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CERTAIN REITERATION AND EQUIVALENCE
RESULTS FOR THE COBOS-PEETRE POLYGON

INTERPOLATION METHOD

STEFAN ERICSSON

Abstract

We prove some reiteration formulas for the Cobos-Peetre polygon method for n� 1-tuples that
consists of spaces Ai where Ai is of class �i with respect to a compatible pair �X ;Y�. If �i is
suitably chosen the J- and K-method coincides and is equal to a space �X ;Y��;q. For arbitrarily
chosen �i the J- and K-spaces will not, in general, coincide. In particular we show that inter-
polation of Lorentz spaces over the unit square yields that the K-space is the sum of two Lorentz
spaces whereas the J-space is the intersection of the same two Lorentz spaces.

1. Introduction

In the theory of interpolation one usually interpolates between two Banach
spaces. This area is well developed, see e.g. the bibliography by Maligranda
[21], including approximately 2500 references. However, there are interpola-
tion methods for families of Banach spaces, even infinite families, see e.g. the
review and references given in [5].
This paper deals with the Cobos-Peetre polygon method. A method in-

troduced by F. Cobos and J. Peetre, see [13], and further developed in [7],
[12], [8], [16], [6], [11], [9] and [10]. There are other different real methods for
interpolating between a finite collection of Banach spaces. We mention the
N-space method of Sparr, see [22], the 2N-space method of Fernandez, see
[15].
The main theorems are in Section 4. In that section we first consider

�n� 1�-tuples �A0; . . . ;An� on an arbitrary convex polygon, where Ai is of
class C��i;X ;Y � for a compatible couple �X ;Y�. If �i satisfies, for some
� 6� 0 and � 6� 0,

�i � �xi � �yi, for i � 0; . . . ; n;�1�
where ��x0; y0��x1; y1� . . . �xn; yn��, yi � 0, is the underlying polygon, then it
turns out that the J- and K-spaces coincide and are equal to a real inter-
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polation space �X ;Y�v;q. This will not, in general, be true if for some i
equation (1) does not hold. See Theorem 3. After that we consider more
general choices of �i. It turns out that the K-space will be a sum of two real
interpolation spaces between X and Y whereas the corresponding J-space
will be the intersection of the same two spaces, see Theorem 5.
In particular these theorems show that there are, in most cases, no

equivalence between the K- and J-spaces. This is in wide contrast to the re-
cent result of I.U. Asekritova and N.Ya. Krugljak, [1], that the K- and J-
spaces are equivalent for function lattices in the Sparr method case.
Section 5 deals with the Fernandez method for four spaces, i.e. when the

polygon is the unit square. See Theorem 6. We give examples for Lorentz
and weighted Lebesgue spaces.
One more reiteration result is presented in the last section. Generally, we

there only get embeddings. But for special tuples we can reverse the embed-
ding and thus obtain equivalence.
In order not to disturb our discussion later on and for the reader's con-

venience we have presented some basic facts concerning the classical real
interpolation and the Cobos-Peetre polygon method in Section 2.

Notations: Two real-valued functions f and g are said to be equivalent,
denoted by f � g, if there exists positive constants C and D such that

Cf �x� � g�x� � Df �x�;
for all x. By f 9 g we mean that there exists a positive constant C such that

f �x� � Cg�x�;
for all x. We also use the notation A � B when A and B are equal as vector
spaces and their norms are equivalent, i.e. they are identical as topological
vector spaces.

2. Preliminaries

In this section we will briefly describe some well-known real interpolation
methods between two and several spaces.
Let A :� �A0;A1� be a compatible Banach pair, i.e. two Banach spaces

both linearly and continuously embedded in a Hausdorff topological vector
space A.
The K functional is defined for all f 2 A0 � A1 and t > 0 by

K�t; f ;A� :� inf f0k kA0
�t f1k kA1

: f0 2 A0; f1 2 A1 and f � f0 � f1
n o

:

The J functional is defined for all u 2 A0 \ A1 and t > 0 by
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J�t; u;A� :� max uk kA0
; t uk kA1

n o
:

One defines the K-interpolation space A�;q;K , for 0 < � < 1 and 1 � q � 1, as
the set of f 2 A0 � A1 for which

fk k�;q;K :�
Z 1
0
�tÿ�K�t; f ;A��q dt

t

� �1
q

<1:

The function f 7! fk k�;q;K is used as a norm on this space. One also defines
the J-interpolation space A�;q;J , for 0 < � < 1 and 1 � q � 1, as the set of
f 2 A0 � A1 for which

fk k�;q;J :� inf

Z 1
0
�tÿ�J�t; u�t�;A��q dt

t

� �1
q

<1:

