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INVERSION OF RADON TRANSFORMS USING
WAVELET TRANSFORMS

GENERATED BY WAVELET MEASURES1

BORIS RUBIN

Abstract

The classical inversion formulae for the Radon transform R on Rn involve the dual transform
R# and the operator Dnÿ1 � �ÿ���nÿ1�=2 which represents the positive power of the Laplacian. It
is shown that wavelet type representations of Dnÿ1, generated by finite measures with a certain
number of vanishing moments, lead to explicit inversion formulae for Rf ; f 2 Lp�Rn�; and en-
able one to characterize the range R�Lp�Rn��. The same method can be applied to explicit in-
version and characterization of Radon transforms of finite Borel measures.

1. Introduction

The Radon transform of sufficiently nice function f on Rn is defined by

�R�f ��s� � �Rf ���; s� �
Z
�?
f �s�� u�du; ��; s� 2 ~Rn � �nÿ1 � R;�1:1�

where �nÿ1 is the unit sphere in Rn, du stands for the euclidean measure on
the subspace �? orthogonal to �. Among the basic problems related to (1.1)
are explicit inversion of the operator R and a characterization of its range.
The relations

f � �nR#�ÿ�1��nÿ1�=2' and f � �n�ÿ�n��nÿ1�=2R#'; ' � Rf ;�1:2�
�n � �2��1ÿn=2 (see e.g. [5]), involving the dual transform

�R#'��x� �
Z

�nÿ1
'��; hx; �i�d�; x 2 Rn;�1:3�

and the �nÿ 1�=2th power of the Laplacian (in one and n dimensions re-
spectively) are usually employed for solution of these problems. In spite of
the elegance and simplicity of (1.2), the practical implementation of these
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formulae entails difficulties connected with the realization of powers of the
Laplacian. These difficulties increase when dealing with nonsmooth func-
tions or measures, the differentiation of which can be performed only in the
distribution sense. Additional difficulties arise in the case of n even, when the
operator �ÿ���nÿ1�=2 is not local. In order to reduce these difficulties, in [1,
3, 8, 14] it was suggested to employ continuous wavelet transforms.
In the present paper we show that wavelet constructions of the inverse

Radon transform can be obtained directly from (1.2) if one replaces the
powers of the Laplacians by their wavelet representations (see [7, 9]) gener-
ated by suitable wavelet measures. For example, the first formula from (1.2)
gives rise to the following statement.

Theorem 1.1. Assume that � is a finite Borel measure on R satisfying the
following conditions:Z
jsj>1
jsj�dj�j�s�<1 for some �>nÿ1;

Z 1
ÿ1

sjd��s��0 for all j�0; 2; :::; 2��nÿ1�=2�

where ��nÿ1�=2� designates the integer part of �nÿ1�=2.
(i) Let ' � Rf , f 2 Lp�Rn�, 1 � p < n=�nÿ 1�. Denote

�T"'��x��
Z 1
"

R#�'��t��x�dttn ; ">0; �'��t���;s��
Z 1
ÿ1

'��;sÿt��d����:
�1:4�
Then Z 1

0
R#�' � �t� dttn � lim

"!0
�T"'��x� � c�f ;�1:5�

the limit being interpreted in the Lp-norm and in the a.e. sense,

c� �

�n�1=2�ÿ1�n=2
ÿ �n=2�ÿ��n� 1�=2�

Z 1
ÿ1
jsjnÿ1d��s� if n is even;

2�nÿ1=2�ÿ1��n�1�=2
ÿ �n=2�ÿ��n� 1�=2�

Z 1
ÿ1
jsjnÿ1 log jsjd��s� if n is odd:

8>>><>>>:�1:6�

(ii) Let

' 2 L1;r�~Rn� �
�
'��; s� : k'k1;r �

Z
�nÿ1

� Z 1
ÿ1
j'��; s�jrds

�1=r
d� <1

�
;�1:7�

rÿ1 � npÿ1ÿ n� 1, 1� p< n=�nÿ 1�. If c� 6� 0, then the following statements
are equivalent: �a� ' 2R�Lp�Rn��; �b� T"' converges in the Lp�Rn�-norm as
"! 0. If 1< p< n=�nÿ 1�, then �a� and �b� are equivalent to
�c� sup

">0
kT"'kp <1.
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Remark 1.2. The relation (1.5) also holds provided ' � Rf , f 2 Lq�Rn�
\Lp�Rn�, where 1 � q < n=�nÿ 1�, 1 � p � 1 (L1 is identified with the
space C0 of continuous functions vanishing at infinity), and can be written in
the form

c�f � lim
"!0

Z
jyj>"

dy

jyj2nÿ1
Z 1
ÿ1

'�y0; hx; y0i ÿ sjyj�d��s�; y0 � y
jyj :�1:8�

Let us give some examples of measures which satisfy the conditions of
Theorem 1.1.

