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A HOLOMORPHIC CHARACTERIZATION
OF OPERATOR ALGEBRAS

MATTHEW NEAL and BERNARD RUSSO

Abstract
A necessary and sufficient condition for an operator space to support a multiplication making it
completely isometric and isomorphic to a unital operator algebra is proved. The condition involves
only the holomorphic structure of the Banach spaces underlying the operator space.

1. Introduction and background

1.1. Introduction

If A is an operator algebra, that is, an associative subalgebra of B(H), then
Mn(A) ⊂ Mn(B(H)) may be viewed as a subalgebra of B(⊕n

1H) and its
multiplication is contractive, that is, ‖XY‖ ≤ ‖X‖‖Y‖ for X, Y ∈ Mn(A),
where XY denotes the matrix or operator product of X and Y . Conversely, if
an operator space A (i.e., a closed linear subspace of B(H)) is also a unital
(not necessarily associative) Banach algebra with respect to a product x · y
which is completely contractive in the above sense, then according to [6], it
is completely isometric via an algebraic isomorphism to an operator algebra
(i.e., an associative subalgebra of some B(K)).

Our main result (Theorem 4.8) drops the algebra assumption on A in favor
of a holomorphic assumption. Using only natural conditions on holomorphic
vector fields on Banach spaces, we are able to construct an algebra product
on A which is completely contractive and unital, so that the result of [6] can
be applied. Thus we give a holomorphic characterization of operator spaces
which are completely isometric to operator algebras. This paper is a compan-
ion to [23] where the authors gave holomorphic characterizations of operator
spaces that are completely isometric to a C∗-algebra or to a ternary ring of
operators (TRO). (Holomorphic characterizations of Banach spaces and of
Banach algebras which are isometric to a C∗-algebra were given in [29] and
[13], respectively.)

The symmetric part S(X) of a Banach space X is the orbit of the origin
under the set of all complete holomorphic vector fields (see subsection 1.2).
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This holomorphic structure gives rise to a ternary partial triple product {·, ·, ·}X
on the Banach space X:

{·, ·, ·}X : X × S(X)×X → X.

We use this ternary product to construct our binary product.
Applications of the symmetric part of a Banach space appeared in [2],

[3] where this idea is used to describe the algebraic properties of isometries
of certain operator algebras and in [4] to characterize Hilbert spaces. The
method was used for the first time in [22] to show that Banach spaces with
holomorphically equivalent unit balls are linearly isometric (see [1] for a more
detailed exposition of [22]).

Our technique is to use a variety of elementary isometries on n by nmatrices
over A (most of the time, n = 2) and to exploit the fact that isometries of
arbitrary Banach spaces preserve the partial triple product. (See the proofs
of Propositions 2.1 and 4.7 and of Lemmas 3.1, 3.3, 3.6, 3.8, 4.1, and 4.3.)
The first occurrence of this technique appears in section 2, where for each n a
contractive projectionPn onM∞(A) (= the closure of the infinite matrices with
only finitely many non-zero entries fromA, see section 2) with rangeMn(A) is
constructed as a convex combination of isometries. We define the completely
symmetric part ofA to be the intersection ofA (embedded inM∞(A)) with the
symmetric part ofM∞(A) and show it is the image under P1 of the symmetric
part of M∞(A). It follows from [23] that the completely symmetric part of A
is completely isometric to a TRO, which is a crucial tool in our work.

Arazy and Solel [3, Cor. 2.9(i)] showed that if A is a subalgebra of B(H)
containing the identity operator I , then its symmetric part is the maximal
C∗-subalgebraA∩A∗ ofA. For the same reason, the symmetric part of the op-
erator algebra M∞(A) is the maximal C∗-subalgebra of B(⊕∞

1 H) contained
in M∞(A), namely M∞(A) ∩ (M∞(A))∗, which shows that the completely
symmetric part of A coincides with its symmetric part A ∩ A∗, and therefore
contains I . Moreover, by [3, Cor. 2.9(ii)], the partial triple product in Mn(A)

is the restriction of the triple product (xy∗z+zy∗x)/2 onMn(B(H)). Thus the
conditions (i) and (ii) in our main theorem (Theorem 4.8) which we restate here,
hold whenA is an operator algebra. In this statement, {·, ·, ·}A and {·, ·, ·}Mn(A)

denote the partial triple products on A and Mn(A) respectively. By Corol-
lary 2.4, v ∈ S(A) and by Proposition 2.1, V = diag(v, . . . , v) ∈ S(Mn(A)),
so these partial triple products are defined.

Theorem. An operator spaceA is completely isometric to a unital operator
algebra if and only if there exists an element v of norm one in the completely
symmetric part of A such that:

(i) For every x ∈ A, {x, v, v}A = x,
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(ii) Let V = diag(v, . . . , v) ∈ Mn(A). For all X ∈ Mn(A),

‖{XVX}Mn(A)‖ ≤ ‖X‖2.

Although we have phrased this theorem in terms of the norm and partial
triple product, it should be noted that the two conditions can be restated in
holomorphic terms. For any element v in the symmetric part of a Banach
space X, hv will denote the unique complete holomorphic vector field on the
open unit ball ofX satisfying hv(0) = v. (Complete holomorphic vector fields
and the symmetric part of a Banach space are recalled in subsection 1.2.) Then
(i) and (ii) become

(i′) For every x ∈ A, hv(x + v)− hv(x)− hv(v)+ v = −2x.

(ii′′) Let V = diag(v, . . . , v) ∈ Mn(A). For all X ∈ Mn(A),

‖V − hV (X)‖ ≤ ‖X‖2.

Let us consider another example. Suppose that A is a TRO, that is, a closed
subspace of B(H) closed under the ternary product ab∗c. Since M∞(A) is a
TRO, hence a JC∗-triple, it is equal to its symmetric part, which shows that
the completely symmetric part of A coincides with A.

Now suppose that the TRO A contains an element v satisfying xv∗v =
vv∗x = x for all x ∈ A. Then it is trivial that A becomes a unital C∗-algebra
for the product xv∗y, involution vx∗v, and unit v. By comparison, our main
result starts only with an operator spaceA containing a distinguished element v
in its completely symmetric part having a unit-like property. We then construct
a binary product from properties of the partial triple product induced by the
holomorphic structure. The space A, with this binary product, is then shown
to satisfy the hypothesis in [6] and hence is completely isometric to a unital
operator algebra. The first assumption is unavoidable since the result of [6]
fails in the absence of a unit element. However, it is worth noting that only
the first hypothesis in the above theorem is needed to prove the existence and
properties of the binary product x · y.

According to [7], “The one-sided multipliers of an operator spaceX are a key
to the ‘latent operator algebraic structure’ inX.” The unified approach through
multiplier operator algebras developed in [7] leads to simplifications of known
results and applications to quantum M-ideal theory. They also state “With
the extra structure consisting of the additional matrix norms on an operator
algebra, one might expect to not have to rely as heavily on other structure,
such as the product.” Our result is certainly in the spirit of this statement.

In the rest of this section, a review of operator spaces, Jordan triples, and
holomorphy is given. The completely symmetric part of an arbritary operator
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space A is defined in section 2. The binary product x · y on A is constructed
in section 3 using properties of isometries on 2 by 2 matrices over A and it is
shown that the symmetrized product can be expressed in terms of the partial
Jordan triple product on A. Section 4 contains a key proposition and the proof
of the main theorem.

The authors wish to thank the referee for suggestions made and especially
for pointing out a gap in the original proof of Lemma 3.6.

1.2. Background

In this section, we recall some basic facts that we use about operator spaces,
Jordan triples, and holomorphy in Banach spaces. Besides the sources refer-
enced in this section, for more facts and details on the first two topics, see [30],
[31], [10] and [11], [24], [25], [8], respectively.

By an operator space, sometimes called a quantum Banach space, we
mean a closed linear subspace A of B(H) for some complex Hilbert space
H , equipped with the matrix norm structure obtained by the identification of
Mn(B(H)) with B(H ⊕ H ⊕ · · · ⊕ H). Two operator spaces are completely
isometric if there is a linear isomorphism between them which, when applied
elementwise to the corresponding spaces of n by n matrices, is an isometry
for every n ≥ 1. More generally, a linear map φ : A → B between oper-
ator spaces is completely bounded if ‖φ‖cb = supn≥1 ‖φn‖ is finite, where
φn : Mn(A) → Mn(B) is the map which applies φ to each matrix entry of its
argument.

By an operator algebra, sometimes called a quantum operator algebra, we
mean a closed associative subalgebraA ofB(H), together with its matrix norm
structure as an operator space.

One important example of an operator space is a ternary ring of operators,
or TRO, which is an operator space in B(H) which contains ab∗c whenever it
contains a, b, c.

A TRO is a special case of a JC∗-triple, that is, a closed subspace of B(H)
which contains the symmetrized ternary product ab∗c + cb∗a whenever it
contains a, b, c. Important examples of JC∗-triples, besides C∗-algebras, JC∗-
algebras, and Hilbert spaces, are the Cartan factors of types 1, 2, 3, and 4 (see,
for example, [15, p. 140]).

More generally, a JB∗-triple is a complex Banach space equipped with a
triple product {x, y, z} which is linear in the first and third variables, conjugate
linear in the second variable, satisfies the algebraic identities

{x, y, z} = {z, y, x}
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and

(1) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}}
and the analytic conditions that for each x, the mapping y 
→ {x, x, y} is
hermitian with nonnegative spectrum, and ‖{x, x, x}‖ = ‖x‖3.

The following two theorems are fundamental in the theory of JB∗-triples.

Theorem 1.1 (Kaup [20]). The class of JB∗-triples coincides with the class
of complex Banach spaces whose open unit ball is a bounded symmetric do-
main.