The infimum is taken over all representations of f on the form

f �
Z 1
0

u�t� dt
t
:�2�

In the formula (2) u is strongly measurable with values in A0 \ A1 and the
integral is understood as an intersection valued Bochner integral over �a; b�
� �0;1� and convergence, a! 0 and b!1, in A0 � A1 with norm
K�1; �;A�. The function f 7! fk k�;q;J is used as a norm on this space.
One realizes that it is of great importance to determine the K functional. It

has almost become an art in itself to calculate it, see e.g. [2], [20].
The so called Equivalence Theorem states that A�;q;K � A�;q;J . This theorem

is of fundamental importance. In view of this and since we only will deal
with spaces up to equivalence we may, and will, omit the subscripts K and J
and just writing A�;q.
An intermediate space, X , with respect to A is a Banach space for which

��A�,!X ,!��A�, here ��A� :� A0 \ A1 with norm J�1; �;A� and
��A� :� A0 � A1 with norm K�1; �;A�. An intermediate space X is said to be
of class CK��;A� if

K�t; f ;A�9 t� fk kX ;
for all f 2 X and of class CJ��;A� if

t� uk kX 9 J�t; u;A�;
for all u 2 A0 \ A1. Here 0 � � � 1. If X is both of classes CK��;A� and
CJ��;A� it is said to be of class C��;A�. For 0 < � < 1 one can prove that an
intermediate space X is of class C��;A� if and only if

A�;1,!X ,!A�;1:
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This means, in particular, that A�;q is of class C��;A�.
The classical Reiteration Theorem states: If �A0;A1� is a compatible pair of

Banach spaces, Xi of class C��i;A� for 0 � �i � 1, i � 1; 2, and �0 6� �1 then

�X0;X1��;q � �A0;A1��1ÿ���0���1;q;
for 1 � q � 1 and 0 < � < 1.
For an introduction to the theory of interpolation between two spaces see

e.g. the books [2], [3], [4], [19].
We will now briefly discuss an extension of the real method described

above to the case when interpolating between several Banach spaces. The
method described below is the so called polygon method or Cobos-Peetre
method which was introduced in [13].
If A0; . . . ;An are n� 1 Banach spaces which are linearly and continuously

embedded in a Hausdorff topological vector space A, then �A0; . . . ;An� is
said to be a compatible �n� 1�-tuple, which we also denote by A. Here and
below n � 2.
Consider a convex polygon � :� �P0 . . .Pn� in R2, with vertices

Pi :� �xi; yi�, i � 0; . . . ; n. Let A be a compatible �n� 1�-tuple. Each space Ai

is thought of as sitting on the vertex Pi. We will now describe a way of
creating interpolation spaces in each point in the interior of �.
If t > 0, s > 0 and f 2 A0 � . . .� An, we define the K functional by

K�t; s; f ;A� :� inf
Xn
i�0

txi syi fik kAi
: f �

Xn
i�0

fi; fi 2 Ai

( )
;

and the J functional, for u 2 A0 \ . . . \ An, by

J�t; s; u;A� :� max txi syi uk kAi
: i � 0; . . . ; n

n o
:

Let ��; �� be a point in the interior of � and 1 � q � 1. One defines the K-
interpolation space A��;��;q;K as the set of f which can be written as
f � f0 � . . .� fn with fi 2 Ai for which

fk k��;��;q;K :�
Z 1
0

Z 1
0
�tÿ�sÿ�K�t; s; f ;A��q ds

s
dt
t

� �1
q

<1:

The function f 7! fk k��;��;q;K is used as norm on A��;��;q;K . One also defines
the J-interpolation space A��;��;q;J as the set of f which can be written as
f � f0 � . . .� fn with fi 2 Ai for which

fk k��;��;q;J :� inf

Z 1
0

Z 1
0
�tÿ�sÿ�J�t; s; u�t; s�;A��q ds

s
dt
t

� �1
q

<1:
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The infimum is taken over all representation of f on the form

f �
Z 1
0

Z 1
0

u�t; s� dt
t
ds
s
:�3�

In the formula (3) u is strongly measurable with values in A0 \ . . . \ An and
the integral is understood as an intersection valued Bochner integral over
�a; b� � �c; d� � �0;1� � �0;1� and convergence, a; c! 0 and b; d !1, in
A0 � . . .� An with norm K�1; 1; �;A�. The function f 7! fk k��;��;q;J is used as
a norm on this space. It is a well-known fact that the equivalence theorem
does not hold for the polygon method. We only have the embedding
A��;��;q;J ,!A��;��;q;K , see [13]. This implies, in particular, that there is no
general form of the reiteration formula. When we write A��;��;q we mean ei-
ther A��;��;q;K or A��;��;q;J .
If R is an affine bijection on R2, then A��;��;q with respect to the polygon

� :� �P0 . . .Pn� is equivalent to AR��;��;q with respect to R��� :� �R�P0� . . .

