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CODIMENSION TWO DETERMINANTAL VARIETIES
WITH ISOLATED SINGULARITIES

MARIA APARECIDA SOARES RUAS∗ and MIRIAM DA SILVA PEREIRA∗∗

Abstract
We study codimension two determinantal varieties with isolated singularities. These singularities
admit a unique smoothing, thus we can define their Milnor number as the middle Betti number
of their generic fiber. For surfaces in C4, we obtain a Lê-Greuel formula expressing the Milnor
number of the surface in terms of the second polar multiplicity and the Milnor number of a generic
section. We also relate the Milnor number with Ebeling and Gusein-Zade index of the 1-form given
by the differential of a generic linear projection defined on the surface. To illustrate the results, in
the last section we compute the Milnor number of some normal forms from Frühbis-Krüger and
Neumer [7] list of simple determinantal surface singularities.

1. Introduction

The goal of this paper is to study codimension two determinantal varieties X

with an isolated singularity. These conditions imply that dim(X) ≤ 4. In the
cases of surfaces in C4 and 3-dimensional varieties in C5, these singularities
admit a unique smoothing, hence the topological type of their Milnor fiber is
well defined.

Let X be a codimension two determinantal variety with isolated singularity
and Xt its generic fiber. We define the Milnor number of X as the middle
Betti number of Xt . The conditions that X has isolated singularity and also be
smoothable implies that dim(X) = 2, 3. Since these are normal singularities, it
follows from a result of Greuel and Steenbrink ([11], p. 540) that b1(Xt) = 0,
where b1 is the first Betti number. They also prove in [11] that for every
complex analytic space with isolated singularity one has πi(Xt) = 0, for
i ≤ dim(X) − codim(X), where πi(Xt) is the i-th homotopy group of Xt .
Thus, it follows that the generic fiber of a determinantal variety Xt with isolated
singularity is connected. When dim(X) = 3, it also follows that Xt is 1-
connected.

For determinantal surfaces X in C4, we use these results and Morse theory
to obtain a Lê-Greuel formula expressing the Milnor number μ(X), in terms
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of the second polar multiplicity m2(X) and the Milnor number of a generic
section of X. This formula holds for 3-dimensional determinantal varieties in
C5, under the additional hypothesis that b2(Xt) = 0.

We do not know an algebraic formula to compute μ(Xt). Our approach
in this paper, in order to calculate this invariant is to further investigate its
geometric interpretation. For this we relate m2(X), and consequently μ(X),
to the Ebeling and Gusein-Zade index of the 1-form dp, where p is a generic
linear projection defined on X. We show in the last section how to use the results
to compute the Milnor number of some normal forms from Frühbis-Krüger
and Neumer [7] list of simple determinantal surface singularities.

For recent related results on determinantal varieties with isolated singu-
larities see Nuño-Ballesteros, Oréfice and Tomazella [16], Damon and Pike
[3].

2. Basic Definitions

Let Mat(n,p)(C) be the set of all n × p matrices with complex entries, �t ⊂
Mat(n,p)(C) the subset formed by matrices that have rank less than t , with
1 ≤ t ≤ min(n, p). It is possible to show that �t is an irreducible singular
algebraic variety of codimension (n− t +1)(p− t +1) (see [1]). Moreover the
singular set of �t is exactly �t−1. The set �t is called generic determinantal
variety.

Definition 2.1. Let M = (mij (x)) be an n × p matrix whose entries are
complex analytic functions on U ⊂ Cr , 0 ∈ U and f the function defined by
the t × t minors of M . We say that X is a determinantal variety of codimension
(n − t + 1)(p − t + 1) if X is defined by the equation f = 0.

We can look to a matrix M = (mij (x)) as a map M : Cr −→ Mat(n,p)(C),
with M(0) = 0. Then, the determinantal variety in Cr is the set X = M−1(�t),
with 1 ≤ t ≤ min{n, p}. The singular set of X is given by M−1(�t−1). We
denote Xreg = M−1(�t\�t−1), the regular part of X. Notice that X has an
isolated singularity at the origin if and only if r ≤ (n − t + 2)(p − t + 2).