Theorem 1.2 (Friedman-Russo [14], Kaup [21], Stacho [28]). The class
of JB∗-triples is stable under contractive projections. More precisely, if P
is a contractive projection on a JB∗-triple E with triple product denoted by
{x, y, z}E , thenP(E) is a JB∗-triple with triple product given by {a, b, c}P(E)=
P {a, b, c}E for a, b, c ∈ P(E).

For a JB∗-triple, the following identity is a consequence of the Gelfand
Naimark Theorem ([15, Corollary 3]):

‖{xyz}‖ ≤ ‖x‖‖y‖‖z‖.
This suggests Problem 1 at the end of this paper.

The following two theorems, already mentioned above, are instrumental in
this work.

Theorem 1.3 (Blecher-Ruan-Sinclair [6]). If an operator space supports a
unital Banach algebra structure in which the product (not necessarily associat-
ive) is completely contractive, then the operator space is completely isometric
to an operator algebra.

Theorem 1.4 (Neal-Russo [23]). If an operator space has the property that
the open unit ball of the space of n by n matrices is a bounded symmetric
domain for every n ≥ 2, then the operator space is completely isometric to a
TRO.

Finally, we review the construction and properties of the partial Jordan
triple product in an arbitrary Banach space. LetX be a complex Banach space
with open unit ballX0. Every holomorphic function h : X0 → X, also called a
holomorphic vector field, is locally integrable, that is, the initial value problem

∂

∂t
ϕ(t, z) = h(ϕ(t, z)), ϕ(0, z) = z,
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has a unique solution for every z ∈ X0 for t in a maximal open interval Jz
containing 0. A complete holomorphic vector field is one for which Jz = R for
every z ∈ X0. In this case, ϕ(t, ·) is a holomorphic automorphism of X0 and
ϕt (z) = ϕ(t, z) is called the flow of h.

The symmetric part of X is the orbit of 0 under the set of complete holo-
morphic vector fields, and is denoted by S(X). It is a closed subspace of X
and is equal to X precisely when X has the structure of a JB∗-triple (by The-
orem 1.1).

It is a fact that every complete holomorphic vector field is the sum of the
restriction of a skew-Hermitian bounded linear operator on X and a function
ha of the form ha(z) = a − Qa(z), where a ∈ S(X) and Qa is a quadratic
homogeneous polynomial on X.

If a ∈ S(X), we can obtain a symmetric bilinear form on X, also denoted
by Qa via the polarization formula

Qa(x, y) = 1
2 (Qa(x + y)−Qa(x)−Qa(y))

and then the partial Jordan triple product {·, ·, ·}X : X × S(X) × X → X is
defined by {x, a, z}X = Qa(x, z). The space S(X) becomes a JB∗-triple in
this triple product. It is also true that the “main identity” (1) holds whenever
a, y, b ∈ S(X) and x, z ∈ X.

The proof of the following lemma is implicit in [22]. Part (b) is explicitly
stated in [9, Lemma 1.8]. A short proof can be based on the deep results of [22]
and [9] and the fact that a holomorphic mapping h : X0 → X is a complete
holomorphic vector field if and only if h has a holomorphic extension to a
neighborhood containing the closed unit ball of X and for every x ∈ X and
f ∈ X∗ with ‖x‖ = 1 = ‖f ‖ = f (x), we have Re f (h(x)) = 0. (See [3,
Proposition 2.5] and [4, Lemma 2.8], and for a proof, see [31, Lemma 4.4] or
[27].)

Lemma 1.5. If ψ is a linear isometry of a Banach space X onto a Banach
space Y , then

(a) For every complete holomorphic vector field h on X0, ψ ◦ h ◦ ψ−1 is a
complete holomorphic vector field on Y0.

(b) ψ(S(X)) = S(Y ) and ψ preserves the partial Jordan triple product:

ψ{x, a, y}X = {ψ(x), ψ(a), ψ(y)}Y for a ∈ S(X), x, y ∈ X.
In particular, for a ∈ S(X), ψ ◦ ha ◦ ψ−1 = hψ(a).

The symmetric part of a Banach space behaves well under contractive pro-
jections, as stated in the next theorem (see [1, 5.2, 5.3, 5.4]).
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Theorem 1.6 (Stacho [28]). If P is a contractive projection on a Banach
space X and h is a complete holomorphic vector field on X0, then P ◦ h|P(X)0
is a complete holomorphic vector field on P(X)0. In addition P(S(X)) ⊂
S(P (X)) and the partial triple product on P(X) is given by {x, y, z}P(X) =
P {x, y, z}X for x, z ∈ P(X) and y ∈ P(S(X)).

Some examples of the symmetric part S(X) of a Banach spaceX are given
in the seminal paper [9].

• X = Lp(�,�,μ), 1 ≤ p < ∞, p �= 2; S(X) = 0

• X = Hp (classical), 1 ≤ p < ∞, p �= 2; S(X) = 0

• X = H∞ (classical) or the disk algebra; S(X) = C

• X = a uniform algebra A ⊂ C(K); S(A) = A ∩ A
The first example above suggests Problem 2 at the end of this paper. The last
example is a commutative predecessor of the example of Arazy and Solel
quoted above ([3, Cor. 2.9(i)]).

More examples, due primarily to Stacho [28], and involving Reinhardt do-
mains are recited in [1], along with the following (previously) unpublished
example due to Vigué, showing that the symmetric part need not be comple-
mented.

• There exists an equivalent norm on �∞ so that �∞ in this norm has symmetric
part equal to c0

2. Completely symmetric part of an operator space

Let A ⊂ B(H) be an operator space. Mn(A) will denote the Banach space of
n by n matrices over A, with the norm ‖x‖n given by the action of the matrix
x = [xij ] on ⊕n

1H . Let M∞,0(A) be the linear space of all infinite matrices
over A with only finitely many nonzero entries. We shall identifyMn(A) with{[

Mn(A) 0
0 0

]
∈ M∞,0(A)

}
⊂ B(⊕∞

1 H).

Then M∞,0(A) is the increasing union ∪∞
1 Mn(A) and is thus a normed linear

space whose completion will be denoted by M∞(A). (Although M∞(A) may
be viewed as an operator space in B(⊕∞

1 H), we shall only make use of its
Banach space structure.)

A completely bounded map φ on A to an operator space B is the same as a
bounded map on M∞(A) to M∞(B) sending Mn(A) into Mn(B) for every n,
the norm of the latter being equal to the completely bounded norm of φ.



236 matthew neal and bernard russo

The completely symmetric part ofA is defined by CS(A) = A∩S(M∞(A)).
More precisely, if ψ : A → M1(A) denotes the complete isometric identific-
ation, then CS(A) = ψ−1(ψ(A) ∩ S(M∞(A))).

These definitions are depicted in the first two rows of the following diagram.
The third row is a consequence of Proposition 2.1 below.

A ⊂ Mn(A) ⊂ M∞(A)
∪ ∪ ∪
S(A) S(Mn(A)) S(M∞(A))

∪ ∪
CS(A) ⊂Mn(CS(A))

For 1 ≤ m < N let ψN
1,m : MN(A) → MN(A) and ψN

2,m : MN(A) → MN(A)

be the isometries of order two defined by

ψN
j,m :

[
Mm(A) Mm,N−m(A)

MN−m,m(A) MN−m(A)

]
→

[
Mm(A) Mm,N−m(A)

MN−m,m(A) MN−m(A)

]

where
ψN

1,m :

[
a b

c d

]
→

[
a −b

−c d

]

and
ψN

2,m :

[
a b

c d

]
→

[
a −b
c −d

]
.

These two isometries give rise to two isometries ψ̃1,m and ψ̃2,m onM∞,0(A)

as follows. If x ∈ M∞,0(A), say x ∈ MN(A) where m < N , then for j =
1, 2, ψ̃j,m(x) is defined to be ψN

j,m(x) and is independent of N . We thus have
isometries ψ1,m, ψ2,m of M∞(A) onto itself, of order 2 which fix Mm(A)

elementwise.
The natural projection P̃m of M∞,0(A) onto Mm(A) is thus given by

P̃mx = ψ̃2,m
( ψ̃1,m(x)+x

2

) + ψ̃1,m(x)+x
2

2
.

The projection P̃m onM∞,0(A) extends to a projection Pm onM∞(A), with
range Mm(A) given by

Pm = 1
4 (ψ2,mψ1,m + ψ2,m + ψ1,m + Id).

Proposition 2.1. With the above notation,

(a) Pn(S(M∞(A))) = Mn(CS(A));
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(b) Mn(CS(A)) is a JB*-subtriple of S(M∞(A)), that is,

{Mn(CS(A)),Mn(CS(A)),Mn(CS(A))} ⊂ Mn(CS(A));
Moreover,

{Mn(A),Mn(CS(A)),Mn(A)} ⊂ Mn(A);
(c) CS(A) is completely isometric to a TRO.

Note: In the first displayed formula of (b), the triple product is the one
on the JB*-triple Mn(CS(A)), namely, {xyz}Mn(CS(A)) = Pn({xyz}S(M∞(A))),
which, as shown in the proof, is actually the restriction of the triple product of
S(M∞(A)); in the second displayed formula, the triple product is the partial
triple product on M∞(A). Hereafter, we shall denote partial triple products
simply by {·, ·, ·} if the meaning is clear from the context.

Proof. SincePn is a linear combination of isometries ofM∞(A), and since
isometries preserve the symmetric part, Pn(S(M∞(A))) ⊂ S(M∞(A)).