Example 1.3. Let �k � �k�s� be the unit Dirac mass at the point s � k,

� �
Xl
k�0
�ÿ1�k l

k

� �
�k; l > 2��nÿ 1�=2�:�1:9�

The function Al����
Pl

k�0�ÿ1�kÿ1 l
k

ÿ �
k�; �>0; l2N; vanishes at the points

��1; 2; :::; lÿ1 and nowhere else on R� (see [11], p. 116-117, 506-507). At
these points Al��� has a simple zero. Thus,

R1
ÿ1 sjd��s� � Al�j� � 0 for

j � 0; 1; :::; l ÿ 1 provided l > 2��nÿ 1�=2�. By (1.5), (1.8), for ' � Rf this
yields

f � 1
Kn

Z 1
0

dt
tn

Z
�nÿ1

hXl
k�0
�ÿ1�k l

k

� �
'��; hx; �i ÿ kt�

i
d��1:10�

� 1
Kn

Z
Rn

hXl
k�0
�ÿ1�k l

k

� �
'�y0; hx; y0i ÿ kjyj�

i dy

jyj2nÿ1�1:11�

where

Kn �

�n�1=2�ÿ1��nÿ2�=2
ÿ�n=2�ÿ��n� 1�=2� ; l � nÿ 1; if n is even;

2�nÿ1=2�ÿ1��nÿ1�=2
ÿ�n=2�ÿ��n� 1�=2�

d
d�

Al���
� �

��1ÿn
; l > nÿ 1; if n is odd:

8>>><>>>:
�1:12�
Note that Kn 6� 0 under the choice of l stated in (1.12). The expressions
(1.10), (1.11) are hypersingular integrals of the Marchaud type. Similar in-
tegrals are widely used for characterization of functions of the fractional
smoothness and for explicit inversion of integral operators of the potential
type (see [7, 11] and references therein).
An example of a measure �, generalizing (1.9) and satisfying the condi-

tions of Theorem 1.1 with c� 6� 0, is given by the determinant
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� �
��0 1 �0 � � � �`ÿ10

��1 1 �1 � � � �`ÿ11
� � � � � � � � � � � � � � �
��` 1 �` � � � �`ÿ1`

��������
��������

where ��k are Dirac masses at arbitrary points �k such that 0 � �0 < �1
< ::: < �l (see [7], Section 10). A trivial example of the absolutely continuous
measure �, satisfying required conditions, can be obtained, e.g., by differ-
entiating the function exp(ÿx2). More interesting example (cf. [7], p.140),
which serves all n � 2, is given by d��s� � w�s�ds where

w�s� � 0 for s� 0 and w�s� � sexp�ÿlog2s�sin��logs� for s> 0:�1:13�
This function is infinitely smooth and decreases rapidly as s! 0;1. The
Mellin transformation of w has the form

R1
0 szÿ1w�s�ds � �1=2 exp���z� 1�2

ÿ��=4� cos��z=2� and therefore all even moments of w are zero. Further-
more, by (1.6),

c� � �n�1

ÿ �n=2� ÿ��n� 1�=2� exp
� �n� 1�2 ÿ �

4

�
6� 0 for all n � 2:

In order to state the result, corresponding to the second equality from
(1.2), given a finite measure � on Rn, we denote

B"' �
Z

SO�n�
d

Z 1
"

�R#' � �
;t� dttn ; " > 0;�1:14�

where �R#' � �
;t��x� �
R
Rn�R#'��xÿ t
y�d��y�.