Let Or be the ring of germs of analytic functions on Cr . We denote by
Mat(n,p)(Or ) the set of all matrices n × p with entries in Or . This set can be
identified with O

np
r , where O

np
r is a free module of rank np.

We concentrate our attention in this paper to codimension 2 determin-
antal singularities and their deformations. It is a consequence of Auslander-
Buchsbaum formula and the Hilbert-Burch’s Theorem that any deformation of
a Cohen-Macaulay variety of codimension 2 can be given as a perturbation of
the presentation matrix (see [6], p. 3994). Therefore we can study these variet-
ies and their deformations using their representation matrices. We can express
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the normal module and the space of the first order deformations in terms of
matrices, hence we can treat the base of the semi-universal deformation using
matrix representation.

The singularity theory of (n + 1) × n matrices has been studied in [6] and
[17].

3. The Generic Fiber

Let X0 ⊂ Cr be the germ of an analytic d-dimensional variety, on some open
set of Cr with isolated singularity at the origin. A smoothing of X0 is a flat
deformation with the property that its generic fiber is smooth. More precisely:

Definition 3.1. We say that a germ of analytic variety (X0, 0) with isolated
singularity of complex dimension d ≥ 1 has a smoothing, if there exist an open
ball Bε(0) ⊂ Cr centered at the origin, a closed subspace X ⊂ Bε(0) × D,
where D ⊂ C is an open disc with center at zero and a proper analytic map
F : X −→ D, with the restriction to X of the projection p : Bε(0)×D −→ D

such that

(a) F is flat;

(b) (F−1(0), 0) is isomorphic to (X0, 0);

(c) F−1(t) is non singular for t �= 0.

It follows from the above definition that X has isolated singularity at the
origin and is a normal variety if X0 is normal at zero. Moreover,

F |F−1(D−{0}): F−1(D − {0}) −→ D − {0}
is a fiber bundle whose fibers Xt = F−1(t) are non singular.

The topology of the generic fiber of a reduced curve has been intensively
studied (see [2]). For instance, the following result holds:

Theorem 3.2 ([2], p. 258). Let f : Y −→ D be a good representative of a
flat family f : (Y, 0) −→ (D, O) of reduced curves. Then, for all t ∈ D the
fiber Yt is connected.

For d-dimensional analytic spaces the following result is due to Greuel and
Steenbrink.

Theorem 3.3 ([11], p. 17). Let (X, 0) be a complex analytic space, d-
dimensional, with isolated singularity and Xt the Milnor fiber of a smoothing
of (X, 0). Then, �i(Xt) = 0 for i ≤ dim X − codim X.

It follows from the previous theorem that if (X, 0) is Cohen-Macaulay of
codimension 2 with isolated singularity, then its Milnor fiber is (dim X − 2)-
connected.
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As a consequence of Sard’s Theorem, it follows that complete intersec-
tions are smoothable; moreover the base of their semiuniversal deformations
is smooth whence the existence and uniqueness of the smoothing hold for them.
For determinantal singularities, the existence and uniqueness of the smooth-
ing do not occur in general (see [11]). But the following result was proved by
Wahl:

Theorem 3.4 ([20], p. 241). Let (X, 0) be a determinantal variety with
isolated singularity at the origin defined by t × t minors of an n × p matrix
M , whose entries are in Or , 2 ≤ t ≤ n ≤ p. If dim(X) < n + p − 2t + 3,
then X has a smoothing.

In particular, it follows from this result that if (X, 0) is Cohen-Macaulay
with codimension less than or equal to 2 and dim(X, 0) ≤ 3, then (X, 0)

admits a smoothing. We also observe that for Cohen-Macaulay singularities of
codimension less than or equal to 2, there is no obstruction for lifting second-
order deformations, the basis of the semi-universal deformation is smooth
([6]).

The following result was proved by Greuel and Steenbrink in [11].

Theorem 3.5 (See [11], p. 540). Let Xt be the Milnor fiber of a smoothing
of a normal singularity, then b1(Xt) = 0.

4. Morse Theory and the Topology of Varieties with Isolated
Singularity

Let (X, 0) ⊂ (Cr , 0) be a d-dimensional variety with isolated singularity at
the origin. Suppose that X has a smoothing, that is, there exists a flat family
� : � −→ D ⊂ C, restriction of the projection � : Bε(0) × D −→ D, such
that Xt = �−1(t) is smooth for all t �= 0 and X0 = X.

