (2) ⇒
(3): Since 1 + x2 ≥ 1 this is clear. (3) ⇒ (4): By Corollary 3.3 ∃ Qk ∈ C[x]
such that Qk(i) = 1 and

∥∥ Qk

x−i

∥∥
s,μ

→ 0 as k → ∞. For 1 ≤ s ′ < s an easy
application of the Hölder inequality yields:

‖Qk‖s ′,μ =
[∫

|Qk|s ′
dμ

]1/s ′

=
[∫ ∣∣∣∣ Qk

x − i

∣∣∣∣
s ′

|x − i|s ′
dμ

]1/s ′

≤
∥∥∥∥ Qk

x − i

∥∥∥∥
s,μ

· ‖x − i‖ ss′
s−s′ ,μ

→ 0 as k → ∞.

Corollary 3.5.

sup{s | C[x] is dense in L s(μ)}
= sup{s | ∃Qk ∈ C[x] such that Qk(i) = 1 and lim

k→∞ ‖Qk‖s,μ = 0}.

Proof. Immediate from Corollary 3.4. See [4, Théorème 1] for another
proof.
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We remark that a certain weak variant of Corollary 3.3 holds for n ≥ 2. The
following result extends [22, Proposition].

Corollary 3.6. Suppose 1 < s < ∞. Suppose for each j = 1, . . . , n ∃
qjk ∈ C[x] such that

∥∥qjk − 1
xj −i

∥∥
s,μ

→ 0 as k → ∞. Then C[x] is dense in

L s ′
(μ) for each 1 ≤ s ′ < s.

Proof. Arguing as in the proof of Corollary 3.3, we see that C[xj ]1+x2
j

is contained in the closure of C[x] with respect to the norm ‖·‖s,μ, for j =
1, . . . , n. Every element of C[x]p is expressible as a sum of products of the
form f1 · · · fn, fj ∈ C[xj ]1+x2

j
, j = 1, . . . , n. Choosing gjk ∈ C[x] so that

‖fj − gjk‖s,μ → 0 as k → ∞, writing

f1 · · · fn − g1k · · · gnk = (f1 − g1k)f2 · · · fn + (f2 − g2k)g1kf3 · · · fn

+ · · · + (fn − gnk)g1k · · · gn−1k,

and applying Hölder’s inequality to each term, we see that

‖f1 · · · fn − g1k · · · gnk‖s ′,μ → 0 as k → ∞,

for each 1 ≤ s ′ < s.

We also recall the following result of Fuglede; see [11, Sections 7, 8 and
10]:

Corollary 3.7. Consider the following conditions:

(1) C[x] is dense in L s(μ) for some 2 < s < ∞.

(2) C[x] is dense in L 2((1 + x2
1 + . . . + x2

n)μ).

(3) C[x] is dense in L 2((1 + x2
j )μ) for j = 1, . . . , n.

(4) μ is determinate.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4).

Proof. (1) ⇒ (2). Let f ∈ C[x]p and choose gk ∈ C[x] so that ‖f −
gk‖s,μ → 0 as k → ∞. By the Hölder inequality,

‖f − gk‖2,(1+∑
x2

t )μ =
[∫

|f − gk|2
(

1 +
∑

x2
t

)
dμ

]1/2

≤ ‖f − gk‖s,μ ·
∥∥∥∥
√

1 +
∑

x2
t

∥∥∥∥
2s

s−2 ,μ

→ 0

as k → ∞.
(2) ⇒ (3). Follows from the fact that 1 + x2

j ≤ 1 + x2
1 + · · · + x2

n .
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(3) ⇒ (4). As explained already in Remark 2.8(2), this follows from Corol-
lary 2.7.

Remark 3.8. Fuglede defines a positive Borel measure μ on Rn to be ul-
tradeterminate if condition (2) of Corollary 3.7 holds and strongly determinate
if condition (3) of Corollary 3.7 holds. Examples of Schmüdgen in [27, Sec-
tion 1] show that conditions (2), (3) and (4) of Corollary 3.7 are not equivalent
if n ≥ 2. Examples of Berg and Thill in [7] show that μ determinate does not
imply C[x] is dense in L 2(μ) if n ≥ 2.

4. Extendibility results

In this section we apply the result on cylinders from [19, Section 5]. Let

p′ :=
n−1∏
i=1

(1 + x2
i ).

Note: If n = 1 then p′ = 1. Observe that R[x]p′ = R[x ′]p′ [xn] (the polyno-
mial ring in the single variable xn with coefficients in R[x ′]p′ ), where x ′ :=
(x1, . . . , xn−1).

