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Abstract
A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann
algebra. In this article, we study derivations of Murray-von Neumann algebras and their properties.
We show that the “extended derivations” of a Murray-von Neumann algebra, those that map the
associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only
derivation that maps a Murray-von Neumann algebra associated with a von Neumann algebra of
type II1 into that von Neumann algebra is 0. This result is an extension, in two ways, of Singer’s
seminal result answering a question of Kaplansky, as applied to von Neumann algebras: the algebra
may be non-commutative and contain unbounded elements. In another sense, as we indicate in
the introduction, all the derivation results including ours extend what Singer’s result says, that
the derivation is the 0-mapping, numerically in our main theorem and cohomologically in our
theorem on extended derivations. The cohomology in this case is the Hochschild cohomology for
associative algebras.

1. Introduction

At a conference held in 1953, Kaplansky asked Singer if he had an idea of what
the derivations of C(X), the algebra of continuous functions on a compact
Hausdorff space X, might be. A day later, Singer gave Kaplansky a short,
clever argument that such derivations are the 0-mapping (that is, must map all
of C(X) to 0). (See [10] for an account of this.) As noted in [10], Kaplansky’s
paper [12] and the strong interest in derivations of operator algebras grew out of
Singer’s result. Kaplansky showed that each derivation of a type I von Neumann
algebra (for example, B(H ), the algebra of all bounded operators on H ) into
itself is “inner” (that is, has the form Ad(B), where Ad(B)(A) = AB − BA).
In the course of his argument, Kaplansky proves that each such derivation is
(norm-)continuous and conjectures that that “automatic” continuity is true for
all C*-algebras. This conjecture was proved a few years later by Sakai [18] –
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an ingenious argument – and extended, later, by Ringrose to derivations of a
C*-algebra into a Banach bimodule [16] – with another ingenious argument.
These were among the earliest “automatic continuity” results. In [9] and [17]
(see, also, [7] and [5]), it was proved that each derivation of a C*-algebra
acting on a Hilbert space H extends to a derivation of the strong-operator
closure of that algebra, a von Neumann algebra, and that each derivation of
a von Neumann algebra is inner. The proof of this last result is not simple.
Surprisingly enough, this theorem is an extension of Singer’s result. Of course,
the von Neumann algebra is a C*-algebra. If it is abelian, it is isomorphic to a
C(X), and each inner derivation, Ad(B), is the 0-mapping. One may object that
not all abelian C*-algebras are von Neumann algebras; but this can be easily
remedied by adducing the possibility of extending a derivation of a C*-algebra
to its strong-operator closure. It is not, however, in this primitive sense that we
see the von Neumann algebra derivation theorem as an extension of Singer’s
derivation theorem; but, rather, in the sense that it tells us that each such
derivation is 0 as an element of the 1-cohomology group of the von Neumann
algebra [8].

We recall that a derivation of an associative algebra A is a linear mapping
δ of A into itself satisfying the (Leibnitz-differentiation) property, δ(AB) =
Aδ(B)+ δ(A)B for all A and B in A . More generally, if M is an A bimodule,
and δ is a linear mapping of A into M satisfying the Leibnitz rule (precisely
as just described – in that case, A is a bimodule over itself) δ is said to be a
derivation of A into M . In Hochschild’s cohomology of associative algebras
[3] and [4], an n-multilinear mapping ϕ of A into M (an “n-cochain”) is
transformed by a precisely defined process, the (n-coboundary) operator �n,
into an n + 1-cochain �n(ϕ). If �n(ϕ) = 0, ϕ is said to be an “n-cocycle.” In
any event, �n(ϕ) is said to be an “n+1-coboundary” and is an n+1-cocycle (as
�n+1�n = 0, the main property of coboundary operations). The coboundary
operators are linear, from which, the n-cocycles form a linear subspace of
the linear space of n-cochains (“on A with coefficients in M ”) and the n-
coboundaries form a linear subspace of the n-cocycles whose quotient (as
additive groups) is the “n th cohomology group” of A with coefficients in M .
As it relates to our derivations, the 1-coboundaries are the mappings Ad(B)

with B in A , and the Leibnitz rule for derivations “embodies” the coboundary
operator

(�1(ϕ))(A, B) = Aϕ(B) − ϕ(AB) + ϕ(A)B,

which is 0 for all A and B in A precisely when ϕ is a derivation. The theorem
of [9] and [17], is the statement that the first cohomology group of a von Neu-
mann algebra (with coefficients in itself) is 0 (that is, that each cocycle is a
coboundary – that each derivation is Ad(B) for some B in A ). Singer’s the-
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orem tells us that insisting that a derivation apply to (that is, “differentiates”)
all functions in C(X) (that is, in a commutative C*-algebra) to yield func-
tions, once more, forces the derivation to be the 0-mapping (“numerically”) on
C(X). This same insistence for a derivation of a non-commutative C*-algebra
(or its extension to a von Neumann closure of that algebra), again, forces the
derivation to be “0” (“cohomologically”). In this non-commutative case, there
is enough left of the derivation, as Ad(H), to be of significance in modeling
quantum physics (H will become the Hamiltonian). Without trying to be too
precise, if we follow (the thrust of) Dirac’s program in the first chapters of [1],
we associate the bounded observables of some quantum mechanical system
with the self-adjoint operators in a von Neumann algebra R . Loosely speak-
ing, the symmetries of the system (and the associated conservation laws) are
modeled by the corresponding symmetry groups as groups of automorphisms
of R . The time-evolution of the system, with a given dynamics, corresponds to
a one-parameter group of automorphisms, t → αt of R . Again, very loosely,
αt will be exp(itδ) for some linear mapping δ (of the “algebra” of observables).
Thus

d(αt (A))

dt

∣∣∣∣
t=0

= d

dt
e−itHAeitH

∣∣∣∣
t=0

= −iHe−itHAeitH + e−itHAeitH (iH)
∣∣
t=0

= −iHA + iAH = i[A, H ],

while

d(αt (A))

dt

∣∣∣∣
t=0

= d

dt
eitδ(A)

∣∣∣∣
t=0

= iδ(A)eitδ(A)
∣∣
t=0 = iδ(A).

Thus δ(A) = [A, H ]. In the case of Hamiltonian mechanics, time-differen-
tiation of the dynamical variable is Poisson bracketing with the Hamiltonian
(the total energy). In quantum mechanics, differentiation of the “evolving ob-
servable” is Lie bracketing with the (quantum) Hamiltonian (modeled from the
kinetic and potential energies for the corresponding “classical analogue” of the
quantum system, when there is one). Of course, this bracketing, δ, is a deriva-
tion of the system as the other generators of the one-parameter automorphism
groups of the “operator algebras” that describe our physical system and its
symmetries are likely to be – hence, our interest in studying those derivations.