R�Pn��, see [12].
For triples, with the polygon as the simplex, i.e. ��0; 0��1; 0��0; 1��, the

polygon method coincides with the Sparr method, see [22], for three spaces
and the K functional will be

K�t; s; f ;A� :� inf f0k kA0
�t f1k kA1

�s f2k kA2

n o
;

where the infimum is taken over all decomposition f � f0 � f1 � f2, with
fi 2 Ai. For this case a Holmstedt type formula for Lp-spaces and descrip-
tions of some other K functionals have recently been obtained in [14].
For quadruples, with the polygon as the unit square ��0; 0��1; 0��0; 1�

�1; 1��, the polygon method coincides the Fernandez method, see [15], for
four spaces and the K functional will be

K�t; s; f ;A� :� inf f0k kA0
�t f1k kA1

�s f2k kA2
�ts f3k kA3

n o
;

where the infimum is taken over all decomposition f � f0 � f1 � f2 � f3, with
fi 2 Ai.

3. Two lemmas

In this section we give two lemmas. These are crucial for the main results of
the next section but they are also of independent interest.
First we consider an arbitrary compatible �n� 1�-tuple. In this lemma it is

of course not necessary that we restrict ourselves to just three spaces Bi. This
lemma, in the case when Bi is equal to Ami , can be found in [10].

Lemma 1. Let A be an arbitrary compatible �n� 1�-tuple of Banach spaces
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and � an arbitrary convex polygon of R2. Suppose Bi is placed at, see figure 1,

�ui; vi� � �1ÿ �i��xmi ; ymi� � �i�xni ; yni�:
Let ��; �� be in the interior of the triangle ��u1; v1��u2; v2��u3; v3�� and
1 � q � 1.
If Bi is of class CK��i;Ami ;Ani� where 0 � �i � 1, then

�B1;B2;B3���;��;q;K ,! A��;��;q;K�4�
and if Bi is of class CJ��i;Ami ;Ani� where 0 � �i � 1, then

A��;��;q;J ,! �B1;B2;B3���;��;q;J :�5�
Proof. We have, for all f 2 B1 � B2 � B3,

K�t; s; f ;A� � inf
Xn
i�0

txi syi fik kAi

( )

� inf
X3
i�1

txmi symi K�txniÿxmi syniÿymi ; fi;Ami ;Ani�
( )

9 inf
X3
i�1

txmi �1ÿ�i��xni �i symi �1ÿ�i��yni �i fik kBi

( )
;

and thus

K�t; s; f ;A�9K�t; s; f ;B1;B2;B3�;
hence (4) holds. For the J functional we have, for all u 2 A0 \ . . . \ An,

J�t; s; u;A� � max txi syi uk kAi

n o
� max txmi symi J�txniÿxmi syniÿymi ; u;Ami ;Ani�f g

0 max txmi �1ÿ�i��xni �i symi �1ÿ�i��yni �i uk kBi

n o
;

and thus

J�t; s; u;A�0 J�t; s; u;B1;B2;B3�:�6�
Take an arbitrary element f 2 A��;��;q;J , and we have to prove that a re-
presentation of f of the form (3) with respect to A also is a representation
with respect to �B1;B2;B3�. Choose an u such that
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f �
Z 1
0

Z 1
0

u�t; s� dt
t
ds
s
;

and Z 1
0

Z 1
0
�tÿ�sÿ�J�t; s; u�t; s�;A��q dt

t
ds
s
<1:

Let C be an arbitrary rectangle, or even an arbitrary compact set, in
�0;1� � �0;1�. Since the intersection of Ai is continuously embedded in
B1 \ B2 \ B3 the Bochner integral is also defined when u is viewed as
B1 \ B2 \ B3-valued. It remains to consider the convergence. We now follow
the argument in Remark 4.3 from [22]. By using

K�1; 1; u�t; s�;B1;B2;B3�

� min tÿxmi �1ÿ�i�ÿxni �i sÿymi �1ÿ�i�ÿyni �i
n o

J�t; s; u�t; s�;B1;B2;B3�;

together with H�older's inequality and (6) we getZ Z
C

K�1; 1; u�t; s�;B1;B2;B3� dtt
ds
s

9
Z 1
0

Z 1
0

t�s� minftÿxmi �1ÿ�i�ÿxni �i sÿymi �1ÿ�i�ÿyni �ig
� �q0 dt

t
ds
s

� � 1
q0

�
Z 1
0

Z 1
0
�tÿ�sÿ�J�t; s; u�t; s�;A��q dt

t
ds
s

� �1
q

:

Figure 1: Geometrical illustration of Lemma 1
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The first factor can be seen to be finite. In fact, for q0 � 1 this calculation
can be found in [13] but the same arguments work for any q0 � 1. Hence we
have absolute convergence in B1 � B2 � B3 and thus convergence in
B1 � B2 � B3 and the proof is complete.