For any y = (yij ) ∈ Mn(A), write y = (R1, . . . , Rn)
t = (C1, . . . , Cn)

whereRi, Cj are the (firstn) rows and columns ofy. Letψ1 = ψn
1 andψ2 = ψn

2
be the isometries on M∞(A) whose action is as follows: for y ∈ Mn(A),

ψn
1 (y) = (R1,−R2, . . . ,−Rn)t , ψn

2 (y) = (−C1, . . . ,−Cn−1, Cn),

and for an arbitrary element y = [yij ] ∈ M∞,0(A), say y ∈ MN(A), where
without loss of generality N > n, and for k = 1, 2, ψn

k maps y into[
ψn
k [yij ]n×n 0

0 [yij ](N−n)×(N−n)

]
.

Suppose now that x = (xij ) ∈ Pn(S(M∞(A))). Then with a⊗ eij denoting
the matrix with a in the (i, j)-entry and zeros elsewhere,

x1n ⊗ e1n = ψ2
(
ψ1(x)+x

2

) + ψ1(x)+x
2

2
∈ S(M∞(A)).

Now consider the isometry ψ3 given by ψ3(C1, . . . , Cn) = (Cn, C2, . . . ,

Cn−1, C1). Then x1,n ⊗ e11 = ψ3(x1n ⊗ e1n) ∈ S(M∞(A))), and by definition,
x1n ∈ CS(A). Continuing in this way, one sees that each xij ∈ CS(A), proving
that

Pn(S(M∞(A))) ⊂ Mn(CS(A)).

Conversely, suppose that x = (xij ) ∈ Mn(CS(A)). Since each xij ∈ CS(A),
then by definition, xij ⊗ e11 ∈ S(M∞(A)). By using isometries as in the first



238 matthew neal and bernard russo

part of the proof, it follows that xij⊗eij ∈ S(M∞(A)), and x = ∑
i,j xij⊗eij ∈

S(M∞(A)). This proves (a), since

Mn(CS(A)) = Pn(Mn(CS(A))) ⊂ Pn(S(M∞(A))) ⊂ S(M∞(A)).

As noted above, Pn is a contractive projection on the JB*-triple S(M∞(A)),
so that by Theorem 1.2, the range of Pn, namely Mn(CS(A)), is a JB*-triple
with triple product

{xyz}Mn(CS(A)) = Pn({xyz}S(M∞(A))),

for x, y, z ∈ Mn(CS(A)). This proves (c) by Theorem 1.4.
However, Pn is a linear combination of isometries of M∞(A) which fix

Mn(A) elementwise, and any isometryψ ofM∞(A) preserves the partial triple
product: ψ {abc} = {ψ(a)ψ(b)ψ(c)} for a, c ∈ M∞(A) and b ∈ S(M∞(A)).
This shows that {xyz}Mn(CS(A)) = {xyz}S(M∞(A))

for x, y, z ∈ Mn(CS(A)), proving the first part of (b). To prove the second part
of (b), just note that if x, z ∈ Mn(A) and y ∈ Mn(CS(A)), then Pn fixes {xyz}.

Corollary 2.2. CS(A) = M1(CS(A)) = P1(S(M∞(A))).

Corollary 2.3. For every u, v,w ∈ CS(A),

{u⊗ eij , v ⊗ ekl, w ⊗ epq} = {u, v,w} ⊗ (eij elkepq + epqelkeij )/2.

In particular,{[
0 u

0 0

] [
v 0
0 0

] [
0 0
0 w

]}
= 0 =

{[
0 u

0 0

] [
v 0
0 0

] [
0 w

0 0

]}
,

{[
u 0
0 0

] [
0 v

0 0

] [
0 w

0 0

]}
= 1

2

[ {u, v,w} 0
0 0

]
,

{[
u 0
0 0

] [
0 v

0 0

] [
0 0
0 w

]}
= 1

2

[
0 0

{u, v,w} 0

]
,

and {[
0 u

0 0

] [
0 v

0 0

] [
0 0
0 w

]}
= 1

2

[
0 0
0 {u, v,w}

]
.

Proof. By Proposition 2.1(c), there is a complete isometry φ from CS(A)
onto a TROT . The spaceM2(T ) is a TRO with productab∗c = (aij )(bkl)

∗(cpq)
= (aij )(b

∗
lk)(cpq), and hence a JB∗-triple for the product

{a, b, c} = 1
2 (ab

∗c + cb∗a) (a, b, c ∈ M2(T )).
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Since the identity
{
u⊗ eij , v ⊗ ekl, w ⊗ epq

} = {u, v,w} ⊗ (eij elkepq +
epqelkeij )/2 trivially holds in M2(T ), and φ2 : M2(CS(A)) → M2(T ) is
an isometry, and hence a JB∗-triple isomorphism, the statements of the lemma
are clear.

Corollary 2.4. CS(A)⊂ S(A) andPn {yxy} = {yxy} for x ∈Mn(CS(A))
and y ∈ Mn(A).

Proof. For x ∈ CS(A), let x̃ = x⊗ e11. Then x̃ ∈ S(M∞(A)) and so there
exists a complete holomorphic vector fieldhx̃ on (M∞(A))0 satisfyinghx̃(0) =
x̃. Since P1 is a contractive projection of M∞(A) onto A, by Theorem 1.6,
P1 ◦ hx̃ |A0 is a complete holomorphic vector field on A0. But P1 ◦ hx̃ |A0(0) =
P1 ◦ hx̃(0) = P1(x̃) = x, proving that x ∈ S(A).

Recall from the proof of the second part of Proposition 2.1(b) that if x, z ∈
Mn(A) and y ∈ Mn(CS(A)), then Pn fixes {xyz}.

The symmetric part of a JC∗-triple coincides with the triple. The Cartan
factors of type 1 are TROs, which we have already observed are equal to their
completely symmetric parts. If A is a Cartan factor of type 2, 3, or 4, then
A is not a TRO since it is not closed under xy∗z, but it is possible that it is
completely isometric to a TRO. (See Problems 3 and 5 at the end of this paper.)
The next proposition rules this out in the finite dimensional case.

Proposition 2.5. If A is a finite dimensional Cartan factor of type 2, 3 or
4 (and dimension at least two), then CS(A) = 0.

Proof. It is known [16] that the surjective linear isometries of the Cartan
factors of types 2 and 3 are given by multiplication on the left and right by
a unitary operator, and hence they are complete isometries. The same is true
for finite dimensional Cartan factors of type 4 by [32]. It is also known that
the set of inner automorphisms (hence isometries) of any Cartan factor acts
transitively on the set of minimal partial isometries (and hence on finite rank
partial isometries of the same rank, [17]). It follows that if the completely
symmetric part of a finite dimensional Cartan factor of type 2, 3 or 4 is not zero,
then it must contain any finite rank partial isometry, and hence a generating set
so it coincides with the Cartan factor. Thus our Cartan factor A is completely
isometric to a TRO. However, by [12, Prop. A1], every finite dimensional
TRO is an injective operator space, and by [26, Theorem], every injective
finite dimensional operator space is completely isometric to a direct sum of
rectangular matrix algebras. Now the fact that A is merely isometric to a TRO
shows that that A is a Cartan factor of type 1, a contradiction.
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3. Definition of the algebra product

From this point on, we shall tacitly assume the first hypothesis in our main
theorem, namely that A is an operator space and v ∈ CS(A) is an element
of norm 1 which satisfies {xvv} = x for every x ∈ A. With this assumption
alone, we are able to construct and develop properties of the binary product.
It is not until the last step in the proof of Theorem 4.8 that we need to invoke
the second hypothesis.

If not explicitly stated, a, b, c, d, x, y, z, α, β, γ , etc., denote elements of
A. In what follows, we work almost exclusively with M2(A), which it turns
out to be sufficient for our result.

Let {·, ·, ·} : M∞(A)×S(M∞(A))×M∞(A)denote the partial triple product
defined by the symmetric part ofM∞(A). By the properties established in the
previous section, for each natural n, we can restrict the above product to a
mapping from Mn(A)×Mn(CS(A))×Mn(A) to Mn(A). This triple product
will be used throughout the whole paper.

Lemma 3.1.

{[
x ±x
0 0

][
v ±v
0 0

] [
x ±x
0 0

]}
= 2

[ {xvx} ± {xvx}
0 0

]
.

Proof. LetX = M∞(A) and consider projectionsQ1 andQ2 onX defined
by Q1 = P11P2, Q2 = SRP2 where P11 maps[

a b

c d

]
to

[
a 0
0 0

]
,

S maps [
a b

c d

]
to

[
a b

0 0

]
,

and R maps [
a b

c d

]
to

1

2

[
a + b a + b

c + d c + d

]
.

Let A′ =
{[
a 0
0 0

]
: a ∈ A

}
= Q1X and A′′ =

{[
a a

0 0

]
: a ∈ A

}
=

Q2X, and let ψ : A′ → A′′ be the isometry defined by

[
a 0
0 0

]

→[

a/
√

2 a/
√

2
0 0

]
. Finally, let v′ =

[
v 0
0 0

]
and v′′ =

[
v/

√
2 v/

√
2

0 0

]
,

and more generally a′ =
[
a 0
0 0

]
, a′′ = ψ(a′) =

[
a/

√
2 a/

√
2

0 0

]
.

Since a surjective isometry preserves partial triple products (Lemma 1.5)
and the partial triple product on the range of a contractive projection is equal
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to the projection acting on the partial triple product of the original space (The-
orem 1.6), we have

ψ{a′v′b′}Q1X = {a′′v′′b′′}Q2X.

We unravel both sides of this equation. In the first place

{a′v′b′}Q1X = Q1{a′v′b′}X = P11P2

{[
a 0
0 0

]
,

[
v 0
0 0

]
,

[
b 0
0 0

]}
X

= P11P2

[ {avb} 0
0 0

]
=

[ {avb} 0
0 0

]
.

Thus

ψ{a′v′b′}Q1X =
[ {avb}/√2 {avb}/√2

0 0

]
.