Now, the (physical) Hamiltonian will, in general, correspond to an unboun-
ded operator on our Hilbert space H as will likely be the case for the other
operators K such that Ad(K) generates a group of symmetries of the quantum
system. Of course, these unbounded operators will not lie in a von Neumann
algebra, but they may be “affiliated” with the von Neumann algebra corres-
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ponding to our quantum system, in a sense that we shall soon make explicit
(roughly, each “bounded function” of such an affiliated generator lies in the
von Neumann algebra). This makes it very desirable to study derivations of
algebras that include such unbounded operators. Regrettably, the tendency of
unbounded operators not to combine effectively under the operations of ad-
dition and multiplication severely limits the possibility of forming algebras
that include these affiliated operators, and along with that, we cannot speak
of “their derivations.” There is, however, one intriguing exception discovered
by Murray and von Neumann, the “finite” von Neumann algebras and their
families of affiliated operators [13]. These algebras are the main focus of this
article.

In [20], von Neumann defines a class of algebras of bounded operators
on a Hilbert space that have acquired the name “von Neumann algebras.”
[2] (Von Neumann refers to them as “rings of operators.”) Such algebras are
self-adjoint, strong-operator closed, and contain the identity operator. We say
that a closed densely defined operator T on a Hilbert space H is affiliated
with a von Neumann algebra R when U ′T = TU ′ for each unitary operator
U ′ in R ′, the commutant of R . Murray and von Neumann show, at the end
of [13], that the family of operators affiliated with a factor of type II1 (or,
more generally, affiliated with a finite von Neumann algebra, those in which
the identity operator is finite) admits surprising operations of addition and
multiplication that suit the formal algebraic manipulations used by the founders
of quantum mechanics in their mathematical model. This is the case because
of very special domain properties that are valid for finite families of operators
affiliated with a finite von Neumann algebra. (Unbounded operators, even those
that are closed and densely defined, can often neither be added nor multiplied
usefully. They may not have common dense domains.) In [22], it is proved
that the family of operators affiliated with a finite von Neumann algebra is a
*-algebra (with unit I , the identity operator) under the operations of addition
+̂ and multiplication ·̂ (in the “Murray-von Neumann” sense). We refer to such
algebras as Murray-von Neumann algebras.

Returning to the lessons Singer’s description of derivations of C(X) and
the von Neumann algebra derivation theorem have taught us, we have seen
that “over-differentiation,” in two senses, “too many” functions have deriv-
atives and the range of derivations are too restricted, requires “payment” in
some form of “self-nullification.” In the first case, that of C(X), the derivation
must be “numerically” 0, in the second case, that of a von Neumann algebra,
the derivation must be “cohomologically” 0, Ad(B), for some B in the al-
gebra. To assure ourselves that “over-differentiation” is a principal cause of
this “nullification,” we have only to note that the (norm-dense) subalgebra of
polynomials on [0, 1] has classical (one-variable) differentiation as a non-zero
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derivation of that function algebra into itself. Of course, all this is taking place
in the commutative setting of function algebras – a restriction on the range of
the derivation. In the non-commutative C*-algebra case (where the domain re-
striction of a full von Neumann algebra and the commutative range restriction
are removed), the example that follows displays a derivation of a C*-algebra
into itself that is not inner (that is, a derivation that gives rise to a non-zero
element of the first cohomology group of the C*-algebra with coefficients in
itself).

Example 0. Let H be a separable Hilbert space and K be the (norm-closed)
two-sided ideal (in B(H )) of compact operators on H . (To recall, K is the
unique, proper, norm-closed, two-sided ideal in B(H ) and is the norm closure
of the family of operators in B(H ) with finite-dimensional range – another
two-sided ideal in B(H ), contained in every other non-zero two sided ideal
in B(H ).) The family {aI + K : K ∈ K } is a C*-algebra A (with unit I ). If
B ∈ B(H ), then Ad(B), restricted to A , is a derivation δ of A (into itself, as
K is a two-sided ideal in B(H )). If δ is inner, there is an A in K and a scalar
a such that Ad(aI + A)(= Ad(A)) restricted to A is δ. In this case,

0 = (Ad(aI + A) − Ad(B))(K) = Ad(aI + A − B)(K),

for each K in K . Thus A − B commutes with each element of A . As A acts
irreducibly on H and is a self-adjoint family of operators, A−B = bI for some
scalar b (from Schur’s Lemma, rather, von Neumann’s Double Commutant
Theorem – see [6], I, II). Thus, when δ is inner, B is A − bI , which lies in A .
If we choose B not in A , δ is not inner.

The view of the basic derivation theory of operator algebras from the vantage
point of Singer’s seminal answer to Kaplansky’s question and the correspond-
ing result for non-commutative von Neumann algebras raises a number of
highly provocative, related questions. For example, is there a restriction on the
range of a derivation δ of a von Neumann algebra, say, the restriction that is
present in the case of Singer’s theorem, that the range be abelian, that allows us
to recapture Singer’s “numerical” 0-nullification? This question has an affirm-
ative answer. We shall prove this and other, broader results related to Singer’s
theorem elsewhere. For the present article, we concentrate on the questions
referring to derivations of the algebras of unbounded operators, where such
algebras are present. Loosely speaking, the central questions in this connection
are as follows. Are there cohomological and numerical 0-nullification results
for those algebras? There are, and these are the two main results of this paper.

If R is a finite von Neumann algebra, we denote by ‘Af(R )’ its associated
Murray-von Neumann algebra. The complete cohomological result would say
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that each derivation of Af(R ) is inner (that is, is Ad(T ) for some T in Af(R )).
The authors feel strongly that this is true; but it is still open. (It is a work
in progress for us.) We characterize the derivations of Af(R ) that have the
form Ad(B) (restricted to Af(R )) with B in R as those that map R into R .
(See Theorem 4.3.) We call such mappings on Af(R ) extended derivations of
Af(R ) (because they extend a derivation of R into itself). It’s proof makes
(crucial) use of the von Neumann algebra derivation theorem of [9] and [17],
which, as noted, is not easy, as well as some spectral-theoretic techniques
fashioned for finite von Neumann algebras (and based on the deep results of
Murray and von Neumann [13]). Given what is known, it is not a difficult
argument. We use it at once to prove our other main result, the assertion that
each derivation of Af(R ) with R a von Neumann algebra of type II1 that
maps Af(R ) into R is 0. In other words, the restriction that the range of
the derivation is in R , the “bounded” part of Af(R ), allows us to recapture
Singer’s numerical 0 nullification in the (non-commutative, unbounded) case
of Af(R ). This result is difficult. The matrix techniques developed in Section
3 are indispensable for our proof. For anyone following that proof in detail,
it is important to realize that all the caution of the calculations performed in
Section 3 is needed to produce a valid argument for our main theorem.

2. Murray-von Neumann Algebras

Definition 2.1. We say that a closed densely defined operator T is affiliated
with a von Neumann algebra R and write T ηR when U ∗TU = T for each
unitary operator U commuting with R .

Note that the equality, U ∗TU = T , of the preceding definition is to be
understood in the strict sense that U ∗TU and T have the same domain and
(formal) equality holds for the transforms of vectors in that domain. As far as
the domains are concerned, the effect is that U transforms D(T ) onto itself.