In the second lemma of this section we study �n� 1�-tuples,
A :� �A0;A1; . . . ;An�, where Ai is of class C��i;X ;Y�, 0 � �i � 1, for a com-
patible pair �X ;Y�. Here n is an integer � 2. We assume that the underlying
convex polygon lies in the upper half plane i.e.

� :� ��x0; y0��x1; y1� . . . �xn; yn��;
where yi � 0. By the invariance under affine bijections this is no restriction.

Lemma 2. Let �X ;Y� be a compatible pair of Banach spaces, ��; �� an in-
terior point of � and 1 � q � 1. Suppose that

�xi � �yi � �i � �0xi � �0yi;�7�
for � � �0 > 0 and �; �0 6� 0 and such that ��� �� and �0�� �0� both are strictly
between zero and one. If Ai is of class CK��i;X ;Y� then

A��;��;q;K ,! �X ;Y������;q � �X ;Y��0���0�;q;�8�
and if Ai is of class CJ��i;X ;Y � then

�X ;Y������;q \ �X ;Y��0���0�;q ,! A��;��;q;J :�9�
Proof. Let q <1 and �; �0 > 0. The general case follows by making ob-

vious modifications of the proof below. For s � t and t � 1 we have, for
f 2 A0 � . . .� An,

K�t�; s�; f ;A� � inf
Xn
i�0

t�xi s�yi fik kAi

( )

� inf
Xn
i�0

t�xi��yi�s=t��yi fik kAi

( )
� inf

Xn
i�0

t�i fik kAi

( )

0 inf
Xn
i�0

K�t; fi;X ;Y�
( )

� K�t; f ;X ;Y�;

and similarly for s � t and t > 1 we get

K�t�0 ; s�0 ; f ;A�0K�t; f ;X ;Y�:
By these estimates of the K functional and a change of variables we have
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fk kq
A��;��;q;K

0
Z 1

0

Z 1
t

tÿ��sÿ��K�t; f ;X ;Y�� �q ds
s
dt
t

�
Z 1
1

Z 1
t

tÿ�
0�sÿ�

0�K�t; f ;X ;Y �
h iq ds

s
dt
t
:

The right hand side is equivalent toZ 1

0
tÿ��ÿ��K�t; f ;X ;Y �� �q dt

t
�
Z 1
1

tÿ�
0�ÿ�0�K�t; f ;X ;Y �

h iq dt
t
;

and which is, by Holmstedt's formula [17] (note that ��� �� � �0�� �0�),
equivalent to the q:th power of f 's norm in �X ;Y������;q � �X ;Y��0���0�;q and
the embedding (8) follows.
We now turn to the J-method. Assume �; �0 > 0. As for the K functional,

see that for u 2 X \ Y and s � t

J�t�0 ; s�0 ; u;A�9 J�t; u;X ;Y �, for t � 1;�10�
and

J�t�; s�; u;A�9 J�t; u;X ;Y�, for t > 1:

Take an f 2 �X ;Y ������;q \ �X ;Y ��0���0�;q, we then have by the Fundamental
Lemma of Interpolation, see e.g. [3],

J�t; u�t�;X ;Y�9K�t; f ;X ;Y�;�11�
for a representation

f �
Z 1
0

u�t� dt
t
:

For later use we define

v�t; s� :�
1
�0 u�t

1
�0 � , if t

1
�0=e � s

1
�0 � t

1
�0 and t � 1

1
� u�t

1
�� , if t

1
�=e � s

1
� � t

1
� and t > 1

0 , otherwise,

8>><>>:�12�

this v satisfies

f �
Z 1
0

Z 1
0

v�t; s� ds
s
dt
t
:

We have
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fk kq�X ;Y ��0���0�;q\�X ;Y ������;q

0
Z 1

0
tÿ�

0�ÿ�0�K�t; f ;X ;Y�
h iq dt

t
�
Z 1
1

tÿ��ÿ��K�t; f ;X ;Y �� �q dt
t
:

From (11) it follows thatZ 1

0
tÿ�

0�ÿ�0�K�t; f ;X ;Y�
h iq dt

t
0
Z 1

0
tÿ�

0�ÿ�0�J�t; u�t�;X ;Y �
h iq dt

t
:

The integral on the right hand side of this is equivalent to

Z1
0

Z t
t=e

tÿ�
0�sÿ�

0�J�t; u�t�;X ;Y�
h iq ds

s
dt
t
;

and by using (10), (12) and a change of variables we arrive atZ 1

0
tÿ�

0�ÿ�0�K�t; f ;X ;Y �
h iq dt

t
0
Z 1

0

Z 1
0

tÿ�sÿ�J�t; s; v�t; s�;A�� �q ds
s
dt
t
:

In the same way it follows thatZ 1
1

tÿ��ÿ��K�t; f ;X ;Y�� �q dt
t
0
Z 1
1

Z 1
0

tÿ�sÿ�J�t; s; v�t; s�;A�� �q ds
s
dt
t
:

Thus we have obtained

fk k�X ;Y��;q\�X ;Y��;q 0
Z 1
0

Z 1
0

tÿ�sÿ�J�t; s; v�t; s�;A�� � ds
s
dt
t
;

and the embedding (9) follows for �; �0 > 0. The case when �; �0 < 0 follows
in the same way, and the proof is complete.

Remark 1. If X \ Y is dense in X ;Y and in Ai and if 1 � q <1 then (9)
follows from (8) and duality. Indeed, by the duality between the J and K
functional it yields that if Ai is of class CJ��i;X ;Y � then A0i is of class
CK��i;X 0;Y 0�. Hence we may apply (8) to the dual �n� 1�-tuple A0. Now it
remains to use classical duality and the polygon duality formula, see [8],

A��;��;q;J
ÿ �0

,! A0��;��;q0;K :

4. The main results

In this section we study �n� 1�-tuples, A :� �A0;A1; . . . ;An�, where Ai is of
class C��i;X ;Y �, 0 � �i � 1, for a compatible pair �X ;Y �. The underlying
polygon is
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� :� ��x0; y0��x1; y1� . . . �xn; yn��;
i.e. the space Ai is supposed to be placed on the vertex �xi; yi�. This polygon
is fixed. Furthermore, we will consider a polygon

� 0 :� ��x00; y00��x01; y01� . . . �x0n; y0n��;
where y0i � 0, such that there exists an affine bijection from � onto � 0. The
choice of the polygon � 0 depends on �i. Throughout this section R will the
affine bijection that maps �xi; yi� on �x0i; y0i�. Here n is an integer � 2.
The first main theorem reads:

Theorem 3. Suppose that the assumptions above are satisfied and let ��; ��
be an interior point of the convex polygon � and let 1 � q � 1.
a) If there exists � 6� 0, � 6� 0 and a polygon � 0 such that

�i � �x0i � �y0i;�13�
for i � 0; . . . ; n, then

A��;��;q;K � A��;��;q;J � �X ;Y ���0���0;q;�14�
where R��; �� � ��0; �0�.
b) If (13) is not satisfied for any � 6� 0, � 6� 0 and � 0, and X \ Y is not

closed in X � Y, then none of the statements � in (14) will be true in general.

Remark 2. A special case of Theorem 3 a) was proved in [10]. More ex-
actly, it was proved that for ��; �� on the line between two vertices
and Ai � �X ;Y ��i ;qi we have A��;��;1;J � �X ;Y������;1 and A��;��;1;K �
�X ;Y ������;1.
Proof. a) By the invariance under affine bijection we may assume that

� 0 � �. Hence the equation (13) holds for the polygon �, i.e.

�i � �xi � �yi;
and that yi � 0 and ��0; �0� � ��; ��. Since Ai is of class C��i;X ;Y� we can
use both embeddings in Lemma 2. The choice of � and � in (13) satisfies the
inequalities in (7), and note that 0 < ��� �� < 1. Hence we get

�X ;Y ������;q ,! A��;��;q;J and A��;��;q;K ,! �X ;Y������;q
Now a) is proven since we have the general embedding A��;��;q;J ,! A��;��;q;K .
b) Consider for example the polygon, n � 3,

��0; 0��1; 0��x2; y2� . . . �xnÿ1; ynÿ1��0; 1��:
Assume that �0 � 0 and �j 6� �1xj � �nyj for some 2 � j � nÿ 1. In this si-
tuation equation (13) cannot hold for any parameters � and �. Let �� � < 1
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and that ��; �� is in the interior of the triangle ��0; 0��1; 0��xj; yj��. From
Lemma 1 it follows that