The variety � also has isolated singularity at the origin. Let p be a complex
analytic function defined in X with isolated singularity at the origin. Let

p̃ : � ⊂ Cr × C −→ C

(x, t) −→ p̃(x, t),

such that p̃(x, 0) = p(x) and for all t �= 0, p̃(·, t) = pt is a Morse function
in Xt .

Thus we have the following diagram

(1)

Xt ⊂ � ⊂ Cr × C

pt (�,p)

C × {t} C × C
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Notice that the number of critical points of pt is finite. In fact, x is a critical
point of pt if and only if x is a critical point of the function Re(pt ) : Xt −→ R.
Since the real part of pt is an analytic function on Xt , the number of critical
points of Re(pt ) and, hence of pt , is finite.

Proposition 4.1. Let X be a d-dimensional variety with isolated singularity
at the origin admitting a smoothing and pt : Xt −→ C, pt = p̃(·, t) as above.
Then,

(a) If t �= 0

(2) Xt 	 p−1
t (0) ∪̇ {cells of dimension d},

where ∪̇ indicates the gluing of the spaces and 	 indicates that the
spaces have the same homotopy type.

(b)

(3) χ(Xt) = χ(p−1
t (0)) + (−1)dnσ ,

where nσ is the number of critical points of pt and χ(Xt) denotes the
Euler characteristic of Xt .

Proof. Let x1, . . . , xν be the critical points of pt and yi = pt(xi), 1 ≤ i ≤
ν, their critical values. Suppose that 0 is a regular value of pt , for all t �= 0. We
denote by Ei the line segments connecting the points yi to 0, Ei ∩ Ej = {0}
for i �= j and E = ∪Ei . Take η > 0 small enough such that yi ∈ Dη(0) for
all 1 ≤ i ≤ ν.

The set Dη(0) is a regular neighborhood of E that retracts to E.
We can realize this retraction through a smooth vector field that can be lifted

into the stratified space Xt . Integrating this vector field, the space p−1
t (Dη)

retracts by deformation on p−1
t (E).

Then,

Xt = p−1
t (Dη) 	 p−1

t (E) =
⋃

i

(p−1
t (Ei)) = p−1

t (0)∪
(⋃

i

p−1
t (Ei − {0})

)
.

Observe first that xi is a critical point of the restriction of pt to p−1
t (Ei −{0})

if and only if xi is a critical point of the restriction of the real part of pt to
p−1

t (Ei − {0}). Therefore, it follows from the classical Morse theory (see [15])
that
(4)

Xt = p−1
t (0) ∪

(⋃
i

p−1
t (Ei − {0})

)
	 p−1

t (0) ∪̇ {cells of dimension d}.
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As the Euler characteristic is homotopy invariant, using the decomposition
(2) we have

(5) χ(Xt) = χ(p−1
t (0)) + (−1)dnσ ,

where nσ is the number of critical points of pt .

A consequence of the decomposition (2) is that only p−1
t (Ei − {0}) con-

tributes to the free part of H(Xt, Z). Hence, b(Xt) is less than or equal to the
number of critical points of pt .

Remark 4.2. This result also appears in [12].

Formula (5) above can also be expressed replacing nσ by md(X), the d-th
polar multiplicity of X.We refer to [19] for the definition and properties of polar
varieties. Here, we follow Gaffney in [8] to define the d-th polar multiplicity
by the following construction: Let � ⊂ Cr × Cs be a complex analytic variety
of complex dimension d + s and � : � −→ Cs an analytic function such that
�−1(0) = X. Let p̃ : � ⊂ Cr × Cs , 0 → Cs , 0 be such that p̃|X has isolated
singularity at the origin. Then, we can define md(X, p̃, �) = m0(Pd(�, p̃)),
where Pd(�, p̃) is the polar variety of � with respect to (�, p̃). In general,
md(X, p̃, �) depends on the choices of � and p̃, but when � is a versal
deformation of X or in the case that X has a unique smoothing, md depends
only on X and p̃. Furthermore, if p̃ is a generic linear projection, md is an
invariant of the analytic variety X, which we denote by md(X).