As mentioned in the introduction, we are interested in operators affiliated
with finite von Neumann algebras. We say that a von Neumann algebra is
finite when the identity operator I is finite. Murray and von Neumann define
finiteness of projections as follows. Let H be a Hilbert space. Two projections
E and F acting on H are said to be orthogonal if EF = 0. If the range of
F is contained in the range of E (equivalently, EF = F ), we say that F is a
subprojection of E and write F � E. Let R be a von Neumann algebra acting
on H . Suppose that E and F are nonzero projections in R . We say E is a
minimal projection in R if F � E implies F = E. Murray and von Neumann
conceived the idea of comparing the “sizes” of projections in a von Neumann
algebra in the following way: E and F are said to be equivalent (modulo or
relative to R ), written E ∼ F , when V ∗V = E and V V ∗ = F for some V
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in R . (Such an operator V is called a partial isometry with initial projection
E and final projection F .) We write E � F when E ∼ F0 and F0 � F and
E ≺ F when E is, in addition, not equivalent to F . It is apparent that ∼ is
an equivalence relation on the projections in R . In addition, � is a partial
ordering of the equivalence classes of projections in R , and it is a non-trivial
and crucially important fact that this partial ordering is a total ordering when
R is a factor. (Factors are von Neumann algebras whose centers consist of
scalar multiples of the identity operator.) Murray and von Neumann also define
infinite and finite projections in this framework modeled on the set-theoretic
approach. The projection E in R is infinite (relative to R ) when E ∼ F < E,
for some projection F in R , and finite otherwise.

Throughout the rest of this section, R denotes a finite von Neumann al-
gebra acting on a Hilbert space H , and A (R ) denotes the family of operators
affiliated with R .

In [22], the following are proved.

Proposition 2.2. Suppose that operators S and T are affiliated with R ,
then:

(i) S + T is densely defined, preclosed and its closure, denoted by S +̂ T ,
is affiliated with R ;

(ii) ST is densely defined, preclosed and its closure, denoted by S ·̂ T , is
affiliated with R .

Proposition 2.3. Suppose that operators A, B and C are affiliated with R ,
then

(A ·̂ B) ·̂ C = A ·̂ (B ·̂ C),

that is, the associative law holds for the multiplication ·̂.
Proposition 2.4. Suppose that operators A, B and C are affiliated with R ,

then
(A +̂ B) ·̂ C = (A ·̂ C) +̂ (B ·̂ C)

and
C ·̂ (A +̂ B) = (C ·̂ A) +̂ (C ·̂ B),

that is, the distributive laws hold for the multiplication ·̂ relative to the addition
+̂.

Proposition 2.5. Suppose that operators A and B are affiliated with R ,
then

(aA +̂ bB)∗ = āA∗ +̂ b̄B∗ and (A ·̂ B)∗ = B∗ ·̂ A∗, (a, b ∈ C)

where ∗ is the usual adjoint operation on operators (possibly unbounded).
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Therefore, A (R ), provided with the operations +̂ (addition) and ·̂ (multi-
plication), is a *-algebra (with unit I ). Recall, R is finite (and must be) as a
von Neumann algebra for this to be valid.

Definition 2.6. We use ‘Af(R )’ to denote the *-algebra (A (R ), +̂, ·̂ ).
We call Af(R ) the Murray-von Neumann algebra associated with R .

3. Matrix Representation of Murray-von Neumann Algebras

Let R be a ring with unit I , and involution A → A∗ (A ∈ R ).

Definition 3.1. We call a set {Eab}a,b∈A a matrix-unit system in R when
each Eab �= 0, EabEcd is 0 if b �= c and EabEbd = Ead , for all a, b, c,

and d in A. If, in addition, E∗
ab = Eba , we say that {Eab} is a self-adjoint

matrix-unit system. If {Fcd}c,d∈B is a matrix-unit system in R such that A ⊆ B
and {Eab}a,b∈A ⊆ {Fcd}c,d∈B, we say that {Fcd} is a larger matrix-unit system
than {Eab}. If {Eab} is maximal relative to this partial ordering of matrix-unit
systems in R , we call {Eab}a,b∈A a complete matrix-unit system for R . Each
Eab in a matrix-unit system is said to be a matrix unit (in the system). The
matrix units Eaa , a ∈ A, are said to be principal (or diagonal) matrix units in
the system {Eab}a,b∈A.

Remark 3.2. The principal matrix units Eaa are idempotents in R , since
EaaEaa = Eaa . If A is finite, say, A = {1, . . . , n} and the sum of the principal
matrix units, E11 +· · ·+Enn, is I , then {Ejk}j,k∈{1,...,n} is complete in R , for if
there is a larger matrix-unit system, it has a principal matrix unit Eaa distinct
from each ofE11, . . . , Enn. In this case, Eaa = EaaI = Eaa(E11+· · ·+Enn) =
0, contrary to our assumption that matrix units are non-zero.

The classic example of a system of matrix units is that of the set of n × n

matrices each of which has a single non-zero entry 1. If that entry is in the
j th row and kth column, the resulting matrix is Ejk of our matrix-unit system
for M n(C), the algebra of n × n matrices with complex entries (in which it is
complete). The examples that are most relevant for our present purposes are
the finite, complete, self-adjoint matrix-unit systems for factors of type II1.
If M is such a factor, the principal matrix units E11, . . . , Enn are equivalent
projections (self-adjoint idempotents) and each Ejk is a partial isometry with
initial projection Ekk (since E∗

jkEjk = EkjEjk = Ekk) and final projection Ejj

(since EjkE
∗
jk = Ejj ). The key result that allows us to begin the process of

constructing matrix-unit systems is in [6] II, Section 6.5. Lemma 6.5.6 asserts
that each projection in a von Neumann algebra R with no central portion of
type I (equivalently, with no non-zero abelian projections), in particular, in a
factor of type II1, is the sum of n equivalent (orthogonal) projections in R ,
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where n is any preassigned positive integer. In [11], Corollary 3.15, it is proved,
among other such results, that each maximal abelian, self-adjoint subalgebra
of a von Neumann algebra of type II1 has n orthogonal equivalent projections
with sum I . This possibility for choosing the principal matrix units for special
purposes directed by spectral analysis is a technique that will be vital to our
proof of Theorem 4.10. Given the n equivalent projections E11, . . . , Enn with
sum I in the von Neumann algebra R , to construct a finite, complete, self-
adjoint matrix-unit system with these principal matrix units, we choose a partial
isometry Ej1 with initial projection E11 and final projection Ejj (say, by use
of the polar decomposition of EjjE11). When j = 1, it is best to use E11 as
Ej1. With these choices, we define Ejk to be Ej1E

∗
k1(= Ej1E1k).