A��;��;q;J ,! �A0;A1;An���;��;q;J \ �A0;A1;Aj���;��;q;J ;

and

�A0;A1;An���;��;q;K � �A0;A1;Aj���;��;q;K ,! A��;��;q;K :

We now use the part a) of this theorem and find that �A0;A1;An���;��;q is
equivalent to �X ;Y ��1���n�;q and �A0;A1;Aj���;��;q is equivalent to �X ;Y ��;q
where � 6� ��� �� since �j 6� �xj � �yj. Hence we have obtained

A��;��;q;J ,! �X ;Y��;q \ �X ;Y��1���n�;q;
and

�X ;Y��;q � �X ;Y��1���n�;q ,! A��;��;q;K :

Now, the so called Dependence of Parameter Theorem says that �X ;Y ��;q 6�
�X ;Y ������;q since X \ Y is not closed in X � Y , see [18], and the proof is
complete.

Remark 3. By this theorem we see that embeddings of Lemma 1 can be
reversed for some pairs A. Indeed, let � be a convex polygon in the upper
half plane of R2, let ��; �� be an interior point of � and 1 � q � 1. Assume
Ai 2 C��i;X ;Y� for a compatible pair �X ;Y � and where 0 � �i � 1. If there
exists � 6� 0 and � 6� 0 such that

�i � �xi � �yi, for i � 0; . . . ; n;�15�
then

A��;��;q � �B1;B2;B3���;��;q;
where Bi is of class C��i;Ami ;Ani� with 0 � �i � 1 such that

�ui; vi� � �1ÿ �i��xmi ; ymi� � �i�xni ; yni�;
see figure 1. This follows from the previous theorem together with Lemma 1.

We look at Theorem 3 in the special case when the polygon is a triangle.
In particular if the triangle is ��0; 0��1; 0��0; 1�� we are in the Sparr case for
three spaces. The corollary reads:

Corollary 4. Let Ai be, for a compatible pair �X ;Y �, of class C��i;X ;Y�,
0 � �i � 1, i � 0; 1; 2. If not all the �i are equal we have that

�A0;A1;A2���;��;q � �X ;Y��;q;�16�
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where � � �0�0 � �1�1 � �2�2 and ��0; �1; �2� are the barycentric coordinates
of ��; �� with respect to the triangle's vertices where the space Ai is sitting.

Proof. We let

� 0 :� ��0; �0���1 ÿ 2; 2��0; �2��;�17�
where 0 � �0 � �1 � �2 � 1 and �0 < �2. The polygon � can be mapped onto
� 0 by an affine bijection R. The equation (13) is satisfied with � � � � 1.
Now, a simple calculation shows that ��0 � ��0 is equal to �0�0 � �1�1 � �2�2
where �i, i � 0; 1; 2, are the barycentric coordinates of ��0; �0� with respect to
the vertices of the polygon (17). Here R��; �� � ��0; �0�, and it only remains
to note that the barycentric coordinates are invariant under affine mappings.
We now turn to the second main theorem. The same type of Banach

�n� 1�-tuple as for the previous theorem are considered, and � 0 is as above.
Moreover, by a subtriangle we mean a triangle formed by a triple
�B1;B2;B3� as in Lemma 1, see figure 1. The theorem reads:

Theorem 5. Suppose that the assumptions above are satisfied, ��; �� in the
interior of � and 1 � q � 1. Assume that

�x0i � �y0i � �i � �0x0i � �0y0i, i � 0; . . . ; n;�18�
for � � �0 > 0, �; �0 6� 0 and a polygon � 0, and that ��0; �0� lies in the interior of
two subtriangles of � 0, one which vertices and corresponding classes gives
equality in the first inequality of (18) and the second gives equality in the last
inequality of (18).
Then, we have

A��;��;q;K � �X ;Y ���0���0;q � �X ;Y ��0�0��0�0;q;�19�
and

A��;��;q;J � �X ;Y ���0���0;q \ �X ;Y��0�0��0�0;q;�20�
where R��; �� � ��0; �0�.
Proof. By the invariance under affine bijection we may assume that

� � � 0. Hence the equation (18) holds for the polygon �, i.e.

�xi � �yi � �i � �0xi � �0yi;
and that yi � 0 and ��0; �0� � ��; ��. The embedding  - of (19) follows by
Lemma 1, applied to the two subtriangles, combined with Theorem 3 a). For
the reversed embedding we use Lemma 2, note that now ��� �� and
�0�� �0� both are strictly between zero and one. In the same way follows
(20) and the proof is complete.
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5. Interpolation over the unit square

In this section we interpret the theorems from the previous section in the
Fernandez case for four spaces. Hence we assume that the polygon � is the
unit square i.e.