When s = 1 and p̃ is a generic linear projection, we recover the conditions
in diagram (1) and we can relate nσ and md(X). In fact, the following result
is a direct consequence of the definitions of these two invariants.

Proposition 4.3. Under the conditions of Proposition 4.1, nσ = md(X).

5. Determinantal Varieties

In this section, we restrict our attention to Cohen-Macaulay singularities of
codimension 2 with isolated singularity at the origin. These include determ-
inantal surfaces in C4 and 3- dimensional determinantal varieties in C5. These
varieties admit a unique smoothing (see [17]), thus the following definition
makes sense:

Definition 5.1. Let (X, 0) ⊂ (Cr , 0) be the germ of a codimension 2 de-
terminantal variety with isolated singularity at the origin, dim(X) = 2, 3.The
Milnor number of X, denoted μ(X), is defined by μ(X) = bd(Xt), where Xt is
the generic fiber of X and bd(Xt) is the d-th Betti number of Xt , d = dim(X).
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Let p : X −→ C be a complex analytic function with isolated singularity
at the origin. Then, Y = X ∩ p−1(0) is a variety of dimension d − 1, with
isolated singularity at 0.

In particular, when p : Cr −→ C is a linear function, it follows from the
presentation matrix that Y is also a Cohen-Macaulay determinantal variety of
dimension d − 1 in Cr−1.

In the following theorem, we obtain a formula of type Lê-Greuel for germs
of Cohen-Macaulay determinantal surfaces of codimension 2 with isolated
singularity at the origin. This formula was first obtained for linear sections
of hypersurfaces by Lê Dung Trang in [13], and later extended to complete
intersections with isolated singularities by Giusti and Henry in [10] (see also
[14], where Massey obtains the formula in a more general setting).

Theorem 5.2. Let (X, 0) ⊂ (C4, 0) be the germ of a determinantal surface
with isolated singularity at the origin. Then,

m2(X) = μ(p−1(0) ∩ X) + μ(X),

where m2(X) is the second polar multiplicity of X.

Proof. From (2), we have

(6) χ(Xt) = χ(p−1
t (0)) + (−1)2nσ ,

where nσ is the number of critical points of pt : Xt −→ C. From Proposi-
tion 4.3 it follows that nσ = m2(X).

Moreover, χ(Xt) = b0(Xt) − b1(Xt) + b2(Xt). Then, using (6) we get

(7) b0(Xt) − b1(Xt) + b2(Xt) = χ(p−1
t (0)) + m2(X).

We know that p−1
t (0) ⊂ Xt is the generic fiber of the determinantal curve

p−1(0) ⊂ X. Therefore, p−1
t (0) has the homotopy type of a bouquet of spheres

of real dimension 1. Let C = p−1(0) ∩ X. Then, χ(C) = 1 − μ(C, 0), where
μ(C, 0) is the Milnor number of the curve ([2]).

Since determinantal varieties are normal varieties, it follows from Propos-
ition 3.5 that b1(Xt) = 0. Moreover Xt is connected. Therefore,

1 + b2(Xt) = 1 − μ(p−1(0) ∩ X) + m2(X).

Hence, m2(X) = μ(p−1(0) ∩ X) + μ(X).

When dim(X) = 3, we obtain an expression which reduces to the Lê-Greuel
formula when b2(Xt) = 0.
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Proposition 5.3. Let (X, 0) ⊂ (C5, 0) be the germ of a determinantal
variety of codimension 2 with isolated singularity at the origin. Then,

m3(X) = μ(p−1(0) ∩ X) + μ(X) + b2(Xt),

where m3(X) is the polar multiplicity of X.

6. Index of 1-Forms on Determinantal Varieties

In this section we relate the formulas of the previous section with Ebeling
and Gusein-Zade index formulas in ([4]). They define indices of 1-forms on
determinantal varieties having an essential isolated singularity, EIDS. These
singularities can be represented by a matrix M = (mij (x)), x ∈ Cr , which is
transverse, away from the origin to the rank stratification of Mat(n,p)(C), (see
[4] for more details).

In particular, codimension two determinantal varieties with isolated singu-
larities are EIDS, and the results in [4] apply to this class of singularities.