With the ring R and a finite, self-adjoint matrix-unit system {Ejk}j,k∈{1,...,n},
such that

∑n
j=1 Ejj = I , there is a procedure for associating a ring of matrices

whose entries lie in the subring T of R consisting of the elements of R that
commute with all the matrix units of our system. This procedure is described
in [6] II, Lemma 6.6.3. That lemma directs us to assign to T in R the n × n

matrix whose (j, k) entry Tjk is
∑n

r=1 Erj TEkr . That this element lies in T
follows from

EstTjk = Est

( n∑
r=1

Erj TEkr

)
= EstEtj TEkt = Esj TEkt

= Esj TEksEst =
( n∑

r=1

Erj TEkr

)
Est = TjkEst , j, k ∈ {1, . . . , n}.

If we denote by ϕ the mapping that assigns to T the matrix [Tjk] in the n × n

matrix ring n⊗T over T , then ϕ(Ejk) is the matrix (in n⊗T ) with I at the (j, k)

entry and 0 at all other entries, as the following calculation shows. The (s, t)

entry for ϕ(Ejk) is
∑n

r=1 ErsEjkEtr = 0 unless s = j and k = t , in which
case that entry is

∑n
r=1 ErjEjkEkr = ∑n

r=1 Err , which is I , by assumption.
With the present notation:

Theorem 3.3. The mapping ϕ is a *-isomorphism of R onto n ⊗ T .

Proof. If S and T are in R (an arbitrary ring with unit I and involution
A → A∗, A ∈ R ),

(S + T )jk =
n∑

r=1

Erj (S + T )Ekr =
n∑

r=1

Erj SEkr +
n∑

r=1

Erj TEkr

= Sjk + Tjk.

Thus ϕ(S + T ) = [(S + T )jk] = [Sjk + Tjk] = [Sjk] + [Tjk] = ϕ(S) + ϕ(T ).
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At the same time,

(ST )jk =
n∑

r=1

Erj STEkr =
n∑

r=1

ErjS

( n∑
t=1

Ett

)
TEkr

=
n∑

r=1

n∑
t=1

Erj SEt tTEkr =
n∑

t=1

n∑
r=1

Erj SEt tTEkr

=
n∑

t=1

( n∑
r=1

Erj SEtr

)( n∑
r=1

ErtTEkr

)

=
n∑

t=1

SjtTtk = (ϕ(S)ϕ(T ))jk.

Thus ϕ(ST ) = ϕ(S)ϕ(T ).
In addition, since our matrix-unit system is self-adjoint,

(T ∗)jk =
n∑

r=1

ErjT
∗Ekr =

( n∑
r=1

ErkTEjr

)∗
= (Tkj )

∗.

Thus ϕ(T ∗) = ϕ(T )∗ for each T in R .
Finally, we must show that ϕ is one-to-one and onto n⊗T . Suppose ϕ(T )(=

[Tjk]) is 0 for some T in R . Then

0 = Tjk =
n∑

r=1

Erj TEkr = Ejj

( n∑
r=1

Erj TEkr

)
Ejk

= EjjEjj TEkjEjk = Ejj TEkk,

for all j and k in {1, . . . , n}. Thus

T = (E11 + · · · + Enn)T (E11 + · · · + Enn) =
n∑

j,k=1

Ejj TEkk = 0.

It follows that ϕ is a one-to-one mapping (“injective”). To show that ϕ maps
onto n ⊗ T (that is, is “surjective”), it will suffice to show that, for each given
T in T and each choice of j and k in {1, . . . , n}, there is an element of R
that ϕ maps to the matrix with T as the (j, k) entry and 0 at all other entries.
We show that TEjk is that element in R . For this, we use the fact we have
proved that ϕ(TEjk) = ϕ(T )ϕ(Ejk). Since T is in T , T commutes with all
the matrix units. It follows that

∑n
r=1 ErsTEtr = ∑n

r=1 TErsEtr , so that Tst

is 0 when s �= t . If s = t ,
∑n

r=1 TErsEtr = T
∑n

r=1 Err = T . Thus ϕ(T ) is
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the n × n diagonal matrix with T at each diagonal entry. As we have noted,
ϕ(Ejk) is the matrix whose only non-zero entry is I in the (j, k) position.
Hence ϕ(T )ϕ(Ejk)(= ϕ(TEjk)) is the matrix whose only non-zero entry is T

in the (j, k) position. It follows that ϕ is surjective.

Remark 3.4. The proof that ϕ is surjective can also be effected by com-
puting the entries of the matrix for TEjk directly. Note for this, that (TEjk)st =∑n

r=1 ErsTEjkEtr = T
∑n

r=1 ErsEjkEtr = 0 unless s = j and k = t , in
which case,

∑n
r=1 ErsEjkEtr = ∑n

r=1 Err = I . Thus (TEjk)st = 0 unless
s = j and k = t , in which case (TEjk)jk = T .

4. Derivations of Murray-von Neumann Algebras

4.1. Definitions and Basic Results

Throughout this subsection, R denotes a finite von Neumann algebra acting on
a Hilbert space H , and note, from Section 2, that Af(R ) denotes the Murray-
von Neumann algebra associated with R .

Definition 4.1. We say that δ, a derivation of Af(R ), is an extended
derivation of Af(R ) if δ maps R into R .

We shall show that every extended derivation δ of Af(R ) is inner; that is
δ = Ad(B) for some B in R .

Lemma 4.2. Let T be an operator affiliated with R . Suppose that there is
a sequence {Fn} of operators in R with strong-operator limit I , the identity
operator, such that TFnx = 0 for all x in D(TFn), the domain of TFn, and for
each n. Then T x = 0 for all x in H .

Proof. By definition of affiliated operators, T is densely defined and closed.
Since each Fn is a bounded operator, from Proposition 3.7 and Lemma 4.10 in
[22], the operator TFn is densely defined and closed.

Since TFn = 0 on its dense domain for each n, and TFn is closed, TFn = 0
on the whole Hilbert space H and T

(⋃∞
n=1 Fn(H )

) = 0. At the same time,
the sequence {Fn} is strong-operator convergent to the identity operator I , and
so,

⋃∞
n=1 Fn(H ) is dense in H . Again, T = 0 on a dense subset of H , hence,

T = 0 on H (since T is closed).

Theorem 4.3. Suppose that δ is an extended derivation of Af(R ). Then
there is an operator B in R such that, for each operator A in Af(R ), δ(A) =
Ad(B)(A) = A ·̂ B −̂ B ·̂ A.

Proof. By definition of extended derivations of Af(R ), the restriction of
δ on R is a derivation of R . Since every derivation of a von Neumann algebra
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is inner ([9] and [17]), there is an operator B in R such that

δ(A) = AB − BA for all A in R .

Define Ad(B) : Af(R ) → Af(R ) by

Ad(B)(A) = A ·̂ B −̂ B ·̂ A (A ∈ Af(R )).

Note that for every A in R ,

Ad(B)(A) = A ·̂ B −̂ B ·̂ A = AB − BA = δ(A).

Let δ0 = δ − Ad(B). Then δ0 is a derivation of Af(R ) and δ0(R ) = 0. We
shall show that δ0(Af(R )) =0, which will complete the proof.