� :� ��0; 0��1; 0��0; 1��1; 1��:
The quadruple under consideration is �X ;A1;A2;Y � where Ai 2 C��i;X ;Y �
for 0 < �i < 1.
We introduce some notation. Let ��; �� be in the unit square and such that

� 6� � and �� � 6� 1. Now ��; �� lies in the interior of � \�0, where � and
�0 are two different triangles formed by vertices from the unit square. De-
note by �i and �0i, i � 0; 1; 2, the barycentric coordinates of ��; �� with re-
spect to the vertices from � and �0 respectively. Let  i and  0i be the classes
of the spaces sitting on the corresponding vertices.
We have:

Theorem 6. Let �X ;Y� be a compatible pair of Banach spaces, let Ai be of
class C��i;X ;Y�, where 0 < �i < 1, i � 1; 2 and let 1 � q � 1.
a) If �1 � �2 � 1, then

�X ;A1;A2;Y���;��;q;J � �X ;A1;A2;Y ���;��;q;K � �X ;Y��;q;
where � � ��1 � ��2.
b) With the above notations and if �1 � �2 6� 1 then

�X ;A1;A2;Y���;��;q;K � �X ;Y ��;q � �X ;Y ��0;q;�21�
and

�X ;A1;A2;Y ���;��;q;J � �X ;Y ��;q \ �X ;Y��0;q;�22�
where � � �0 0 � �1 1 � �2 2 and �0 � �00 00 � �01 01 � �02 02.
Proof. Statement a) is contained in Theorem 3 a), we chose � � �1 and

� � �2. We turn to b). Assume �� � < 1, � > � and �1 � �2 < 1. We use
Theorem 5, with the subtriangles as

��0; 0��1; 0��0; 1�� and ��0; 0��1; 0��1; 1��;
with � � �1, � � �2, �0 � �1 and �0 � 1ÿ �1. Now we only have to rewrite
these formulas in the barycentric coordinates notation. The case �1 � �2 > 1
works similarly. The other cases, for � and �, follows from the general for-
mulas
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�B0;B1;B2;B3���;��;q � �B0;B2;B1;B3���;��;q;
and

�B0;B1;B2;B3���;��;q � �B3;B2;B1;B0��1ÿ�;1ÿ��;q:
This completes the proof.

Remark 4. If ��; �� satisfies � � � or � � 1ÿ � we do not get the
equivalence formulas in b) as above. For example for 0 < � < 1

2 we only find
that

�X ;Y ��;q � �X ;Y����1��2�;q ,! �X ;A1;A2;Y���;��;q;K ;

and

�X ;A1;A2;Y���;��;q;K ,! �X ;Y ����1��2�;q � �X ;Y��;q;
where � is an arbitrary number strictly between � and ���1 � �2�. The proof
follows in a similar way as the proof of b) in Corollary 6 but with the dif-
ference that we choose the triangle ��0; 0��1; 0���; 1�� instead of ��0; 0��1; 0�
�1; 1�� for an arbitrary number 0 < � < 1.
However, (21) if q � 1 and (22) if q � 1 hold even if � � � or � � 1ÿ �.

This is seen by, see [10], the general inclusions

A��;��;1;J ,! �Ai;Aj��;1 ,! �Ai;Aj��;1 ,! A��;��;1;K ;

where ��; �� � �1ÿ ���xi; yi� � ��xj; yj�.
We end this section by two explicit examples of Theorem 6. First a quad-

ruple of Lorentz spaces and then a quadruple of weighted Lebesgue spaces.
Recall the well-known facts:
i) �Lp0;q0 ;Lp1;q1��;r � Ls;r, where p0 6� p1; 1

s � 1ÿ�
p0
� �

p1
, 0 < � < 1 and

1 � r � 1. Here we define L1;r as L1 for all r.
ii) �Lp�!0�;Lp�!1���;p � Lp�!�, where 0 < � < 1 and 1 � p � 1 and

! � !1ÿ�0 !�1. Here fk kLp�!�:� f!k kLp
.