Theorem 4.1. Suppose f ∈ R[x]p′ . The following are equivalent:

(1) f ≥ 0 on Rn.

(2) ∃ k, � ≥ 0 such that ∀ real ε > 0 f + εp′k(1 + x2
n)

� ∈ ∑
R[x]2

p′ .

Proof. See [19, Corollary 5.3].

Remark 4.2. (1) The difference between Theorem 4.1 and Theorem 2.1
is that in Theorem 4.1 we do not need to invert as much: R[x]p′ is a proper
subalgebra of R[x]p.

(2) In the proof of Theorem 4.1 given in [19] one considers the subalgebra
B ′ of R[x ′]p′ consisting of algebraically bounded elements, i.e.,

B ′ :=
{
f ∈ R[x ′]p′

∣∣∣ ∃k ∈ N such that k ± f ∈
∑

R[x ′]2
p′

}
,

and the preordering N := B ′[xn] ∩ ∑
R[x]2

p′ of B ′[xn]. Let

XN := { α : B ′[xn] → R | α is a ring homomorphism, α(N) ⊆ R≥0 },
define f̂ , for f ∈ B ′[xn], by f̂ (α) = α(f ), and give XN the weakest topology
such that each f̂ , f ∈ B ′[xn], is continuous. Since M ′ := N ∩ B ′ is an
archimedean preordering of B ′, XN = XM ′ × R is a cylinder with compact
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cross-section. Rn is naturally embedded in XN via a �→ αa where αa(f ) :=
f (a). All this is explained in detail in [19].

(3) Concrete descriptions of B ′ and M ′ are provided by (2) and (3) of
Remark 2.2. Using these descriptions, we see that XN is identified with the real
variety consisting of all points (y1, z1, . . . , yn−1, zn−1, xn) ∈ R2n−1 satisfying

(
yj − 1

2

)2

+ z2
j = 1

4
, j = 1, . . . , n − 1,

B ′[xn] is identified with the coordinate ring of this variety and the embedding
Rn ↪→ XN is identified with the map

(x1, . . . , xn) �→
(

1

1 + x2
1

,
x1

1 + x2
1

, . . . ,
1

1 + x2
n−1

,
xn−1

1 + x2
n−1

, xn

)
.

(4) The non-trivial implication in the proof of Theorem 4.1 is (1) ⇒ (2). k

is chosen so that f

p′k ∈ B ′[xn]. From (3) one sees that Rn is dense in XN , so
f

p′k is non-negative on all of XN (not just on Rn). By [19, Theorem 5.1] there

exists an integer � ≥ 0 such that for any real ε > 0, f

p′k + ε(1 + x2
n)

� ∈ N .

Multiplying by p′k yields (2).

Theorem 4.3. If L : R[x]p′ → R is a PSD linear map there exists a positive
Borel measure μ on Rn such that L(f ) = ∫

f dμ for all f ∈ R[x]p′ .

Proof. Argue as in the proof of Theorem 2.3 but use Theorem 4.1 now
instead of Theorem 2.1.

Remark 4.4. (1) There is no claim in Theorem 4.3 that the measure μ

(equivalently, the extension of L to a PSD linear map from R[x]p to R) is
unique. In fact, it is not unique in general. (2) A sufficient condition for the
measure μ to be unique is that there exists a sequence qk in R[x]p′ such that
L(|1 − (xn − i)qk|2) → 0 as k → ∞. The proof of this fact is similar to the
proof of Corollary 2.7. (3) If n = 1 this sufficient condition is also necessary,
by Theorem 1.1(2).

Theorem 4.5. For a linear map L : R[x] → R, the following are equivalent:

(1) There exists a positive Borel measure μ on Rn such that L = Lμ.

(2) L extends to a PSD linear map L : R[x]p′ → R.

(3) L ≥ 0 on
∑

R[x]2
p′ ∩ R[x].

(4) For all m ≥ 0, p′mf ∈ ∑
R[x]2 ⇒ L(f ) ≥ 0.

Proof. (1) ⇒ (2). Extend L to R[x]p′ in the obvious way, i.e., L(f ) =∫
f dμ for all f ∈ R[x]p′ .
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(2) ⇒ (3). L ≥ 0 on
∑

R[x]2
p′ so L ≥ 0 on

∑
R[x]2

p′ ∩ R[x].