For any operator A in Af(R ), let V H be the polar decomposition of A and
let En be the spectral projection for H corresponding to the interval [−n, n] for
each positive integer n. Then, the sequence {En} is strong-operator convergent
to I , and for each n, AEn is a bounded everywhere-defined operator in R .
Moreover,

0 = δ0(AEn) = Aδ0(En) + δ0(A)En = δ0(A)En.

From the preceding lemma, δ0(A) = 0 (A ∈ Af(R )).

4.2. Main Theorem

We shall prove that the only derivation of Af(R ) that maps Af(R ) into R is 0,
where R is a von Neumann algebra of type II1 (that is, R is a finite von Neu-
mann algebra such that E is 0 when ER E is abelian for some projection E in
R ).

The following results will be useful to us in the proof of Theorem 4.10.

Definition 4.4. We say that a von Neumann algebra R is diffuse if it has
no projection minimal in R.

Lemma 4.5. Each von Neumann algebra R with no central portion of type I,
in particular, a von Neumann algebra of type II1, is diffuse.

Proof. Suppose E is a minimal projection in R, then CE , the central
support of E, is a minimal projection of the center C of R and RCE is a factor
[6] II, Proposition 6.4.3. By assumption, RCE , a central portion of R, is not
of type I. Since E is in RCE and E is minimal in R, it is minimal in RCE ,
contradicting the fact that RCE is a factor not of type I. Thus R has no such
minimal projection E, and R is diffuse.



218 richard v. kadison and zhe liu

Despite the exclusion of “type I” as required in the preceding lemma, there
are certainly diffuse type I von Neumann algebras – as is clear from the pro-
position that follows.

Proposition 4.6. Every maximal abelian self-adjoint subalgebra (masa)
A in a diffuse von Neumann algebra R is diffuse.

Proof. We show that if a projection E is minimal in A , it is minimal in
R. Then, since R is diffuse, A must be diffuse.

We make use of the fact that a projection F is a minimal projection in a
von Neumann algebra R if and only if FRF consists of scalar multiples of F

(see [6] II, Proposition 6.4.3).
Now, suppose that E is a minimal projection in A . For each B in A ,

EBE = λE for some scalar λ. If A is in R, then

EAEB = EAEEB = EAEBE = EA(λE) = λEAE,

BEAE = BEEAE = EBEAE = (λE)AE = λEAE.

Since B is an arbitrary element in A and by maximality of A , EAE is in A .
Again, since E is minimal in A , E(EAE)E = βE for some scalar β. But
E(EAE)E = EAE so that EAE = βE for some scalar β (depending on A) for
each A is R. That is, ERE consists of scalar multiples of E and hence E is
minimal in R.

Lemma 4.7. Suppose that B is an operator in R , a finite von Neumann
algebra, and that B is not in the center of R . Then, if there is an operator T in
Af(R ) such that Ad(B)(T ) /∈ R , there is a self-adjoint operator S in Af(R )

such that Ad(B)(S) /∈ R .

Proof. Suppose that there is an operator T (necessarily, unbounded) in
Af(R ) such that

Ad(B)(T ) = T ·̂ B −̂ B ·̂ T /∈ R ;
that is, Ad(B)(T ) is an unbounded operator affiliated with R . Note that T can
be decomposed as T1 +̂ iT2 with T1 and T2 self-adjoint operators affiliated with
R . From the algebraic properties of Af(R ),

Ad(B)(T ) = Ad(B)(T1 +̂ iT2)

= (T1 +̂ iT2) ·̂ B −̂ B ·̂ (T1 +̂ iT2)

= (T1 ·̂ B −̂ B ·̂ T1) +̂ i(T2 ·̂ B −̂ B ·̂ T2).

At least one of T1 ·̂B −̂B ·̂T1(= Ad(B)(T1)) and T2 ·̂B −̂B ·̂T2(= Ad(B)(T2))

is unbounded (affiliated with R ) since Ad(B)(T ) is unbounded.
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Lemma 4.8. Suppose that B is an operator in R , a finite von Neumann
algebra, and that B is not in the center of R . If Ad(B)(T ) is in R for every
self-adjoint operator T in Af(R ), then there is a self-adjoint operator S in R ,
not in the center of the von Neumann algebra R , such that Ad(S)(T ) is in R
for every self-adjoint operator T in Af(R ).

Proof. If, for every self-adjoint operator T in Af(R ),

Ad(B)(T ) = T ·̂ B −̂ B ·̂ T ∈ R ,

then
−(Ad(B)(T ))∗ = T ·̂ B∗ −̂ B∗ ·̂ T ∈ R .

It follows that

Ad(B)(T ) − (Ad(B)(T ))∗ = (T ·̂ B −̂ B ·̂ T ) +̂ (T ·̂ B∗ −̂ B∗ ·̂ T )

= T ·̂ (B +̂ B∗) −̂ (B +̂ B∗) ·̂ T

= Ad(B +̂ B∗)(T ) = Ad(B + B∗)(T ) ∈ R .

Similarly, Ad(B)(T )+ (Ad(B)(T ))∗ = Ad(B −B∗)(T ) ∈ R , and Ad(i(B −
B∗)(T )) ∈ R . Now, both B + B∗ and i(B − B∗) are self-adjoint operators in
R . If both were in the center of R , B + B∗ and B − B∗, hence, B, would be
in that center, contrary to assumption.

Proposition 4.9. Let A be an abelian von Neumann algebra acting on a
Hilbert space H . Suppose {Fa}a∈A is a family of mutually orthogonal, non-
zero projections in A with sum F , and {Ha}a∈A is a family of self-adjoint
operators affiliated with A such that HaFa = Ha for each a in A. Let Da

be D(Ha) ∩ Fa(H ) and DA be the linear span of {{Da}a∈A, (I − F)(H )}. If
H0 is the linear operator with domain DA that maps xa in Da to Haxa and x ′
in (I − F)(H ) to 0, then H0 is closable with closure a self-adjoint operator
affiliated with A .

Proof. Since HaFa = Ha , Fa maps D(Ha) into D(Ha). So, Fa(D(Ha)) ⊆
D(Ha) ∩ Fa(H ). As Fa is continuous and D(Ha) is dense in H , Fa(D(Ha))

is dense in Fa(H ). Thus D(Ha) ∩ Fa(H ) is dense in Fa(H ), and DA is dense
in H . We show, next, that H0, with its dense domain DA, is symmetric; that
is, 〈H0x, y〉 = 〈x, H0y〉, for each x and y in DA. It follows, then, that H0

is closable. After we note that this closure, H , is affiliated with A , a finite
von Neumann algebra, we conclude, from [6] IV, Exercise 6.9.53, that H is
self-adjoint.