Let X be a germ of a codimension two determinantal variety with isolated
singularity and ω the germ of a 1-form on Cr whose restriction to (X, 0) has
an isolated singular point at the origin.

Ebeling and Gusein-Zade definition of the Poincaré-Hopf index of ω re-
duces in our case to the following:

Definition 6.1. The Poincaré-Hopf index (PH-index), indPH ω, is the sum
of the indices of the zeros of a generic pertubation ω̃ of the 1-form ω on X̃, a
smoothing of X.

Proposition 6.2 ([4], p. 117). The PH-index indPH ω of the 1-form ω on
the EIDS (X, 0) is equal to the number of non-degenerate singular points of a
generic deformation ω̃ of the 1-form ω on X̃reg, the regular part of X̃.

For determinantal varieties with isolated singularity, the relation between
the PH-index and the radial index (see [5] for the definition of the radial index),
is given by

indPH(ω; X, 0) = indrad(ω; X, 0) + (−1)dim(X)χ(X, 0),

where χ(X, 0) = χ(X, 0) − 1. The PH-index is closely related to the d-th
polar multiplicity as we can see in the following proposition.

Proposition 6.3. Let (X, 0) ⊂ (C4, 0) be a determinantal surface, with
isolated singularity at the origin. Then, indPH(ω; X, 0) = m2(X), where ω =
dp, here p is a generic projection and m2(X) is the second polar multiplicity
of X.
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Proof. Let p : (X, 0) −→ C be a generic linear projection and ε > 0 small
enough such that the restriction of p to X ∩ Bε(0) has isolated critical point
at the origin. Then, by Theorem 3 of [5], indrad(dp; X, 0) = −χ(p−1(t)),
t �= 0, where χ(X) = χ(X) − 1. Then, indPH(dp; X, 0) = −χ(p−1(t)) +
(−1)2χ(X, 0). Therefore,

indPH(dp; X, 0) = −(χ(p−1(t)) − 1) + (χ(X, 0) − 1) = μ(C) + μ(X),

where C = p−1(0) ∩ X.

Remark 6.4.
(a) This result is useful in calculations of μ(X), since in many cases one

can use geometric methods to calculate indPH(ω; X, 0). This procedure
will be useful in the calculations in the next section.

(b) An important problem not addressed in this work is the determination of
an algebraic formula for the polar multiplicity as in Lê-Greuel’s formula
for ICIS. See [9], for an algebraic approach characterizing the d-th polar
multiplicity of d-dimensional singular spaces.

7. Examples

In this section, we compute the Milnor number μ(X) for some normal forms
of the simple determinantal surfaces X in C4 classified by Frühbis-Krüger and
Neumer [7].

To calculate the Milnor number, we use the formula m2(X) = μ(C)+μ(X)

from Theorem 5.2, where μ(C) is the Milnor number of the curve C = X ∩
p−1(0), where p : X → C is a generic linear projection.

Using Proposition 6.3, m2(X) = indPH(ω, X, 0). Moreover, if X is simple
and p is a generic linear projection, C = X∩p−1(0) is a simple determinantal
curve and its Milnor number can be calculated or we can directly use the table
of simple curves in [6], p. 4008–4009.

To find m2(X), or equivalently, indPH(ω, X, 0), we can follow one of the
following procedures:

(a) To use the algorithm proposed by Ebeling and Gusein-Zade in [4];

(b) To calculate the number of non degenerate singular points of the linear
form ω defined on a smoothing of X.

(c) To obtain a perturbation Xt of X with singular points points p1, . . . , pl

and we use the fact that μ(X) = ∑l
i=1 μ(Xt , pi).

We illustrate each one of these procedures in the examples below. Calculations
are invariant by the group of contact equivalences acting in the space of matrices
(see [7] and [18]). More details on the calculations can be found in [17].
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Example 1 (see [4], p. 123). Let

(
z y + w x

w x y

)
be the normal form

in [4], which is contact equivalent to M =
(

x y z

w x y

)
. To apply Ebeling

and Gusein-Zade method let p : C4 −→ C, p(x, y, z, w) = w and ω = dp.
We consider the space curve (C, 0) = X ∩ p−1(0) represented by the matrix

N =
(

x y z

0 x y

)
. The family

(
x y + b z + c

a x y

)
, is the versal unfolding

of (C, 0), whose discriminant is a(b2 − c2) = 0 (see [6]).
We obtain M from the versal deformation of N taking a = w, b = c = 0

and, moreover, a smoothing Mλ to M is obtained taking a = b = w, c = λ �=
0. For each fixed λ, Mλ intersects the discriminant in 3 distinct points where
the function p(x, y, z, w) = w has non-degenerate critical points. Using 5.2,
we obtain μ(X) + μ(C) = 3. Now μ(C) = 2, then μ(X) = 1.