Theorem 1.4. Let 1 � p < n=�nÿ 1� and assume that � satisfies the fol-
lowing conditions:Z

jxj>1
jxj�dj�j�x� <1 for some � > nÿ 1;Z

Rn
xjd��x� � 0 for all jjj � 0; 2; 4; ::: ; 2��nÿ 1�=2�:

(i) If ' � Rf , f 2 Lp�Rn�, thenZ
SO�n�

d

Z 1
0
�R#' � �
;t� dttn � lim

"!0
B"' � d�f�1:15�

where the limit is interpreted in the Lp-norm and in the a.e. sense,

d� �

�n�ÿ1�n=2ÿ�n=2�
ÿ �nÿ 1=2�ÿ��n� 1�=2�

Z
Rn
jyjnÿ1d��y� if n is even;

2�nÿ1�ÿ1��n�1�=2ÿ�n=2�
ÿ �nÿ 1=2�ÿ��n� 1�=2�

Z
Rn
jyjnÿ1 log jyjd��y� if n is odd:

8>>><>>>:�1:16�
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(ii) Let ' 2 L1;r�~Rn�, rÿ1 � npÿ1 ÿ n� 1. If d� 6� 0, then the following state-
ments are equivalent: �a� ' 2 R�Lp�Rn��; �b� B"' converges in the Lp�Rn�-
norm as "! 0. If 1 < p < n=�nÿ 1�, then �a� and �b� are equivalent to
�c� sup

">0
kB"'kp <1.

The relation (1.15) also holds provided ' � Rf , f 2 Lq�Rn� \ Lp�Rn�,
where 1 � q < n=�nÿ 1�, 1 � p � 1 (cf. Remark 1.2). If � is radial, then
(1.15) reads Z 1

0
�R#' � �t� dttn � d�f ; ' � Rf :

Various examples of measures satisfying conditions of Theorem 1.4 can be
found in [9]. Formulae (1.5), (1.15) contain those from [3, 8] as particular
cases. If � and � are absolutely continuous, then the convolutions ' � �t and
R#' � �
;t are just continuous wavelet transforms of ' and R#' respectively.
If � � u � v , then (1.15) yields the wavelet decomposition of f with the ana-
lysing wavelet u and the reconstructing wavelet v (or vice versa). The in-
tegration over the rotation group SO�n� can be replaced by the integration
over the �nÿ 1�-dimensional unit sphere (see [9]). The conditions for wavelet
measures can be reformulated in terms of their Fourier transforms (in the
framework of the corresponding L2-theory). The interested reader is ad-
dressed to [10] for the details.
The paper is organized as follows. Section 2 contains basic definitions and

some auxiliary facts. In Sections 3 and 4 we prove Theorem 1.1 and Theo-
rem 1.4 respectively. The analogous statements are established for the case
when f is replaced by a finite Borel measure.

Acknowledgement. The author is grateful to Prof. Robert S. Strichartz
for valuable remarks, which led to improvement of the text of the paper.

Notation. For x � �x1; . . . ; xn� 2 Rn and y � �y1; . . . ; yn� 2 Rn we write
hx; yi � x1y1 � ::: � xnyn. Let e1 � �1; 0; . . . ; 0�, �nÿ1 � fx 2 Rn : jxj � 1g,
j�nÿ1j�2�n=2=ÿ �n=2�; �a� is the integer part of the real number a. Given a
function k�x� on Rn and " > 0 (instead of " there may be t; � or another let-
ter) we denote k"�x� � "ÿnk�x="�. The notation C�Rn�, C1�Rn�, Lp�Rn� is
standard; C0�Rn� � ff 2 C�Rn� : lim

jxj!1
f �x� � 0g; C1c �Rn� is the space of

compactly supported infinitely differentiable functions; S�Rn� is the
Schwartz space of rapidly decreasing C1-functions with a standard topol-
ogy. The Fourier transform and its inverse are defined by

f̂ ��� � �Ff ���� �
Z
Rn
f �x�eihx;�idx; �f �x� � �Fÿ1f ��x� � �2��ÿn

Z
Rn
f ���eÿihx;�id�:

We denote by ��Rn� the subspace of S�Rn�, which consists of functions or-
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thogonal to all polynomials; 	 � F��Rn�. M�Rn� is the Banach space of fi-
nite Borel measures � on Rn with the norm k�k designating the total varia-
tion of j�j. The letter c is used for constants which can be different in each
occasion.