Let x be xa(1) + · · · + xa(m) + x ′ and y be yb(1) + · · · + yb(n) + y ′, where x ′
and y ′ are in (I − F)(H ), each of {a(1), . . . , a(m)} and {b(1), . . . , b(n)} is a
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subset of A of distinct elements, all xa(j) and yb(j) are non-zero, each xa(j) is
in Da(j) and each yb(j) is in Db(j). Let {c(1), . . . , c(r)} be {a(1), . . . , a(m)} ∩
{b(1), . . . , b(n)}. Then

〈H0x, y〉 = 〈H0xa(1) + · · · + H0xa(m) + H0x
′, yb(1) + · · · + yb(n) + y ′〉

= 〈Ha(1)xa(1) + · · · + Ha(m)xa(m), yb(1) + · · · + yb(n) + y ′〉
= 〈Hc(1)xc(1), yc(1)〉 + · · · + 〈Hc(r)xc(r), yc(r)〉
= 〈xc(1), Hc(1)yc(1)〉 + · · · + 〈xc(r), Hc(r)yc(r)〉
= 〈xa(1) + · · · + xa(m) + x ′, Hb(1)yb(1) + · · · + Hb(n)yb(n)〉
= 〈xa(1) + · · · + xa(m) + x ′, H0yb(1) + · · · + H0yb(n) + H0y

′〉
= 〈x, H0y〉.

We show, now, that H , the closure of H0, is affiliated with A . Let U ′ be a
unitary operator in A ′. We want to show that HU ′ = U ′H , in the strict sense of
identical domains and equality on these domains. From Remark 5.6.3 of [6] I,
since DA is a core for H , it will suffice to show that HU ′x = U ′Hx for each x

in DA. First we show that HU ′xa = U ′Hxa for each xa in Da . Since HaηA ,
HaU

′ = U ′Ha , for all a in A, and HU ′xa = H0U
′xa = HaU

′xa = U ′Haxa =
U ′H0xa = U ′Hxa . Now, if x ∈ (I −F)(H ), since each Fa ∈ A , F and I −F

are in A , U ′x ∈ (I−F)(H ). Hence HU ′x = H0U
′x = 0 = U ′H0x = U ′Hx.

Theorem 4.10. If R is a von Neumann algebra of type II1 and B is an
operator in R not in the center C of R , then there is an operator H in Af(R )

such that Ad(B)(H) /∈ R .

Proof. Of course, if Ad(B)(H) /∈ R , with B in R and H in Af(R ), then
H /∈ R . From Lemmas 4.7 and 4.8, it suffices to consider the case in which
B is a self-adjoint operator in R ; even a stronger result should be true, viz.,
we can find a self-adjoint H such that Ad(B)(H) /∈ R . Let A be a maximal
abelian, self-adjoint algebra (masa) in R containing B. Then C ⊆ A . From
[6] I, Theorem 5.2.1, A ∼= C(X) with X an extremely disconnected compact
Hausdorff space. Let A → Ã be the isomorphism and C̃ be the image of C in
C(X). Then, from the properties of the isomorphism of A with C(X), C̃ is a
(“sup”) norm-closed subalgebra of C(X) closed under complex conjugation,
and containing the constant functions. M. H. Stone [19], Theorem 5 identifies
the norm-closed, self-adjoint subalgebras of C(X) containing the scalar mul-
tiples of I , such as C̃ , as those corresponding to an equivalence relation ∼ on
the points of X defined by: x ∼ x ′ when f (x) = f (x ′) for each f in C̃ . In
the usual way, ∼ is associated with a partition of X into (closed) subsets of
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X (each of which is the equivalence class of every point in it), and C̃ consists
of all functions g (the image of an operator in C ) in C(X) such that g takes
constant value on each of the partition sets. As B /∈ C , there are two points
x and x ′ in X, necessarily distinct, such that B̃(x) �= B̃(x ′) and x ∼ x ′. We
may suppose, without loss of generality, that B̃(x ′) < B̃(x). If P is a projec-
tion in C such that 1 = P̃ (x)(= P̃ (x ′)), then B̃P (x) = B̃(x)P̃ (x) = B̃(x)

and B̃P (x ′) = B̃(x ′). It will suffice to find H in Af(R P) for BP such that
Ad(BP )(H) /∈ R P (since Ad(BP )(H) = (Ad(B)(H))P ). In particular, CB ,
the central carrier of B serves as such a P . To see this, note that CBB = B. Thus
C̃BB(x) = C̃B(x)B̃(x) = B̃(x) and C̃BB(x ′) = C̃B(x ′)B̃(x ′) = B̃(x ′). It fol-
lows that C̃B(x ′)B̃(x ′) �= C̃B(x)B̃(x). Now, x ∼ x ′, whence C̃B(x) = C̃B(x ′)
(CB ∈ C ). Hence C̃B(x) and C̃B(x ′) are non-zero. However, C̃B is an idem-
potent function. Thus C̃B(x) = C̃B(x ′) = 1.

If we replace B by B − 1
2 [B̃(x) + B̃(x ′)]CB , then Ad(B) is unchanged,

for all scalar multiples of CB are in C . At the same time, B̃(x) is replaced
by 1

2 [B̃(x) − B̃(x ′)], and B̃(x ′) is replaced by − 1
2 [B̃(x) − B̃(x ′)]. If we find

H as desired, for this new B, we are through. At the same time, Ad(aB) =
a Ad(B) for each scalar a. If a �= 0, finding H for Ad(aB) will complete
our argument (using a−1H of course). Replacing the new B by aB where a is

2[B̃(x) − B̃(x ′)]−1
, we may now assume that B̃(x) = 1 and B̃(x ′) = −1.

Let S0 be the closure of the open set in X where B̃ takes values greater than
7
8 and less than 9

8 , and let S ′
0 be the closure of the open set on which B̃ takes

values less than − 7
8 and greater than − 9

8 . These sets, S0 and S ′
0, are non-null

since x ∈ S0 and x ′ ∈ S ′
0. Let E0 and E′

0 be the projections in A corresponding
to the characteristic functions of E0 and E′

0, respectively. From the function
representation in C(X),

9
8E0 � BE0 � 7

8E0 and − 7
8E′

0 � BE′
0 � − 9

8E0.