Example 2. Let

(
z w + x yk

w y x

)
. This normal form is contact equival-

ent to the second normal form in table 2a in [7]. Let p : X → C be defined
by p(x, y, z, w) = w, ω = dp and (C, 0) the determinantal curve given by(

z x yk

0 y x

)
, k ≥ 1, whose versal unfolding is given by

⎛
⎝ z x + b yk +

k−1∑
i=0

ciy
i

a y x

⎞
⎠ .

A smoothing of X is obtained by taking c0 = λ �= 0, a = b = w and ci = 0
for i �= 0. Let Mλ the matrix obtained in this way.

For each λ fixed, let fλ : C4 −→ C3 be the map determined by the maximal
minors of Mλ, Jfλ the Jacobian matrix of fλ, and [Jfλ, ω] the 4 × 4 matrix
whose first three rows are the rows of Jfλ and the last row is given by the
coefficients of the form ω.

To determine the non-degenerate critical points of ω in Mλ, we find the solu-
tions of the system whose equations fλ = 0, and the 3×3 minors of the matrix
[Jfλ, ω]. There are 2k solutions of the form

(
y, (kyk+1)

1
2 , 2kyk, −2(kyk+1)

1
2
)

and λ = (k + 1)yk . We can verify that these solutions are non- degenerate
singular points. Then, indPH(ω) = 2k and μ(X) = k − 1.

Example 3. Let M =
(

z y x

x w yz + ykw

)
. We now use procedure (c)

and induction on k. We first consider the case k = 1.
Let p : C4 −→ C be given by p(x, y, z, w) = y − z and ω = dp. In

this case, the determinantal curve given by C = X ∩ p−1(0) is defined by the
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matrix

(
z z x

x w z2 + zw

)
. By change of coordinates and applying Mather’s

lemma [21], we can reduce this normal form to

(
z 0 x

x w z2

)
. This, in turn, is

contact equivalent to the first normal form in [6], with μ(C) = 3. A smoothing
of X is given by (

z y x

x + λ w tz2 + yz + yw

)
,

with t ∈ C, and t �= 0. We proceed as in the previous example to find that
indPH(X; ω, 0) = 8 and μ(X) = 5.

We now suppose that for k −1, the Milnor number of M is 2k +1. To show
that for k, μ(X) = 2k+3, we consider the following 1-parameter deformation
of M

Mt =
(

z y x

x w yz + ykw + tyk−1w

)
,

t ∈ C, t �= 0. The variety Xt defined by the maximal minors of Mt is singular
at the origin and at the points (0, −t, 0, ±√−t3). Then,

μ(X) = μ(Xt , 0) + μ(Xt , u1) + μ(Xt , u2),

where 0 is the origin in C4, ui = (0, −t, 0, (−1)i
√−t3), i = 1, 2.

We can see that the germ of Xt at x = y = z = 0 and t �= 0, is equivalent to

the normal form

(
z y x

x w yz + wyk−1

)
. Then, by the induction hypothesis,

μ(Xt , 0) = 2k + 1.
Now calculating the 1-jet of Xt at the points ui = (0, −t, 0, (−1)i

√−t3),
we find that μ(X, ui) = 1, i = 1, 2. Therefore, μ(X) = 2k + 3.

Remark 7.1. In [17], p. 82, it was conjectured that the formula τ(X) =
μ(X)+ 1, holds for weighted homogeneous determinantal surfaces in C4 with
isolated singularities, where τ(X) is the Tjurina number of X. This formula
holds in the above examples, and it follows from the calculations in [17] and
[3] that they hold more generally for all simple singularities of determinantal
surfaces from Frühbis-Krüger and Neumer’s list.
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