Example 1. Let 1 < pi � 1, 1 � qi � 1, p0 < pi < p3, i � 1; 2 and
1 � q � 1.
a) If 1

p0
� 1

p3
� 1

p1
� 1

p2
, then

�Lp0;q0 ;Lp1;q1 ;Lp2;q2 ;Lp3;q3���;��;q � Lp;q;

where

1
p
� 1ÿ �ÿ �

p0
� �

p1
� �

p2
:
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b) If 1
p0
� 1

p3
6� 1

p1
� 1

p2
, �� � < 1 and � > �, then

�Lp0;q0 ;Lp1;q1 ;Lp2;q2 ;Lp3;q3���;��;q;K � Lp;q � Lep;q;
and

�Lp0;q0 ;Lp1;q1 ;Lp2;q2 ;Lp3;q3���;��;q;J � Lp;q \ Lep;q;
where

1
p
� 1ÿ �ÿ �

p0
� �

p1
� �

p2
;

and

1ep � 1ÿ �
p0
� �ÿ �

p1
� �

p3
:

In [11] weighted Lebesgue spaces are considered. Their results there are
for the interpolation spaces

�L1�!0�; . . . ;L1�!n����;��;1;
and

�L1�!0�; . . . ;L1�!n����;��;1:
Here we have arbitrary Lp but not arbitrary weights.

Example 2. Let 1 � p � 1 and let !0 and !1 be two arbitrary weights.
Define ! :� !1ÿ�10 !�11 and e! :� !1ÿ�20 !�21 .
a) If �1 � �2 � 1, then

�Lp�!0�;Lp�!�;Lp�e!�;Lp�!1����;��;p � Lp�!�;
where

! :� !1ÿ��1ÿ��20 !��1���21 :

b) If �1 � �2 6� 1, �� � < 1 and � > �, then

�Lp�!0�;Lp�!�;Lp�e!�;Lp�!1����;��;p;K � Lp�!�;
and

�Lp�!0�;Lp�!�;Lp�e!�;Lp�!1����;��;p;J � Lp�b!�;
where
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! :� !1ÿ��10 !��11 min
!1
!0

� ���2
;
!1
!0

� ���1ÿ�1�( )
;

and

b! :� !1ÿ��10 !��11 max
!1
!0

� ���2
;
!1
!0

� ���1ÿ�1�( )
:

6. A concluding reiteration result

In this section we will look at reiteration from a more classical point of view.
We consider two convex polygons

� :� ��x0; y0��x1; y1� . . . �xn; yn��;
and

� 0 :� ���0; �0���1; �1� . . . ��m; �m��;
where � 0 lies in the interior of �. The idea is to compare A��;��;q with B��;��;q
where Bi is e.g. A��i ;�i�;qi . A result of this type was obtained in [7]. The theo-
rem there deals with the case when � can be mapped onto � 0 by an affine
bijection, in particular m � n. Our result Proposition 6 a) corresponds to the
result in [7] and the part b) combines part a) with Theorem 3.
We need the concept of classes in the polygon case. Let A be the �n� 1�-

tuple �A0; . . . ;An�. Let B be an intermediate space i.e.

A0 \ . . . \ An ,! B ,! A0 � . . .� An;

where the intersection is normed by J�1; 1; �;A� and the sum by K�1; 1; �;A�.
For an arbitrary point ��; �� is an interior point of � the space B is said to
be of class CK��; �;A� if

K�t; s; f ;A�9 t�s� fk kB, for all f 2 B;
and of class CJ��; �;A�,

t�s� uk kB9 J�t; s; u;A�, for all u 2 A0 \ . . . \ An:

If a space is both of class CK��; �;A� and CJ��; �;A� we say that it is of class
C��; �;A�, in particular A��;��;q is of class C��; �;A�.
Proposition 7. Let Bi be of class C��i; �i;A�, i � 0; . . . ;m, ��; �� an inter-

ior point of � 0 and 1 � q � 1.
a) If Bi is of class CK��i; �i;A� then

certain reiteration and equivalence results for the... 317



{orders}ms/990839/ericsson.3d -21.11.00 - 12:04

B��;��;q;K ,! A��;��;q;K ;�23�
and if Bi is of class CJ��i; �i;A� then

A��;��;q;J ,! B��;��;q;J :�24�
b) Assume that � lies in the upper half plane i.e. yi � 0. If Ai is of class

C��i;X ;Y � for a compatible pair �X ;Y� and where 0 � �i � 1 and if there ex-
ists � 6� 0 and � 6� 0 such that

�i � �xi � �yi, for i � 0; . . . ; n;

then we have

A��;��;q � B��;��;q:�25�
Proof. a) We note that if Bi is of class CK��i; �i;A� then

K�t; s; f ;A�9K�t; s; f ;B�, for all f 2 B0 � . . .� Bn;

and if Bi is of class CJ��i; �i;A� then
J�t; s; u;B�9 J�t; s; u;A�, for all u 2 A0 \ . . . \ An:

If we use this as in the proof of Lemma 1 the embeddings (23) and (24) fol-
lows. We turn to b). By Theorem 3 we have that A��;��;q;K � A��;��;q;J . Now
(25) follows from (23), (24) and the general embedding B��;��;q;J ,! B��;��;q;K .
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