It follows, from the definition of central carrier, that CE0 = CBE0 and CE′
0

=
CBE′

0
. By choice of E0 and E′

0, Ẽ0(x) = 1 and Ẽ′
0(x

′) = 1. Now, E0 = CE0E0

and E′
0 = CE′

0
E′

0, whence 1 = Ẽ0(x) = C̃E0(x)Ẽ0(x) = C̃E0(x) and 1 =
Ẽ′

0(x
′) = C̃E′

0
(x ′)Ẽ′

0(x
′) = C̃E′

0
(x ′). As x ∼ x ′ and CE0 and CE′

0
are in C ,

C̃E0(x
′) = C̃E0(x) = 1 = C̃E′

0
(x ′) = C̃E′

0
(x). Thus

(
C̃E0C̃E′

0

)
(x) = 1 and

CE0CE′
0

�= 0. Let P be CE0CE′
0
. Then CPE0 = P = CPE′

0
. We restrict our

considerations to R P acting on P(H ) and relabel BP , P(H ), and R P as B,
H , and R . This replacement carries over to the function representation, so that
X is now the clopen subset of the original X whose characteristic function is P̃ .
We retain the designation ∼ for the isomorphism of (the relabeled) R (that is,
R P ) with (the relabeled) C(X) (that is, C(X′), where X′ is {x : x ∈ X, P̃ (x) =
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1}). In this new notation, P = I , CE0 = CE′
0

= I . From the definition of
central carrier, QE0 > 0 and QE′

0 > 0 for each non-zero central projection Q

in R . Thus, with τ the center-valued trace on R , Qτ(E0) = τ(QE0) > 0 and
Qτ(E′

0) = τ(QE′
0) > 0 for each such Q. It follows, now, that the (closed)

subset of X0, where C(X0) is the function representation of C , on which ˜τ(E0)

is zero is nowhere dense (for, if its interior were non-null, the closure of that
interior would be a non-null clopen set corresponding to a non-zero central
projection Q such that Qτ(E0) is not zero as noted before and, yet, zero since˜τ(E0) is zero on that clopen set.) Similarly, the subset of X0 where ˜τ(E′

0) is
zero is nowhere dense. From continuity of ˜τ(E0), there is an open set in X0

on which ˜τ(E0) is bounded below by some positive constant a; and the same
is true on the closure O of that open set. As the zero set of ˜τ(E′

0) is nowhere
dense, ˜τ(E′

0) takes a positive value at some point of O . Again, from continuity
of ˜τ(E′

0),
˜τ(E′

0) is bounded below on a clopen subset O ′ of O by 1
n

for some
(possibly, large) positive integer n. Of course, we may choose n large enough
so that 1

n
� a. Thus, for the central projection Q corresponding to O ′ and

some (possibly, large) positive integer n, τ(E0) � 1
n
Q, τ(E′

0) � 1
n
Q. Hence

τ(QE0) = Qτ(E0) � 1
n
Q and τ(QE′

0) � 1
n
Q. We now restrict attention to

R Q, BQ, on Q(H ) and relabel these as R , B, and H . In this notation, we
have CE0 = CE′

0
= I = Q, τ(E0) � 1

n
I , and τ(E′

0) � 1
n
I .

Applying Corollary 3.14 of [11], there are subprojections E and E′ in A

of E0 and E′
0, respectively, such that τ(E) = τ(E′) = 1

n
I . Let E be E1 and

E′ be En. From Corollary 3.15 of [11], there are n − 2 orthogonal equivalent
projections in A , each with trace 1

n
I , E2, E3, . . . , En−1, with sum I −E1−En.

Let F be I −E1 −En. According to the cited result, there are n−2 orthogonal
equivalent projections in AF with sum F , the identity of AF .

Let Vj be the partial isometry with initial projection E1 and final projection
Ej . Then V ∗

j Vj = E1 and VjV
∗

j = Ej . Let

Ejk = VjV
∗
k ;

that is, Ejk is the partial isometry with initial projection Ek and final projection
Ej . Then

Ejj = VjV
∗

j = Ej (j = 1, 2, . . . , n),

n∑
j=1

Ejj =
n∑

j=1

Ej = I ;

EjkEkl = VjV
∗
k VkV

∗
l = VjE1V

∗
l = VjV

∗
l = Ejl;

EjkElm = VjV
∗
k VlV

∗
m = 0 if k �= l;

E∗
jk = Ekj .
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Hence, {Ejk}j,k=1,...,n is a self-adjoint system of n × n matrix units for R (and
for Af(R ) as well).

Consider the matrix unit E1n in R . When we compute its matrix in n ⊗ T ,
the n × n matrices over T (the subalgebra T of R consisting of elements in
R commuting with all matrix units in R in the chosen self-adjoint matrix unit
system), the result is the n × n matrix with I at the (1, n) position and 0 at all
other positions. The mapping from R to n⊗ T described in [6] II, Section 6.6
is a *-isomorphism of R onto n ⊗ T . That mapping is effected by assigning
to T in R the n × n matrix whose entry in the (j, k) position is

n∑
r=1

= Erj TEkr .

Of course, we must show that this entry is an element of T , that is, that the
entry commutes with each of the matrix units in the chosen self-adjoint matrix
unit system. Note, for this, that, for each h and l,

Ehl

( n∑
r=1

Erj TEkr

)
= Ehj TEkl =

( n∑
r=1

Erj TEkr

)
Ehl.

Next, suppose B is, as chosen earlier, a self-adjoint element in the masa
A , from our construction, A contains the principal matrix units E11, . . . , Enn

of our matrix unit system {Ejk}j,k=1,...,n, and BE11 � 7
8E11, BEnn � − 7

8Enn.
Suppose, also, that we have chosen H , a self-adjoint operator in Af(R ) as
well as in the algebra of operators affiliated with A . Without specifying H

precisely, at this point, we assume that HE11 � E11 and H ·̂ B(= HB) /∈ R .
Our goal, now, is to show that HE1n(= H ·̂ E1n) and B form a commutator
(Ad(B)(HE1n)) that is not in R (hence, is in Af(R ) \ R ).

The final step is a precise construction of the operator H . For this step, we
make use of the fact that each masa in a von Neumann algebra of type II1 is
diffuse (see Proposition 4.6). Using this, we construct a sequence of non-zero
mutually orthogonal subprojections F1, F2, . . . of E11 in A . We note, from
Proposition 4.9, that 2F1 + 3F2 + 4F3 + · · · is an operator with closure H

affiliated with A (here, A = {1, 2, . . .}, Hj = (j + 1)Fj , D(Hj ) = H , Dj =
Fj (H )), and that HE11 = H . Moreover, E11Fj = Fj , and Fj ·̂ H = HFj =
(j + 1)Fj , since FjFk = 0 when j �= k. Recall that, if T is a closed operator
and B is a bounded operator on the Hilbert space H , then the operator T B is
closed. So, we write HFj instead of H ·̂ Fj . Now, Fj and B are in A . Thus

Fj ·̂ HB = (j + 1)FjB = (j + 1)BFj = (j + 1)BE11Fj

� (j + 1) 7
8E11Fj = 7

8 (j + 1)Fj
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for each j . As Fj is a non-zero projection, ‖Fj ·̂HB‖ � 7
8 (j+1)‖Fj‖ = 7

8 (j+1)

for each j . Thus HB is unbounded and affiliated with A . At the same time,

‖Fj ·̂ HBE1n‖ �
∥∥ 7

8 (j + 1)FjE1n

∥∥ = 7
8 (j + 1),

since E1n is a partial isometry with final space E11(H ), containing Fj (H ).
It follows that HBE1n is an unbounded operator in Af(R ). We shall use
this construction to provide us with the desired commutator Ad(B)(HE1n)

in Af(R ) \ R .
The operator B ·̂ HE1n corresponds to the n × n matrix over T with

n∑
r=1

ErjB ·̂ HE1nEkr

at the (j, k) entry. Since B is in A and H is affiliated with A , they commute
with all the principal matrix units Ekk (k = 1, . . . , n), this (j, k) entry is

n∑
r=1

ErjB ·̂ HEjjE1nEkkEkr ,

which is 0 unless j = 1 and k = n. It follows that the (j, k) entry for the n×n

matrix corresponding to B ·̂ HE1n is 0 at all entries except, possibly, the (1, n)

entry, which is
n∑

r=1

Er1B ·̂ HE1r .