Next,R and S are convex combinations of isometries that fix the elements of
the product, so that {a′′v′′b′′}X is fixed by R and by S. Hence, {a′′v′′b′′}Q2X =
Q2{a′′v′′b′′}X = SRP2{a′′v′′b′′}X = {a′′v′′b′′}X, so that

{a′′v′′b′′}Q2X =
{[
a/

√
2 a/

√
2

0 0

] [
v/

√
2 v/

√
2

0 0

] [
b/

√
2 b/

√
2

0 0

]}
.

This proves the lemma in the case of the plus sign. The proof in the remaining
case is identical, with R replaced by

[
a b

c d

]

→ 1

2

[
a − b b − a

c − d d − c

]
,

A′′ replaced by

{[
a −a
0 0

]
: a ∈ A

}
, and ψ replaced by

[
a 0
0 0

]

→[

a/
√

2 −a/√2
0 0

]
.

Lemma 3.2.[ {xvx} 0
0 0

]
=

{[
0 x

0 0

] [
v 0
0 0

] [
0 x

0 0

]}

+ 2

{[
x 0
0 0

] [
0 v

0 0

] [
0 x

0 0

]}
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Proof. By Lemma 3.1

4

[ {xvx} 0
0 0

]
= 2

[ {xvx} {xvx}
0 0

]
+ 2

[ {xvx} − {xvx}
0 0

]

=
{[
x x

0 0

] [
v v

0 0

] [
x x

0 0

]}

+
{[
x −x
0 0

] [
v −v
0 0

] [
x −x
0 0

]}
.

By expanding the right hand side of the last equation, one obtains 16 terms
of which 8 cancel in pairs. The remaining terms are

2

{[
x 0
0 0

] [
v 0
0 0

] [
x 0
0 0

]}
, 4

{[
x 0
0 0

] [
0 v

0 0

] [
0 x

0 0

]}

and

2

{[
0 x

0 0

] [
v 0
0 0

] [
0 x

0 0

]}
.

Since the first term above is equal to 2

[ {xvx} 0
0 0

]
, the lemma is proved.

The following two lemmas, and their proofs parallel the previous two lem-
mas.

Lemma 3.3.

{[
a 0
0 ±a

] [
v 0
0 ±v

] [
b 0
0 ±b

]}
=

[ {avb} 0
0 ± {avb}

]

Proof. LetX = M∞(A) and consider projectionsQ1 andQ2 onX defined
by Q1 = P11P2, Q2 = SRP2 where P11 maps[

a b

c d

]
to

[
a 0
0 0

]
,

S maps [
a b

c d

]
to

[
a 0
0 d

]
,

and R maps [
a b

c d

]
to

1

2

[
a + d b + c

b + c a + d

]
.
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Let A′ =
{[
a 0
0 0

]
: a ∈ A

}
= Q1X and A′′ =

{[
a 0
0 a

]
: a ∈ A

}
=

Q2X, and let ψ : A′ → A′′ be the isometry defined by

[
a 0
0 0

]

→

[
a 0
0 a

]
.

Finally, let v′ =
[
v 0
0 0

]
and v′′ =

[
v 0
0 v

]
, and more generally a′ =[

a 0
0 0

]
, a′′ = ψ(a′) =

[
a 0
0 a

]
.

Again by Lemma 1.5 and Theorem 1.6, we have

ψ{a′v′b′}Q1X = {a′′v′′b′′}Q2X.

We unravel both sides of this equation. In the first place

{a′v′b′}Q1X = Q1{a′v′b′}X = P11P2

{[
a 0
0 0

] [
v 0
0 0

] [
b 0
0 0

]}
X

= P11P2

[ {avb} 0
0 0

]
=

[ {avb} 0
0 0

]
.

Thus
ψ{a′v′b′}Q1X =

[ {avb} 0
0 {avb}

]
.

Next, by using appropriate isometries, for example,[
a b

c d

]
to

[
d b

c a

]
.

{a′′v′′b′′}X is fixed by R and by S. Hence, {a′′v′′b′′}Q2X = Q2{a′′v′′b′′}X =
SRP2{a′′v′′b′′}X = {a′′v′′b′′}X, so that

{a′′v′′b′′}Q2X =
{[
a 0
0 a

] [
v 0
0 v

] [
b 0
0 b

]}
.

This proves the lemma in the case of the plus sign. The proof in the remaining
case is identical, with R replaced by[

a b

c d

]

→ 1

2

[
a − d b − c

b − c a − d

]
,

A′′ replaced by

{[
a 0
0 −a

]
: a ∈ A

}
, and ψ replaced by

[
a 0
0 0

]

→[

a 0
0 −a

]
.
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Lemma 3.4.{[
x 0
0 0

] [
0 0
0 v

] [
0 0
0 y

]}
+

{[
y 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]}
= 0

and {[
0 0
0 x

] [
v 0
0 0

] [
0 0
0 y

]}
= 0.

Proof. By Lemma 3.3

2

[ {xvx} 0
0 0

]
=

[ {xvx} 0
0 {xvx}

]
+

[ {xvx} 0
0 − {xvx}

]

=
{[
x 0
0 x

] [
v 0
0 v

] [
x 0
0 x

]}

+
{[
x 0
0 −x

] [
v 0
0 −v

] [
x 0
0 −x

]}
.

By expanding the right hand side of the last equation, one obtains 16 terms
of which 8 cancel in pairs. The remaining terms are

2

{[
x 0
0 0

] [
v 0
0 0

] [
x 0
0 0

]}
, 4

{[
x 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]}

and
2

{[
0 0
0 x

] [
v 0
0 0

] [
0 0
0 x

]}
.

Since the first term above is equal to 2

[ {xvx} 0
0 0

]
, we have

2

{[
x 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]}
= −

{[
0 0
0 x

] [
v 0
0 0

] [
0 0
0 x

]}
.

Replacing x by x + y in this last equation results in{[
x 0
0 0

] [
0 0
0 v

] [
0 0
0 y

]}
+

{[
y 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]}

= −
{[

0 0
0 x

] [
v 0
0 0

] [
0 0
0 y

]}

Using the isometry of multiplication by the imaginary unit on the second
row of this equation and adding then shows that both sides are zero.
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Lemma 3.5.

(2)

{[
x 0
0 y

] [
v 0
0 v

] [
x 0
0 y

]}
=

[ {xvx} 0
0 {yvy}

]

Proof. By Lemma 3.1, the left hand side of (2) expands into the sum of
the right side of (2) and

� = 2

{[
x 0
0 0

] [
0 0
0 v

] [
0 0
0 y

]}
+ 2

{[
x 0
0 0

] [
v 0
0 0

] [
0 0
0 y

]}

+
{[
x 0
0 0

] [
0 0
0 v

] [
x 0
0 0

]}
+

{[
0 0
0 y

] [
v 0
0 0

] [
0 0
0 y

]}
.

The last two terms are zero by Lemma 3.4 and � has the form

[
α 0
0 δ

]
.

We shall prove (2) and hence that � = 0 by using Theorem 1.6. To this

end, let E denote the Banach space

{[
a 0
0 b

]
: a, b ∈ A

}
⊂ M2(A). Since

v ∈ CS(A) ⊂ S(A), the function h(x) = v−{xvx} is a complete holomorphic
vector field onA0. Denote its flow by ϕt (x) so that ϕ0(x) = x and for all t ∈ R,

∂

∂t
ϕt (x) = h(ϕt (x)).

Recall that ϕt is a holomorphic automorphism of the open unit ball of A. Now
define the holomorphic function

H1

([
x 0
0 y

])
=

[
h(x) 0

0 h(y)

]
,

so that H1(0) = V =
[
v 0
0 v

]
. The function H1 is a complete holomorphic

vector field on E0 with flow

�t

([
x 0
0 y

])
=

[
ϕt (x) 0

0 ϕt (y)

]
,

since �t(E0) ⊂ E0 for all t ∈ R.
On the other hand, by Proposition 2.1 and Theorem 1.6, V ∈ M2(CS(A)) =

P2(S(M∞(A))) ⊂ S(M2(A)) so that H2(X) = V − {XVX} is a complete
holomorphic vector field on M2(A). Let Q be the projection of M2(A) onto
E. Then by Theorem 1.6, H3 := Q ◦H2|E0 is a complete holomorphic vector
field in E.
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Since, as noted above, the left side of (2) is a diagonal matrix, we have

H3

([
x 0
0 y

])
= Q

(
H2

([
x 0
0 y

]))
= V −

{[
x 0
0 y

][
v 0
0 v

][
x 0
0 y

]}

Since H3(0) = H1(0) = V , and complete holomorphic vector fields are
determined by their value at the origin, H1 = H3 and the proof is complete.

The following lemma asserts the orthogonality of

[
x 0
0 0

]
and

[
0 0
0 v

]
with respect to the partial triple product of M2(A).

Lemma 3.6. {[
x 0
0 0

] [
0 0
0 v

] [
a b

c d

]}
= 0

Equivalently, {[
0 x

0 0

] [
0 0
v 0

] [
a b

c d

]}
= 0

Proof. The second statement follows from the first by using the isometry[
a b

c d

]

→

[
b a

d c

]
.

As noted in the proof of Lemma 3.5, Lemma 3.4 and an appropriate isometry
(interchange both rows and columns simultaneously) yields{[

x 0
0 0

] [
0 0
0 v

] [
a 0
0 0

]}
= 0.

Next, the isometry [
a b

c d

]

→

[ −a −b
c d

]
.

shows that {[
x 0
0 0

] [
0 0
0 v

] [
0 b

0 0

]}
=

[
0 0
γ δ

]
,

for some γ, δ ∈ A. Similarly, the isometry[
a b

c d

]

→

[
a −b
c −d

]

shows that {[
x 0
0 0

] [
0 0
0 v

] [
0 b

0 0

]}
=

[
0 0
γ 0

]
.
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Applying the isometry of multiplication of the second row by the imaginary
unit shows that γ = 0. Hence{[

x 0
0 0

] [
0 0
0 v

] [
0 b

0 0

]}
= 0.