(3) ⇒ (4). Suppose that f ∈ R[x], p′mf ∈ ∑
R[x]2. Then f = p′mf

p′m =
( 1

p′ )
2m(p′m)(p′mf ) ∈ ∑

R[x]2
p′ , so L(f ) ≥ 0.

(4) ⇒ (1). Suppose f ∈ R[x], f ≥ 0 on Rn. By Theorem 4.1, there exist
integers k, � ≥ 0 such that, for all ε > 0, f + εp′k(1 + x2

n)
� ∈ ∑

R[x]2
p′ , so

p′2m
(f + εp′k(1 + x2

n)
�) ∈ ∑

R[x]2, for some m ≥ 0. By (4) this implies
L(f + εp′k(1 + x2

n)
�) ≥ 0. Since this is valid for any ε > 0, this implies

L(f ) ≥ 0. Thus (1) follows, by Haviland’s Theorem 1.3.

Remark 4.6. (1) Theorem 4.5 strengthens Haviland’s Theorem. Instead
of having to check f ≥ 0 on Rn ⇒ L(f ) ≥ 0, one only has to check that
p′mf ∈ ∑

R[x]2 ⇒ L(f ) ≥ 0. (2) Observe that if n = 1 then p′ = 1, so
Theorem 4.5 coincides with Theorem 1.1(1) in this case. (3) There is also a
weak version of Theorem 4.5, obtained by replacing p′ by p. The proof is the
same except that Theorem 4.1 is replaced now by Theorem 2.1.

We turn our attention to applications of the implication (4) ⇒ (1) of The-
orem 4.5.

Corollary 4.7. If L : R[x] → R is a linear map which is PSD and, for
each f ∈ R[x] and each j ∈ {1, . . . , n − 1},
(4.1) L1(q) := L(q(1 + x2

j )f ) is PSD ⇒ L2(q) := L(qf ) is PSD,

then L = Lμ for some positive Borel measure μ on Rn.

Proof. We show condition (4) of Theorem 4.5 holds. Suppose p′mf ∈∑
R[x]2. Then L′(q) := L(qp′mf ) is PSD. Applying (4.1) repeatedly, we

deduce that L′′(q) := L(qf ) is PSD. In particular, L(f ) = L′′(1) ≥ 0.

Corollary 4.8. If L : R[x] → R is a linear map which is PSD and, for
each g ∈ R[x] and each j ∈ {1, . . . , n − 1},
(4.2) ∃ pk = pgjk ∈ C[x] such that L(g − (1 + x2

j )pkpkg) → 0

as k → ∞, then L = Lμ for some positive Borel measure μ on Rn.

Proof. Apply (4.2) with g = hhf to deduce that the hypothesis of Corol-
lary 4.7 holds.

Theorem 4.9. Suppose L : R[x] → R is linear and PSD and, for each
j = 1, . . . , n − 1,

(4.3) ∃ pk = pjk ∈ C[x] such that L(|1 − (xj − i)pk|4) → 0
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as k → ∞. Then there exists a positive Borel measure μ on Rn such that L =
Lμ. If condition (4.3) holds also for j = n then the measure is determinate.

Proof. Fix g ∈ R[x], j ∈ {1, . . . , n − 1}. Set Qk = 1 − (xj − i)pk , so

g − (1 + x2
j )pkpkg = g − (1 − Qk)(1 − Qk)g = Qkg + Qkg − |Qk|2g.

Extending L to C[x] in the obvious way, and applying the Cauchy-Schwartz
inequality to the inner product on C[x] defined by 〈f, g〉 := L(f g), we see
that

|L(g − (1 + x2
j )pkpkg)|

≤ |L(Qkg)| + |L(Qkg)| + |L(|Qk|2g)|
≤ 2[L(|Qk|2)]1/2[L(g2)]1/2 + |L(|Qk|2g)|
≤ 2[L(|Qk|4)]1/4[L(1)]1/4[L(g2)]1/2 + [L(|Qk|4)]1/2[L(g2)]1/2 → 0

as k → ∞.
The first assertion follows from this, by Corollary 4.8. Since

L(|1 − (xj − i)pk|2) ≤ [L(|1 − (xj − i)pk|4)]1/2[L(1)]1/2 → 0

as k → ∞, the second assertion is immediate, by Corollary 2.7.

Combining Theorem 4.9 with Theorem 1.2 yields the following result of
Nussbaum [21, Theorem 10]:

Theorem 4.10. Suppose L : R[x] → R is linear and PSD and the Carleman
condition

(4.4)

∞∑
i=1

1

2i

√
L(x2i

j )

= ∞

holds for j = 1, . . . , n − 1. Then there exists a positive Borel measure μ on
Rn such that L = Lμ. If condition (4.4) holds also for j = n then the measure
is determinate.