At the same time, B, H , and B ·̂H have diagonal matrices in n⊗T correspond-
ing to them. To see this, note that the (j, k) entry of the matrix corresponding
to B is Bjk , where

Bjk =
n∑

r=1

Erj BEkr ,

which is n∑
r=1

ErjEjj BEkkEkr =
n∑

r=1

Erj BEjjEkkEkr .

Since EjjEkk is 0 unless j = k, in which case EjjEkk = Ejj , the (j, k) entry
of the matrix corresponding to B is 0 unless j = k, in which case, the (j, j)

entry is Bjj , where

Bjj =
n∑

r=1

Erj BEjr
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for each j . Thus B corresponds to the diagonal matrix with Bjj at the diagonal
position (j, j) (j = 1, . . . , n), and 0 at every off-diagonal position. If we
compute Ad(B)(HE1n)(= (HE1n) ·̂ B −̂ B ·̂ (HE1n)) in terms of the n × n

matrices corresponding to it, we have that Ad(B)(HE1n) corresponds to the
n × n matrix with (j, k) entry,

n∑
r=1

Erj ·̂ HE1nBEkr −̂
n∑

r=1

ErjB ·̂ HE1nEkr

=
n∑

r=1

Erj ·̂ HEjjE1nEkkBEkr −̂
n∑

r=1

ErjB ·̂ HEjjE1nEkkEkr ,

which is 0 unless j = 1 and k = n, in which case it is the (1, n) entry,

n∑
r=1

Er1 ·̂ HE1nBEnr −̂
n∑

r=1

Er1B ·̂ HE1r

=
( n∑

r=1

Er1 ·̂ HE1r

)( n∑
s=1

EsnBEns

)
−̂

( n∑
r=1

Er1BE1r

)
·̂
( n∑

s=1

Es1 ·̂ HE1s

)

= H11Bnn −̂ B11 ·̂ H11.

We want to show that this entry is not in R (and is, hence, unbounded). If this
(1, n) entry is in R , then multiplying it on the left by −E11 and on the right
by E11 results in

−E11
(
H11Bnn −̂ B11 ·̂ H11

) ·̂ E11

= −E11

( n∑
r=1

Er1 ·̂ HE1nBEnr −̂
n∑

r=1

Er1B ·̂ HE1r

)
E11

= B ·̂ HE11 −̂ HE1nBEn1,

which is also in R . We argue, by contradiction, to show that this is not the
case.

In the construction of H , we defined non-zero projections Fj in A such
that Fj ·̂ H = (j + 1)Fj . Thus,

‖B ·̂ HE11 −̂ HE1nBEn1‖ = ‖Fj‖‖B ·̂ HE11 −̂ HE1nBEn1‖‖Fj‖
� (j + 1)‖BFjE11Fj − FjE1nBEn1Fj‖
� (j + 1)‖BFj − FjE1nBEn1Fj‖.

Now, by choice of E11,

BFj = BE11Fj �
(

7
8E11

)
Fj = 7

8Fj ,
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while

−FjE1nBEn1Fj = −FjE1nBEnnEn1Fj

� FjE1n

(
7
8Enn

)
En1Fj = 7

8FjE11Fj = 7
8Fj .

Hence,

BFj − FjE1nBEn1Fj � 14
8 Fj , ‖BFj − FjE1nBEn1Fj‖ � 14

8 ,

and ‖B ·̂ HE11 −̂ HE1nBEn1‖ � 14
8 (j + 1) > j,

for each positive integer j . It follows that B ·̂HE11 −̂HE1nBEn1 is not bounded,
not in R , and that Ad(B)(HE1n) ∈ Af(R ) \ R .

Corollary 4.11. Suppose that δ is a derivation of Af(R ) that maps Af(R )

into R , where R is a von Neumann algebra of type II1. Then δ(A) = 0 for
every A in Af(R ).

Proof. Since δ maps Af(R ) into R , δ maps R into R . So, δ is an extended
derivation of Af(R ). From Theorem 4.3, δ is inner, that is, there is an operator
B in R such that, for each operator A in Af(R ), δ(A) = Ad(B)(A) =
A ·̂ B −̂ B ·̂ A. If the operator B is in the center of R , then B is in the
center of Af(R ) (see Proposition 30 of [23]) and hence for each operator A in
Af(R ), Ad(B)(A) = A ·̂ B −̂ B ·̂ A = 0. If B is not in the center of R , from
Theorem 4.10, there is an operator H in Af(R )\R such that Ad(B)(H) /∈ R .
Contrary to the assumption that δ maps Af(R ) into R . Thus the only derivation
of Af(R ) into R is 0.

Remark 4.12. At first, we proved Theorem 4.10 and Corollary 4.11 for
factors of type II1 (those whose centers consist of scalar multiples of I) in
order to simplify a complicated argument, to a certain extent. As is often
the case with von Neumann algebras, much of the essence of the result being
proved is present in the case of a factor. For a von Neumann algebra of type II1,
quite a bit of difficulty resides in the nature of the center. This should not be
surprising; we are dealing with derivations and (Lie) bracketing and the crucial
hypothesis in Theorem 4.10 is that the operator B, about which the assertion is
made, does not lie in the center. Before we can succeed in constructing what we
need in the case where the von Neumann algebra has a robust center, we must
transform the condition of “non-centrality” into detailed spectral information
about B. This transformation is the substance of the first part of the proof of
Theorem 4.10. The use of the masa A containing B and the C(X) to which
it is isomorphic, with X extremely disconnected, and the representation of
operators as functions, is the powerful form of spectral theory that we use.



derivations of murray-von neumann algebras 227

The “struggle” that is apparent in our manipulation of central carriers to find
a non-zero central projection over which B has distinct spectrum (bounded
apart) is entirely unnecessary in the factor case; the center is isomorphic to
“functions” on a one-point space. Stone’s characterization of norm-closed,
self-adjoint subalgebras of C(X), in particular of C in A , is not needed in that
instance. As noted, the proof simplifies considerably in the factor case, though
it remains complicated. In the end, we felt that it was worthwhile to include
the general case, given the context of Lie bracketing.

We are grateful to the referee (anonymous), not only for a careful reading of
the tex-script of our proposed article and for capturing the spirit and intent of
what we were trying to do, but also for calling the interesting work of A. F. Ber,
V. I. Chilin, B. de Pagter, and F. A. Sukochev (dealing with derivations of
Segal’s algebras of measurable operators) to our attention and checking that
there is no overlap between that work and ours.
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