2. Preliminaries

We recall some properties of the Radon transform (1.1). If f 2 L1�Rn�, then
R�f 2 L1�R� and by the Fubini theorem kR�f kL1�R� � kf kL1�Rn� for each
� 2 �nÿ1. If f 2 Lp�Rn�, 1 � p < n=�nÿ 1�, then �Rf ���; s� is locally integr-
able on ~Rn. The restriction p < n=�nÿ 1� is essential. For example, the
function f

��x� � �2� jxj�ÿn=p�log�2� jxj��ÿ1 belongs to Lp�Rn�; p� n=�nÿ 1�,
and �R� f

�� �s� �1 8� 2 �nÿ1 (see [13]). If 1� p< n=�nÿ 1� and
rÿ1 � npÿ1ÿ n� 1, then R is a linear bounded operator from Lp�Rn� into the
space L1;r�~Rn� defined in (1.7) (see [6]).
The Radon transform R�� of the Borel measure � on Rn can be defined as

the image of � under the mapping rÿ1� E�, where E� is the orthogonal projec-
tion onto the line l� � fs� : ÿ1 < s <1g and r� is an arbitrary rotation
such that r�e1 � �. This means that R�� is the Borel measure on R such that
�R����
� � ��Eÿ1� r�
� � ���? � r�
�; 
 � R: The definition of R�� does
not depend on the choice of r� and corresponds to (1.1). Clearly, if � is finite
on Rn, then R�� is finite on R for each � 2 �nÿ1. The idea of the above defi-
nition was borrowed from the more general consideration in [4].

Lemma 2.1. If � is a Borel measure on Rn and ' is a Borel function on R,
then Z 1

ÿ1
'�s�d�R����s� �

Z
Rn
'�rÿ1� E�x�d��x� �

Z
Rn
'�hx; �i�d��x�:

This statement follows from [4] (Theorem 1.19). Assuming '�s� � '��; s�
and integrating the above equality over �nÿ1 we getZ

�nÿ1
d�
Z
R
'��; s�d�R����s� �

Z
Rn
d��x�

Z
�nÿ1

'��; hx; �i�d�:�2:1�

Given Borel measures �, � and functions ';  on ~Rn and Rn respectively, we
denote

��; '�~�
Z

~Rn
'��; s�d���; s�; ��;  � �

Z
Rn
 �x�d��x�:�2:2�

Let R� be a measure on ~Rn defined by d�R����; s� � d�d�R����s�. Then (2.1)
reads

�R�; '�~� ��;R#'�;�2:3�
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R#' being the dual Radon transform (1.3). In particular, if d��x� � f �x�dx,
then

�Rf ; '�~� �f ;R#'�:�2:4�
We remark that R� � R�� is an even finite measure on ~Rn. If � is absolutely
continuous, i.e. d��x� � f �x�dx, then d�R����; s� � �Rf ���; s�d�ds.
Let S�~Rn� be the space of rapidly decreasing even smooth functions g��; s�

on ~Rn with the topology generated by the sequence of norms

kgkm � sup
j�j�j�m

sup
�;s
�1� jsj�mj@�� @jsg��; s�j; m � 0; 1; :::;

where

@�� g��; s� �
�
@j�jg�x=jxj; s�
@x�11 ::: @x

�n
n

�
x��

; � � ��1; :::; �n� 2 Zn
�:

Following [12, 2], we consider the subspaces of S�~Rn� defined by

	�~Rn� � f ��; �� 2 S�~Rn� : �@�� @j� ���; 0� � 0; for all � 2 Zn
�; j 2 Z�; � 2 �nÿ1g;

��~Rn� � F	�~Rn� � f'��; s� 2 S�~Rn� :Z 1
ÿ1

sj@�� @
k
s g��; s�ds � 0; for all j 2 Z�; � 2 Zn

�; k 2 Z�; � 2 �nÿ1g

(here F denotes the Fourier transform in the second variable).

Lemma 2.2 ([12, 2, 10]). The operator R �R#� acts as the isomorphism from
��Rn� onto ��~Rn� �from ��~Rn� onto ��Rn��.
We denote by S0�Rn�, �0�Rn�, S0�~Rn� and �0�~Rn� the duals of S�Rn�, ��Rn�,

S�~Rn� and ��~Rn� respectively. Clearly, Lp�Rn���0�Rn� and L1;r�~Rn���0�~Rn�
for 1 � p; r � 1.