By appropriate use of isometries as above,{[
x 0
0 0

] [
0 0
0 v

] [
0 0
c 0

]}
=

[
0 β

0 0

]

for some β ∈ A. Applying the isometry of multiplication of the second column
by the imaginary unit shows that β = 0. Hence{[

x 0
0 0

] [
0 0
0 v

] [
0 0
c 0

]}
= 0.

Finally, by what is proved above and the fact that � = 0 in the proof of
Lemma 3.5, we have

0 =
{[
x 0
0 0

] [
0 0
0 v

] [
0 0
0 y

]}
+

{[
x 0
0 0

] [
v 0
0 0

] [
0 0
0 y

]}

and each term is zero since one is of the form

[
α 0
0 0

]
and the other is of the

form

[
0 0
0 β

]
.

Lemma 3.7.[ {xvy} 0
0 0

]
=

{[
0 x

0 0

] [
v 0
0 0

] [
0 y

0 0

]}

+
{[
x 0
0 0

] [
0 v

0 0

] [
0 y

0 0

]}

+
{[

0 x

0 0

] [
0 v

0 0

] [
y 0
0 0

]}

Proof. Replace x in Lemma 3.2 by x + y.

We can repeat some of the preceding arguments to obtain the following
three lemmas, which will be used in the proof of Lemma 3.11. The proof of
the following lemma is, except for notation, identical to those of Lemma 3.1
and Lemma 3.3. On the other hand, it also follows from Lemma 3.1 via an
isometry.
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Lemma 3.8.

{[
0 x

0 ±x
] [

0 v

0 ±v
] [

0 x

0 ±x
]}

=
[

0 2 {xvx}
0 ±2 {xvx}

]

The proof of the following lemma parallels exactly the proof of Lemma 3.2,
using Lemma 3.8 in place of Lemma 3.1.

Lemma 3.9.[
0 {xvx}
0 0

]
=

{[
0 0
0 x

] [
0 v

0 0

] [
0 0
0 x

]}

+ 2

{[
0 0
0 x

] [
0 0
0 v

] [
0 x

0 0

]}

As in Lemma 3.7, polarization of Lemma 3.9 yields the following lemma.

Lemma 3.10.[
0 {xvy}
0 0

]
=

{[
0 0
0 x

] [
0 v

0 0

] [
0 0
0 y

]}

+
{[

0 0
0 x

] [
0 0
0 v

] [
0 y

0 0

]}

+
{[

0 0
0 y

] [
0 0
0 v

] [
0 x

0 0

]}

Lemma 3.11. {[
0 v

0 0

] [
v 0
0 0

] [
0 x

0 0

]}
= 0.

Proof. Set y = v in Lemma 3.10 to obtain[
0 x

0 0

]
=

{[
0 0
0 x

] [
0 v

0 0

] [
0 0
0 v

]}

+
{[

0 0
0 x

] [
0 0
0 v

] [
0 v

0 0

]}

+
{[

0 0
0 v

] [
0 0
0 v

] [
0 x

0 0

]}

Then {[
0 v

0 0

] [
v 0
0 0

] [
0 x

0 0

]}
(3)
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=
{[

0 v

0 0

][
v 0
0 0

] {[
0 0
0 x

] [
0 v

0 0

] [
0 0
0 v

]}}

+
{[

0 v

0 0

][
v 0
0 0

] {[
0 0
0 x

] [
0 0
0 v

] [
0 v

0 0

]}}
(4)

+
{[

0 v

0 0

][
v 0
0 0

] {[
0 0
0 v

] [
0 0
0 v

] [
0 x

0 0

]}}
.

The three terms on the right each vanish, as is seen by applying the main
identity to each term and making use of Lemma 3.6, and Corollary 2.3. For
the sake of clarity, we again include the details of the proof.

Explicitly, by the main identity, the first term in (4) equals

(5)

{{[
0 v

0 0

] [
v 0
0 0

] [
0 0
0 x

]} [
0 v

0 0

] [
0 0
0 v

]}

−
{[

0 0
0 x

] {[
v 0
0 0

] [
0 v

0 0

] [
0 v

0 0

]} [
0 0
0 v

]}

+
{[

0 0
0 x

] [
0 v

0 0

] {[
0 v

0 0

] [
v 0
0 0

] [
0 0
0 v

]}}
.

The first term in (5) is zero by Lemma 3.6. The third term is zero by Corol-
lary 2.3. The middle term is zero by Lemma 3.6 since by Corollary 2.3,{[

v 0
0 0

] [
0 v

0 0

] [
0 v

0 0

]}
= 1

2

[
v 0
0 0

]
.

Again by the main identity, the second term in (5) equals{{[
0 v

0 0

] [
v 0
0 0

] [
0 0
0 x

]} [
0 0
0 v

] [
0 v

0 0

]}

−
{[

0 0
0 x

] {[
v 0
0 0

] [
0 v

0 0

] [
0 0
0 v

]} [
0 v

0 0

]}

+
{[

0 0
0 x

] [
0 0
0 v

] {[
0 v

0 0

] [
v 0
0 0

] [
0 v

0 0

]}}
.

The first term is zero by Lemma 3.6 and the third term is zero by Corollary 2.3.
The middle term is also zero by Lemma 3.6 since, by Corollary 2.3,{[

v 0
0 0

] [
0 v

0 0

] [
0 0
0 v

]}
= 1

2

[
0 0
v 0

]
.
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Finally, again by the main identity, the third term in (5) equals{{[
0 v

0 0

] [
v 0
0 0

] [
0 0
0 v

]} [
0 0
0 v

] [
0 x

0 0

]}

−
{[

0 0
0 v

] {[
v 0
0 0

] [
0 v

0 0

] [
0 0
0 v

]} [
0 x

0 0

]}

+
{[

0 0
0 v

] [
0 0
0 v

] {[
0 v

0 0

] [
v 0
0 0

] [
0 x

0 0

]}}
.

The first term is zero by Corollary 2.3. The third term is of the form{[
0 0
0 v

] [
0 0
0 v

] [
α 0
0 0

]}

so it is zero by Lemma 3.6. The middle term is zero by Lemma 3.6 since by
Corollary 2.3, {[

v 0
0 0

] [
0 v

0 0

] [
0 0
0 v

]}
= 1

2

[
0 0
v 0

]
.

Thus (3) is zero.

Lemma 3.12.

{[
0 x

0 0

] [
v 0
0 0

] [
0 y

0 0

]}
= 0.

Proof. By applying the isometries of multiplication of the second column
and second row by −1, we see that for some a ∈ A,

(6)

{[
0 x

0 0

] [
v 0
0 0

] [
0 y

0 0

]}
=

[
a 0
0 0

]

and therefore that{[
x 0
0 0

] [
0 v

0 0

] [
y 0
0 0

]}
=

[
0 a

0 0

]
.

By Lemma 3.7[
a 0
0 0

]
=

[ {avv} 0
0 0

]
=

{[
0 a

0 0

] [
v 0
0 0

] [
0 v

0 0

]}
(7)

+
{[
a 0
0 0

] [
0 v

0 0

] [
0 v

0 0

]}

+
{[

0 a

0 0

] [
0 v

0 0

] [
v 0
0 0

]}



a holomorphic characterization of operator algebras 251

The first term on the right side of (7) is zero by Lemma 3.11.
Using (6), the second term on the right side of (7) is equal to

(8)

{[
0 v

0 0

][
0 v

0 0

] {[
0 x

0 0

] [
v 0
0 0

] [
0 y

0 0

]}}

to which we apply the main identity, obtaining three terms, the first of which
is equal to{[

0 {vvx}
0 0

] [
v 0
0 0

] [
0 y

0 0

]}
=

{[
0 x

0 0

] [
v 0
0 0

] [
0 y

0 0

]}
.

The second term is equal, by Corollary 2.3 to

−1

2

{[
0 x

0 0

] [
v 0
0 0

] [
0 y

0 0

]}
.

The third term is equal to{[
0 x

0 0

] [
v 0
0 0

] {[
0 v

0 0

] [
0 v

0 0

] [
0 y

0 0

]}}

which equals {[
0 x

0 0

] [
v 0
0 0

] [
0 y

0 0

]}
.

The second term on the right side of (7) is therefore equal to

3

2

{[
0 x

0 0

] [
v 0
0 0

] [
0 y

0 0

]}
.

Let us now write the third term on the right side of (7) as{[
v 0
0 0

][
0 v

0 0

] {[
x 0
0 0

] [
0 v

0 0

] [
y 0
0 0

]}}

and apply the main Jordan identity to it, to obtain three terms which each
vanish, the first and third by Lemma 3.11 and the second by Corollary 2.3. We
have thus shown that{[

0 x

0 0

] [
v 0
0 0

] [
0 y

0 0

]}
= 3

2

{[
0 x

0 0

] [
v 0
0 0

] [
0 y

0 0

]}
,

proving the lemma.
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Definition 3.13. Let us now define a product y · x by

[
y · x 0

0 0

]
= 2

{[
x 0
0 0

] [
0 v

0 0

] [
0 y

0 0

]}

and denote the corresponding matrix product by X · Y . That is, if X = [xij ]
and Y = [yij ], then X · Y = [zij ] where

zij =
∑
k

xik · ykj .

Note that

(9) {xvy} = 1
2 (y · x + x · y).

since by Lemmas 3.7 and 3.12 and symmetry of the partial triple product in
the outer variables, we can write[ {xvy} 0

0 0

]
=

{[
x 0
0 0

] [
0 v

0 0

] [
0 y

0 0

]}

+
{[

0 x

0 0

] [
0 v

0 0

] [
y 0
0 0

]}
.