Proof. Let μj be a positive Borel measure on R such that Lμj
= L|R[xj ].

According toTheorem 1.2, condition (4.4) implies that C[xj ] is dense in L s(μj )

for 1 ≤ s < ∞. In particular, C[xj ] is dense in L 4+ε(μj ) for ε > 0, which
implies, by Corollary 3.4, that ∃ pk = pjk ∈ C[xj ] such that L(|1 − (xj −
i)pk|4) → 0 as k → ∞. Now apply Theorem 4.9.
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We conclude by mentioning another result, similar to Theorem 4.9, which,
like Theorem 4.9, is of sufficient strength to imply Theorem 4.10. See Schmüd-
gen [27, Proposition 1] for a different proof of this result.3

Theorem 4.11. Suppose L : R[x] → R is linear and PSD. Fix a positive
Borel measure μj on R such that L|R[xj ] = Lμj

and suppose, for each j =
1, . . . , n − 1, C[xj ] is dense in L 4(μj ), i.e.,

(4.5) ∃ Qk = Qk,j ∈ C[xj ] such that Qk(i) = 1 and

∥∥∥∥ Qk

xj − i

∥∥∥∥
4,uj

→ 0

as k → ∞. Then there exists a positive Borel measure μ on Rn such that L =
Lμ. If condition (4.5) holds also for j = n then the measure is determinate.

Proof. By the proof of Theorem 4.9 it suffices to show, for each g ∈ R[x]
and for each j , that condition (4.5) implies L(QkQkg) → 0 as k → ∞. Let
x := xj , μ := μj , and define measures μ′ and μ′′ on R by

μ′ = μ

(1 + x2)2
, μ′′ = (1 + x2)2μ.

Claim 1. For each q ∈ C[x] and each � ∈ {0, 1},
|L(x − i)2�qg)| ≤ C · [L(qq)]1/2

where
C = max

{
[L(g2)]1/2, [L((x − i)2(x + i)2g2)]1/2

}
.

This is an immediate consequence of the Cauchy-Schwartz inequality.
Claim 2. The measure μ′′ is determinate. This follows from

∫
QkQk dμ′′ =

∫
QkQk(1 + x2)2dμ =

∫
QkQk

1 + x2
(1 + x2)3dμ

≤
[∫ [

QkQk

1 + x2

]2

dμ

]1/2 [∫
(1 + x2)6dμ

]1/2

→ 0

as k → ∞.
Claim 3. |L(pg)| ≤ C · [∫ |p|2dμ′]1/2

for each p ∈ C[x]. From Claim 2
and Corollary 3.4 it follows that C[x] is dense in L 2(μ′′) so ∃ a sequence

3 According to Fuglede [11, p. 62], Theorem 4.11 is an unpublished result of J. P. R. Christensen,
1981.
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qk in C[x] such that qk → p

(x−i)2 in L 2(μ′′). Applying Claim 1 with � = 0,

q = (x − i)2qk − p and noting that

[L(qq)]1/2 =
[∫

|q|2dμ

]1/2

=
[∫ ∣∣∣∣qk − p

(x − i)2

∣∣∣∣
2

dμ′′
]1/2

→ 0

as k → ∞, we see that L((x − i)2qkg) → L(pg) as k → ∞. Because

∫ ∣∣∣∣qk − p

(x − i)2

∣∣∣∣
2

dμ ≤
∫ ∣∣∣∣qk − p

(x − i)2

∣∣∣∣
2

dμ′′

(using the fact that 1 + x2 ≥ 1 on R), we see that
∫ ∣∣qk − p

(x−i)2

∣∣2
dμ → 0 as

k → ∞. Then, applying Claim 1 again, with � = 1, q = qk , we see that

|L((x − i)2qkg)| ≤ C · [
L(qkqk)

]1/2 = C ·
[∫

|qk|2dμ

]1/2

→ C ·
[∫ ∣∣∣∣ p

(x − i)2

∣∣∣∣
2

dμ

]1/2

= C ·
[∫

|p|2dμ′
]1/2

as k → ∞.

Putting these things together, we see that |L(pg)| ≤ C · [∫ |p|2dμ′]1/2
.

Applying Claim 3 with p = QkQk , we see that |L(QkQkg)| ≤ C ·[∫ |QkQk|2dμ′]1/2
, so |L(QkQkg)| → 0 as k → ∞.
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