Lemma 2.3. (i) Let f 2 Lp�Rn�, 1 � p <1, and g 2 Lq�Rn�, 1 � q <1. If
f � g in the �0�Rn�-sense, then f � g a.e. on Rn.
(ii) Let � 2 M�Rn�. If � � 0 in the �0�Rn�-sense, then ��; u� � 0 for each
u 2 C0�Rn�.
Proof. The proof of the first statement can be found in [7]. In order to

check (ii) we pick up an arbitrary bump function a�x� 2 S�Rn� with R a � 1
and consider the convolution a" � � with a"�x� � "ÿna�x="�, " > 0. Clearly,
a" � � 2 L1�Rn�, and for any v 2 ��Rn� we have a" � v 2 ��Rn�. It follows that
�a" � �; v� � ��; a" � v� � 0 and therefore, according to (i), a" � � �a:e: 0. Hence
for each u 2 C0�Rn� we get 0 � �a" � �; u� � lim

"!0
�a" � �; u� � lim

"!0
��; a" � u�

� ��; u�, which was required.
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Our next goal is to prove an analogue of Lemma 2.3 for ~Rn. LetM�~Rn� be the
Banach space of all finite Borel measures on ~Rn;C0�~Rn� � fv��; s� 2 C�~Rn� :

lim
s!�1

v��; s� � 0 for each � 2 �nÿ1g. We denote by fYj;k���g the orthonormal
basis of spherical harmonics on �nÿ1. Here j 2 Z� and k � 1; 2; :::; dn�j�,
where dn�j� is the dimension of the subspace of spherical harmonics of degree
j. Given a function g 2 L1��nÿ1�, the Fourier-Laplace coefficients of g are
defined by gj;k �

R
�nÿ1

g���Yj;k���d�:
Lemma 2.4. (i) Let ' 2 L1;r�~Rn�,  2 L1;��~Rn�, 1 � r; � <1. If ' �  in

the �0�~Rn�-sense, then ' �  a.e. on ~Rn.
(ii) Let � 2M�~Rn�. If � � 0 in the �0�~Rn�-sense, then ��; v� � 0 for each

v 2 C0�~Rn�.
Proof. Consider the Fourier-Laplace coefficients of '��; s� and  ��; s� in

the �-variable. Clearly, 'j;k�s� 2 Lr�R� and  j;k�s� 2 Lq�R�. Moreover,
'j;k �  j;k in the �0�R�-sense. Indeed, let u 2 ��R�, uj;k��; s� � u�s�Yj;k���. By
taking into account the evenness of ' we have �'j;k; u� � �'; uj;k�~� ��'��; s��
'�ÿ�;ÿs��=2; uj;k��; s��~� �';u�j;k�~; where u�j;k��; s� � �uj;k��; s�� uj;k�ÿ�;ÿs��=2
2 ��~Rn�. Since ' and  coincide as the �0�~Rn�-distributions, then �'j;k; u�
� �'; u�j;k�~� � ; u�j;k�~� � j;k; u� 8u 2 ��R�. By Lemma 2.3 it follows that
'j;k �  j;k a.e. on R, and therefore ' �  a.e. on ~Rn.
In order to prove (ii) we take a bump function a 2 S�R� with R a � 1 and the

Poisson kernel Pt��; �� � cn�1ÿ t2�=j�ÿ t�jn, t 2 �0; 1�, cn � 1=j�nÿ1j. Let
a"�s� � "ÿ1a�s="�. The function �A";t���s; �� �

R
~Rn a"�sÿ ��Pt��; ��d���; ��;

" 2 �0; 1�; belongs to L1;1�~Rn�, and for each !2��~Rn� we have �A";t!�
�s; �� 2 ��~Rn�. Since �A";t�; !� � ��; A";t!� � 0 8! 2 ��~Rn�, then by (i),
A";t�� 0 a.e. on ~Rn. By taking into account that

R
�nÿ1
Pt��; ��d�� 1, for any

v 2 C0�~Rn�we get 0� �A";t�; v� � lim
"!0
t!1

��; A";tv� � ��; v�.
Let us recall some facts related to Riesz potentials (see, e.g., [7, 11]). The

Riesz potential I�f , Re� > 0, on Rn is defined as a convolution I�f � k� � f
with the kernel

k��x� �

2ÿ�ÿ��nÿ ��=2�
�n=2ÿ��=2� jxj�ÿn if �ÿ n 6� 0; 2; 4; ::: ;

21ÿ��ÿ1�1���ÿn�=2
�n=2ÿ��=2����ÿ n�=2�! jxj

�ÿn log jxj if aÿ n � 0; 2; 4; ::: :