4. Main result

The following lemma, in which the right side is equal to
1

2

[
0 0
0 x · y

]
, is

needed to prove that v is a unit element for the product x · y (Lemma 4.2), and
to prove Lemma 4.5 below, which is a key step in the proof of Proposition 4.7
and hence of Theorem 4.8.

Lemma 4.1.{[
0 0
x 0

] [
v 0
0 0

] [
0 y

0 0

]}
=

{[
0 0
x 0

] [
0 0
v 0

] [
0 0
0 y

]}

Proof. Let ψ be the isometry

[
x y

0 0

]

→ 1√

2

[
x y

x y

]
.
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As in the proofs of Lemmas 3.1, 3.3 and 3.8,ψ preserves partial triple products.
Thus,

1

2
√

2

[
0 x · y
0 x · y

]
= 1

2
ψ

([
0 x · y
0 0

])

= ψ

({[
x 0
0 0

] [
v 0
0 0

] [
0 y

0 0

]})

=
(

1√
2

)3 {[
x 0
x 0

] [
v 0
v 0

] [
0 y

0 y

]}

=
(

1√
2

)3 {[
x 0
0 0

] [
v 0
0 0

] [
0 y

0 0

]}

+
(

1√
2

)3 {[
0 0
x 0

] [
v 0
0 0

] [
0 y

0 0

]}

+
(

1√
2

)3 {[
x 0
0 0

] [
0 0
v 0

] [
0 0
0 y

]}

+
(

1√
2

)3 {[
0 0
x 0

] [
0 0
v 0

] [
0 0
0 y

]}
,

(the last step by Lemma 3.6), so that

[
0 x · y
0 x · y

]

=
{[
x 0
0 0

] [
v 0
0 0

] [
0 y

0 0

]}
+

{[
0 0
x 0

] [
v 0
0 0

] [
0 y

0 0

]}

+
{[
x 0
0 0

] [
0 0
v 0

] [
0 0
0 y

]}
+

{[
0 0
x 0

] [
0 0
v 0

] [
0 0
0 y

]}
.

On the other hand,

[
0 x · y
0 x · y

]
=

[
0 x · y
0 0

]
+

[
0 0
0 x · y

]

= 2

{[
0 y

0 0

] [
v 0
0 0

] [
x 0
0 0

]}
+ 2

{[
0 0
0 y

] [
0 0
v 0

] [
0 0
x 0

]}
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From the last two displayed equations, we have{[
0 y

0 0

] [
v 0
0 0

] [
x 0
0 0

]}
+

{[
0 0
0 y

] [
0 0
v 0

] [
0 0
x 0

]}

=
{[

0 0
x 0

] [
v 0
0 0

] [
0 y

0 0

]}
+

{[
x 0
0 0

] [
0 0
v 0

] [
0 0
0 y

]}
.

The first term on the left of the last displayed equation is of the form

[
0 α

0 0

]

and the second is of the form

[
0 0
0 β

]
. Again multiplying rows and columns

by −1 and using the fact that isometries preserve the partial triple product
shows that the first term on the right of the last displayed equation is of the

form

[
0 0
0 γ

]
and the second is of the form

[
0 δ

0 0

]
. Thus

{[
0 y

0 0

] [
v 0
0 0

] [
x 0
0 0

]}
=

{[
x 0
0 0

] [
0 0
v 0

] [
0 0
0 y

]}
.

Lemma 4.2. x · v = v · x = x for every x ∈ A.

Proof. Apply the main identity to write{[
0 v

0 0

] [
0 v

0 0

] {[
v 0
0 0

] [
0 v

0 0

] [
0 x

0 0

]}}
= R − S + T

where, by Corollary 2.3

R =
{{[

0 v

0 0

] [
0 v

0 0

] [
v 0
0 0

]} [
0 v

0 0

][
0 x

0 0

]}

= 1

2

{[
v 0
0 0

] [
0 v

0 0

][
0 x

0 0

]}
,

and by the fact that x 
→
[

0 x

0 0

]
is an isometry (see the proof of Lemma 3.1),

S =
{[
v 0
0 0

] {[
0 v

0 0

] [
0 v

0 0

] [
0 v

0 0

]} [
0 x

0 0

]}

=
{[
v 0
0 0

] [
0 v

0 0

][
0 x

0 0

]}
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and
T =

{[
v 0
0 0

] [
0 v

0 0

] {[
0 v

0 0

] [
0 v

0 0

] [
0 x

0 0

]}}

=
{[
v 0
0 0

] [
0 v

0 0

][
0 x

0 0

]}
.

Thus{[
0 v

0 0

] [
0 v

0 0

] {[
v 0
0 0

] [
0 v

0 0

] [
0 x

0 0

]}}

(10) = 1

2

{[
v 0
0 0

] [
0 v

0 0

] [
0 x

0 0

]}
= 1

4

[
x · v 0

0 0

]
.

Apply the main identity again to write{[
0 v

0 0

] [
0 v

0 0

] {[
0 v

0 0

] [
0 0
0 v

] [
0 0
x 0

]}}
= R′ − S ′ + T ′

where by Corollary 2.3,

R′ =
{{[

0 v

0 0

] [
0 v

0 0

] [
0 v

0 0

]} [
0 0
0 v

][
0 0
x 0

]}

=
{[

0 v

0 0

] [
0 0
0 v

] [
0 0
x 0

]}
,

S ′ =
{[

0 v

0 0

] {[
0 v

0 0

] [
0 v

0 0

] [
0 0
0 v

]} [
0 0
x 0

]}

= 1

2

{[
0 v

0 0

] [
0 0
0 v

] [
0 0
x 0

]}
,

and by Lemma 3.6,

T ′ =
{[

0 v

0 0

] [
0 0
0 v

] {[
0 v

0 0

] [
0 v

0 0

] [
0 0
x 0

]}}
= 0.

Thus{[
0 v

0 0

] [
0 v

0 0

] {[
0 v

0 0

] [
0 0
0 v

] [
0 0
x 0

]}}
= R′ − S ′ + T ′

(11) = 1

2

{[
0 v

0 0

] [
0 0
0 v

] [
0 0
x 0

]}
= 1

4

[
v · x 0

0 0

]
,
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the last step by Lemma 4.1. By Lemmas 3.7, 3.11 and 4.1[
x 0
0 0

]
=

{[
v 0
0 0

] [
0 v

0 0

] [
0 x

0 0

]}
(12)

+
{[

0 v

0 0

] [
0 v

0 0

] [
x 0
0 0

]}
.

Adding (10) and (11) and using (12) results in

1

2

[
v · x 0

0 0

]
=

{[
0 v

0 0

] [
0 v

0 0

] [
x 0
0 0

]}

= 1

4

[
x · v 0

0 0

]
+ 1

4

[
v · x 0

0 0

]
.

Thus v ·x = x · v and since x · v+ v ·x = 2 {vvx} = 2x, the lemma is proved.

We need yet another lemma, along the lines of Lemmas 3.1, 3.3, 3.8, and
4.1. We omit the by now standard proof, except to point out that the isometry
involved is [

0 a

0 b

]

→

[
0 0
a b

]
.

Lemma 4.3. If β, δ ∈ A are defined by{[
0 a

0 b

] [
0 v

0 0

] [
0 c

0 d

]}
=

[
0 β

0 δ

]
,

then {[
0 0
a b

] [
0 0
v 0

] [
0 0
c d

]}
=

[
0 0
β δ

]
,

In particular,{[
0 0
0 v

] [
0 0
v 0

] [
0 0
x 0

]}
=

{[
0 0
0 v

] [
0 v

0 0

] [
0 x

0 0

]}

Proposition 4.7 below is critical. To prepare for its proof, we require three
more lemmas.

Lemma 4.4. For X ∈ M2(A) and V = diag(v, v) ∈ M2(A),

{XVV } = X.
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Proof. Let us write{[
v 0
0 v

] [
v 0
0 v

] [
a b

c d

]}

=
{[
v 0
0 0

] [
v 0
0 0

] [
a b

c d

]}
+

{[
v 0
0 0

] [
0 0
0 v

] [
a b

c d

]}

+
{[

0 0
0 v

] [
v 0
0 0

] [
a b

c d

]}
+

{[
0 0
0 v

] [
0 0
0 v

] [
a b

c d

]}
.

The two middle terms on the right side of this equation vanish by Lemma 3.6.
The first term can be written (using Lemma 4.3 in the second term) as{[

v 0
0 0

] [
v 0
0 0

] [
a b

c d

]}

=
{[
v 0
0 0

] [
v 0
0 0

] [
a 0
0 0

]}
+

{[
v 0
0 0

] [
v 0
0 0

] [
0 b

0 0

]}

+
{[
v 0
0 0

] [
v 0
0 0

] [
0 0
c 0

]}
+

{[
v 0
0 0

] [
v 0
0 0

] [
0 0
0 d

]}

=
[ {vva} 0

0 0

]
+ 1

2

[
0 v · b
0 0

]
+ 1

2

[
0 0
v · c 0

]
+

[
0 0
0 0

]

=
[
a b/2
c/2 0

]
.

The last term can be written (using Lemma 4.3 in the second term) as{[
0 0
0 v

] [
0 0
0 v

] [
a b

c d

]}

=
{[

0 0
0 v

] [
0 0
0 v

] [
a 0
0 0

]}
+

{[
0 0
0 v

] [
0 0
0 v

] [
0 b

0 0

]}

+
{[

0 0
0 v

] [
0 0
0 v

] [
0 0
c 0

]}
+

{[
0 0
0 v

] [
0 0
0 v

] [
0 0
0 d

]}

=
[

0 0
0 0

]
+ 1

2

[
0 v · b
0 0

]
+ 1

2

[
0 0
v · c 0

]
+

[
0 0
0 d

]

=
[

0 b/2
c/2 d

]
.
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Lemma 4.5. For X, Y ∈ M2(A) and V = diag(v, v) ∈ M2(A),[
0 Y ·X
0 0

]
= 2

{[
Y 0
0 0

] [
V 0
0 0

] [
0 X

0 0

]}
.

Proof.1 The left side expands into 8 terms:

[
0 Y ·X
0 0

]
=

⎡
⎣ 0

[
y11 · x11 0

0 0

]
0 0

⎤
⎦ +

⎡
⎣ 0

[
y12 · x21 0

0 0

]
0 0

⎤
⎦

+
⎡
⎣ 0

[
0 y11 · x12

0 0

]
0 0

⎤
⎦ +

⎡
⎣ 0

[
0 y12 · x22

0 0

]
0 0

⎤
⎦

+
⎡
⎣ 0

[
0 0

y21 · x11 0

]
0 0

⎤
⎦ +

⎡
⎣ 0

[
0 0

y22 · x21 0

]
0 0

⎤
⎦

+
⎡
⎣ 0

[
0 0
0 y21 · x12

]
0 0

⎤
⎦ +

⎡
⎣ 0

[
0 0
0 y22 · x22

]
0 0

⎤
⎦

For the right side, we have⎧⎨
⎩

⎡
⎣

[
y11 y12

y21 y22

]
0

0 0

⎤
⎦

⎡
⎣

[
v 0
0 v

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
x11 x12

x21 x22

]
0 0

⎤
⎦

⎫⎬
⎭

which is the sum of 32 terms. We show now that 24 of these 32 terms are zero,
and each of the other 8 terms is equal to one of the 8 terms in the expansion of
the left side. We note first that by changing the signs of the first two columns
we have that⎧⎨

⎩
⎡
⎣

[
y11 y12

y21 y22

]
0

0 0

⎤
⎦

⎡
⎣

[
v 0
0 v

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
x11 x12

x21 x22

]
0 0

⎤
⎦

⎫⎬
⎭

has the form ⎡
⎣ 0

[
α β

γ δ

]
0 0

⎤
⎦ .

1 Although the proof of this lemma is long, it renders the inductive step in the proof of Propos-
ition 4.7 trivial
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We shall consider eight cases.2

Case 1A: Y = y11 ⊗ e11 =
[
y11 0
0 0

]
, V = v ⊗ e11 =

[
v 0
0 0

]

In this case, further analysis shows that

⎧⎨
⎩

⎡
⎣

[
y11 0
0 0

]
0

0 0

⎤
⎦

⎡
⎣

[
v 0
0 0

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
x11 0
0 0

]
0 0

⎤
⎦

⎫⎬
⎭

is of the form ⎡
⎣ 0

[
α 0
0 0

]
0 0

⎤
⎦ .

and hence is unchanged by applying the isometry C14 which interchanges the
first and fourth columns. The resulting (form of the) triple product we started
with is therefore⎧⎨

⎩
⎡
⎣ 0

[
0 y11

0 0

]
0 0

⎤
⎦

⎡
⎣ 0

[
0 v

0 0

]
0 0

⎤
⎦

⎡
⎣ 0

[
x11 0
0 0

]
0 0

⎤
⎦

⎫⎬
⎭

which equals (isometries preserve the partial triple product)

⎡
⎣ 0

{[
0 y11

0 0

] [
0 v

0 0

] [
x11 0
0 0

]}
0 0

⎤
⎦ = 1

2

⎡
⎣ 0

[
y11 · x11 0

0 0

]
0 0

⎤
⎦

as required. An identical argument, using C13 instead of C14 shows that

⎧⎨
⎩

⎡
⎣

[
y11 0
0 0

]
0

0 0

⎤
⎦

⎡
⎣

[
v 0
0 0

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
0 x12

0 0

]
0 0

⎤
⎦

⎫⎬
⎭

= 1

2

⎡
⎣ 0

[
0 y11 · x12

0 0

]
0 0

⎤
⎦ .

2 Since we only apply this proposition in the case where x11 = x22 = y11 = y22 = 0 (see
the proof of Theorem 4.8), most of these cases become easier. Nevertheless, we prove the more
general statement
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To finish case 1A, use the isometry R14 which interchanges the first and fourth
rows on⎧⎨

⎩
⎡
⎣

[
y11 0
0 0

]
0

0 0

⎤
⎦

⎡
⎣

[
v 0
0 0

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
0 0
x21 x22

]
0 0

⎤
⎦

⎫⎬
⎭

to obtain⎧⎨
⎩

[
0 0[

0 0
y11 0

]
0

] [
0 0[

0 0
v 0

]
0

] ⎡
⎣ 0

[
0 0
x21 x22

]
0 0

⎤
⎦

⎫⎬
⎭

which is zero by Lemma 3.6, which is valid for M2(A). Hence, the original
triple product is zero.

Case 1B: Y = y11 ⊗ e11 =
[
y11 0
0 0

]
, V = v ⊗ e22 =

[
0 0
0 v

]

Using the isometry C2(i) of multiplication of the second column by the
imaginary unit i we have that⎧⎨

⎩
⎡
⎣

[
y11 0
0 0

]
0

0 0

⎤
⎦

⎡
⎣

[
0 0
0 v

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
x11 x12

x21 x22

]
0 0

⎤
⎦

⎫⎬
⎭

which is of the form ⎡
⎣ 0

[
α β

γ δ

]
0 0

⎤
⎦ ,

is equal to a non-zero multiple of its negative, and is thus zero.

Case 2A: Y = y12 ⊗ e12 =
[

0 y12

0 0

]
, V = v ⊗ e11 =

[
v 0
0 0

]

Using the isometry C1(i) of multiplication of the first column by the ima-
ginary unit i we have that⎧⎨

⎩
⎡
⎣

[
0 y12

0 0

]
0

0 0

⎤
⎦

⎡
⎣

[
v 0
0 0

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
x11 x12

x21 x22

]
0 0

⎤
⎦

⎫⎬
⎭

which is of the form ⎡
⎣ 0

[
α β

γ δ

]
0 0

⎤
⎦ ,
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is equal to a non-zero multiple of its negative, and is thus zero.

Case 2B: Y = y12 ⊗ e12 =
[

0 y12

0 0

]
, V = v ⊗ e22 =

[
0 0
0 v

]

Using the isometry R23 which interchanges rows 2 and 3 we have that

⎧⎨
⎩

⎡
⎣

[
0 y12

0 0

]
0

0 0

⎤
⎦

⎡
⎣

[
0 0
0 v

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
x11 x12

0 0

]
0 0

⎤
⎦

⎫⎬
⎭ = 0

by Lemma 3.6, which is valid for M2(A).
Using the isometry C24 and Lemma 4.1, we have that

⎧⎨
⎩

⎡
⎣

[
0 y12

0 0

]
0

0 0

⎤
⎦

⎡
⎣

[
0 0
0 v

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
0 0
x21 0

]
0 0

⎤
⎦

⎫⎬
⎭

= 1

2

⎡
⎣ 0

[
y12 · x21 0

0 0

]
0 0

⎤
⎦

Using the isometry C23 and Lemma 4.1, we have that

⎧⎨
⎩

⎡
⎣

[
0 y12

0 0

]
0

0 0

⎤
⎦

⎡
⎣

[
0 0
0 v

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
0 0
0 x22

]
0 0

⎤
⎦

⎫⎬
⎭

= 1

2

⎡
⎣ 0

[
0 y12 · x22

0 0

]
0 0

⎤
⎦ .

Case 3A: Y = y21 ⊗ e21 =
[

0 0
y21 0

]
, V = v ⊗ e11 =

[
v 0
0 0

]

Using the isometry R13 which interchanges rows 1 and 3 we have that

⎧⎨
⎩

⎡
⎣

[
0 0
y21 0

]
0

0 0

⎤
⎦

⎡
⎣

[
v 0
0 0

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
0 0
x21 x22

]
0 0

⎤
⎦

⎫⎬
⎭ = 0

by Lemma 3.6, which is valid for M2(A).
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Using the isometry C14 and Lemma 4.1, we have that⎧⎨
⎩

⎡
⎣

[
0 0
y21 0

]
0

0 0

⎤
⎦

⎡
⎣

[
v 0
0 0

]
0

0 0

⎤
⎦

⎡
⎣

[
x11 0
0 0

]
0

0 0

⎤
⎦

⎫⎬
⎭

= 1

2

⎡
⎣ 0

[
0 0

y21 · x11 0

]
0 0

⎤
⎦

Using the isometry C13 and Lemma 4.1, we have that⎧⎨
⎩

⎡
⎣

[
0 0
y21 0

]
0

0 0

⎤
⎦

⎡
⎣

[
v 0
0 0

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
0 x12

0 0

]
0 0

⎤
⎦

⎫⎬
⎭

= 1

2

⎡
⎣ 0

[
0 0
0 y21 · x11

]
0 0

⎤
⎦ .

Case 3B: Y = y21 ⊗ e21 =
[

0 0
y21 0

]
, V = v ⊗ e22 =

[
0 0
0 v

]

Using the isometry C2(i) of multiplication of the second column by the
imaginary unit i we have that⎧⎨

⎩
⎡
⎣

[
0 0
y21 0

]
0

0 0

⎤
⎦

⎡
⎣

[
0 0
0 v

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
x11 x12

x21 x22

]
0 0

⎤
⎦

⎫⎬
⎭

which is of the form ⎡
⎣ 0

[
α β

γ δ

]
0 0

⎤
⎦ ,

is equal to a non-zero multiple of its negative, and is thus zero.

Case 4A: Y = y22 ⊗ e22 =
[

0 0
0 y22

]
, V = v ⊗ e11 =

[
v 0
0 0

]

Using the isometry C1(i) of multiplication of the first column by the ima-
ginary unit i we have that⎧⎨

⎩
⎡
⎣

[
0 0
0 y22

]
0

0 0

⎤
⎦

⎡
⎣

[
v 0
0 0

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
x11 x12

x21 x22

]
0 0

⎤
⎦

⎫⎬
⎭



a holomorphic characterization of operator algebras 263

which is of the form ⎡
⎣ 0

[
α β

γ δ

]
0 0

⎤
⎦ ,

is equal to a non-zero multiple of its negative, and is thus zero.

Case 4B: Y = y22 ⊗ e22 =
[

0 0
0 y22

]
, V = v ⊗ e22 =

[
0 0
0 v

]
Using the isometry R23 shows that⎧⎨

⎩
⎡
⎣

[
0 0
0 y22

]
0

0 0

⎤
⎦

⎡
⎣

[
0 0
0 v

]
0

0 0

⎤
⎦

⎡
⎣ 0

[
x11 x12

0 0

]
0 0

⎤
⎦

⎫⎬
⎭ = 0.

Using the isometry C24 shows that⎧⎨
⎩

⎡
⎣

[
0 0
0 y22

]
0

0 0

⎤
⎦

⎡
⎣

[
0 0
0 v

]
0

0 0

⎤
⎦

⎡
⎣

[
0 0
x21 0

]
0

0 0

⎤
⎦

⎫⎬
⎭

= 1

2

⎡
⎣ 0

[
0 0

y22 · x21 0

]
0 0

⎤
⎦

Using the isometry C23 shows that⎧⎨
⎩

⎡
⎣

[
0 0
0 y22

]
0

0 0

⎤
⎦

⎡
⎣

[
0 0
0 v

]
0

0 0

⎤
⎦

⎡
⎣

[
0 0
0 x22

]
0

0 0

⎤
⎦

⎫⎬
⎭

= 1

2

⎡
⎣ 0

[
0 0
0 y22 · x22

]
0 0

⎤
⎦

This completes the proof of the lemma.

Lemma 4.6. For X, Y ∈ M2(A) and V = diag(v, v) ∈ M2(A),

X · Y + Y ·X = 2{XVY }.

Proof. Lemmas 3.1 to 3.12 and 4.1 to 4.3 now follow automatically for
elements of M2(A), since the proofs for M2(A) are the same as those for A
once you have Lemma 4.4. The lemma follows from Lemma 4.5 in the same
way as (9) from the fact that Lemmas 3.7 and 3.12 are valid for M2(A).
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Proposition 4.7. ForX, Y ∈Mn(A), and V = diag(v, v, . . . , v)∈Mn(A),

(a) {XVV } = X,

(b)

[
0 Y ·X
0 0

]
= 2

{[
Y 0
0 0

] [
V 0
0 0

] [
0 X

0 0

]}
,

(c) X · Y + Y ·X = 2{XVY }.
Proof. We shall prove by induction on k that the proposition holds for

n = 2k − 1 and 2k. Let k = 1 so that n = 1 and 2.
If n = 1, (a) is the first assumption in Theorem 4.8, (b) is Definition 3.13,

and (c) has been noted in (9) as a consequence of Lemmas 3.7 and 3.12. If
n = 2, (a), (b) and (c) have been proved in Lemmas 4.4,4.5 and 4.6 respectively.

We now assume the the proposition holds for n = 1, 2, . . . , 2k. We shall
show that it holds for n = 2k + 1 and for n = 2k + 2.

First, for any X ∈ M2k+1(A), and Vm = diag(v, . . . , v) ∈ Mm(A), let us
write

X̃ =
[
X 0
0 0

]
∈ M2k+2(A)

and

Ṽ =
[
V2k+1 0

0 0

]
∈ M2k+2(A).

We then write

X̃ =
[
X11 X12

X21 X22

]

and

Ṽ =
⎡
⎣Vk+1 0

0

[
Vk 0
0 0

] ⎤
⎦ ,

where Xij ∈ Mk+1(A). Since k + 1 ≤ 2k, the induction proceeds by simply
repeating the proofs of Lemmas 4.4,4.5 and 4.6 for the case n = 2, with
X, Y, V replaced by X̃, Ỹ , Ṽ .

Now suppose n = 2k + 2. For any X ∈ M2k+2(A), let us write

X̃ =
[
X11 X12

X21 X22

]

and

Ṽ =
[
Vk+1 0

0 Vk+1

]
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where Xij ∈ Mk+1(A). Since k + 1 ≤ 2k, the induction proceeds, as above,
by simply repeating the proofs of Lemmas 4.4,4.5 and 4.6 for the case n = 2,
with X, Y, V replaced by X̃, Ỹ , Ṽ .

We can now complete the proof of our main result which is restated here.

Theorem 4.8. An operator space A is completely isometric to a unital
operator algebra if and only there exists v ∈ CS(A) such that:

(i) {xvv} = x for all x ∈ A
(ii) Let V = diag(v, . . . , v) ∈ Mn(A). For all X ∈ Mn(A)

‖ {XVX} ‖ ≤ ‖X‖2.

Proof. We have already noted in the introduction that the conditions are
necessary. Conversely, by the first assumption, all the machinery developed so
far is available. In particular, v is a unit element for the product x · y and by
Lemma 4.6, for every X ∈ M2(A), X ·X = {XVX}.

With X =
[

0 x

y 0

]
for elements x, y ∈ A of norm 1, we have

max(‖x · y‖, ‖y · x‖) =
∥∥∥∥
[
x · y 0

0 y · x
]∥∥∥∥ = ‖X ·X‖ = ‖{XVX}‖

≤ ‖X‖2 =
∥∥∥∥
[

0 x

y 0

]∥∥∥∥
2

= max(‖x‖, ‖y‖)2 = 1

so the multiplication on A is contractive. The same argument, using Propos-
ition 4.7, shows that if X, Y ∈ Mn(A), then ‖X · Y‖ ≤ ‖X‖‖Y‖ so the
multiplication is completely contractive. The result now follows from [6].

For the sake of completeness, we include the detail of the last inequality:

max(‖X · Y‖, ‖Y ·X‖) =
∥∥∥∥
[
X · Y 0

0 Y ·X
]∥∥∥∥

=
∥∥∥∥
[

0 X

Y 0

]
·
[

0 X

Y 0

]∥∥∥∥
=

∥∥∥∥
{[

0 X

Y 0

] [
V 0
0 V

] [
0 X

Y 0

]}∥∥∥∥
≤

∥∥∥∥
[

0 X

Y 0

]∥∥∥∥
2

= max(‖X‖, ‖Y‖)2.



266 matthew neal and bernard russo

Remark 4.9. The second condition in Theorem 4.8 can be replaced by3

(13)

∥∥∥∥
{[
Y 0
0 0

] [
V 0
0 0

] [
0 X

0 0

]}∥∥∥∥ ≤ 1

2
‖X‖‖Y‖,

so that by Proposition 4.7(b),

‖Y ·X‖ ≤ ‖X‖‖Y‖.
Indeed, by Lemma 4.2 and the first condition,A is a unital (with a unit of norm
1 and not necessarily associative) algebra. Remark 4.9 now follows from [6].

The condition (13) can be restated in holomorphic terms as follows. Let Ṽ

denote the 2n by 2n matrix

[
V 0
0 0

]
, where V = diag(v, . . . , v) ∈ Mn(A).

For all X, Y ∈ Mn(A)∥∥∥∥hṼ
([
Y X

0 0

])
− hṼ

([
0 X

0 0

])
− hṼ

([
Y 0
0 0

])
+ Ṽ

∥∥∥∥ ≤ ‖X‖‖Y‖.

We close by stating some problems which arose in connection with this
paper.

Problem 1. Is there a Banach space with partial triple product {x, a, y} for
which the inequality ‖{x, a, y}‖ ≤ ‖x‖‖a‖‖y‖
does not hold?

Problem 2.4 Is the symmetric part of the predual of a von Neumann algebra
equal to 0? What about the predual of a JBW ∗-triple which does not contain
a Hilbert space as a direct summand?

Problem 3. Is the completely symmetric part of an infinite dimensional
Cartan factor of type 2, 3 or 4 zero, as in the finite dimensional case?

In [18], it is proved that all operator algebra products on an operator space
A are of the form x · y = xa∗y for an element a which lies in the injective
envelope I (A). Here the “quasimultiplier" a lies in the symmetric part of I (A).
It is clear that the intersection of an operator spaceAwith the quasimultipliers
of I (A) from [18] is a TRO and is contained in the completely symmetric part

3 Although the 1/2 in (13) conveniently cancels the 2 in Proposition 4.7(b), its presence is
justified by the fact that (13) holds in case A is an operator algebra

4 Problem 2 has been solved in the affirmative in the preprint “Von Neumann algebra pre-
duals satisfy the linear biholomorphic property” by Antonio M. Peralta and Laszlo L. Stacho
(http://arxiv.org/pdf/1309.0982v1.pdf).
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ofA. Our main theorem is that certain elements in the holomorphically defined
completely symmetric part induce operator algebra products on A while [18]
shows that all operator algebra products on A arise from the more concretely
and algebraically defined quasimultpliers. Hence it is natural to ask

Problem 4. Under what conditions does the completely symmetric part
of an operator space consist of quasimultipliers?

Of course using direct sums and the discussion in the last two paragraphs
of section 1.2, we can construct operator spaces whose completely symmetric
part is different from zero and from the symmetric part of the operator space.
However it would be more satisfying to answer the following problem.

Problem 5. Is there an operator space whose completely symmetric part
is not contractively complemented, different from zero, and different from the
symmetric part of the operator space?

The following problem is motivated by the main result.

Problem 6. If we assume that, for each natural n, the matrix V = diag(v,
. . . , v) ∈ S(Mn(A)), and the hypotheses (i) and (ii) hold, does it follow that
v ∈ CS(A)?
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