8>>><>>>:
The operator I� is an automorphism of the space ��Rn� and
�I�u�^��� � j�jÿ�û��� for u 2 ��Rn�. The last relation extends I�u to all
� 2 C as the entiere function of �. The operator D� � Iÿ�, Re� > 0, is
called the Riesz fractional derivative. For f 2 Lp�Rn�, 1 � p < n=Re�, the
integral I�f exists a.e. on Rn and enjoys the Hardy-Littlewood-Sobolev
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theorem. In the case p � n=� the integral Iaf can be divergent and the Riesz
potential is defined as the �0�Rn�-distribution: �I�f ; u� � �f ; I��u�, u 2 ��Rn�.
Lemma 2.5. Let u 2 ��Rn�, � 2 C. Then

R#I�ÿn�1Ru � 2�2��nÿ1I�u:�2:5�
For u 2 S�Rn� and real � < n this relation may found in [5], p. 18. In our

case the proof is the same. The use of the space ��Rn� enables us to avoid
difficulties related to the fact that Riesz potentials do not preserve S�Rn�.
By putting � � 0 and � � nÿ 1 in (2.5), in accordance with Lemma 2.2 we
get

u � �nR#Dnÿ1Ru; u � �nDnÿ1R#Ru; R#Ru � �ÿ1n Inÿ1u; u 2 ��Rn�;
�2:6�

!� �nRDnÿ1R#!; !� �nDnÿ1RR#!; RR#!� �ÿ1n Inÿ1!; ! 2 ��~Rn�;�2:7�
where �n � 2ÿ1�2��1ÿn and abbreviations Dnÿ1, Inÿ1 are used both for op-
erators on R and for those on Rn (we hope the reader will not be confused).

3. Inversion of the Radon transform (the first approach)

Given a function ' 2 L1;r�~Rn� and a finite Borel measure � on R, consider
the truncated integral T"' (see (1.4)). By using the duality (2.4) and the
continuity of the mapping R : S�Rn� ! S�~Rn�, one can readily see that T"' is
well-defined and belongs to L1

loc�Rn� \ S0�Rn�.
Lemma 3.1. Let ' � Rf , f 2 Lp�Rn�, 1 � p < n=�nÿ 1�. If � satisfies the

conditions of Theorem 1.1, then

�T"'��x� � �f � h"��x�;�3:1�

h"�x��"ÿnh�x="�; h�x��dnjxjÿn
Z jxj
ÿjxj
�jxj2ÿs2��nÿ1�=2d��s�; dn� ��nÿ1�=2

ÿ��n�1�=2� :

The function h�x� enjoys the following properties:

(i) h�x�2L1�Rn�; h�x�� O�jxjÿ1� if jxj<1;
O�jxjÿ1ÿ
�; 
�min��; 2��nÿ1�=2��2�; if jxj>1;

(

(ii)

Z
Rn
h�x�dx �

�n�1=2�ÿ1�n=2
ÿ�n=2�ÿ ��n� 1�=2�

Z 1
ÿ1
jsjnÿ1d��s� if n is even;

2�nÿ1=2�ÿ1��n�1�=2
ÿ�n=2�ÿ ��n� 1�=2�

Z 1
ÿ1
jsjnÿ1 log jsjd��s� if n is odd:

8>>><>>>:
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Proof. By changing the order of integration, owing to the evenness of Rf ,
we have

�T"Rf ��x� �
Z 1
ÿ1

d��s�
Z

�nÿ1
d�
Z 1
"

�Rf ���; hx; �i ÿ ts� dt
tn

�
Z 1
ÿ1
jsjnÿ1d��s�

Z
�nÿ1

d�
Z 1
"jsj
�Rf ���; hx; �i ÿ �� d�

�n

�
Z

�nÿ1
d�
Z 1
0
�Rf ���; hx; �i ÿ �� d�

�n

Z
jsj<�="

jsjnÿ1d��s�

� 1
2

Z
�nÿ1

d�
Z 1
ÿ1
�Rf ���; hx; �i ÿ �� d�

�n

Z j� j="
ÿj� j="

jsjnÿ1d��s�

� 1
2

Z
�nÿ1

d�
Z
Rn
f �y� dy
jhxÿ y; �ijn

Z jhxÿy;�ij="
ÿjhxÿy;�ij="

jsjnÿ1d��s� � �f � u"��x�

where u"�x� � "ÿnu�x="�,

u�x��1
2

Z
�nÿ1

d�
jhx;�ijn

Z
jsj<jhx;�ij

jsjnÿ1d��s��j�nÿ2j
2jxjn

Z
juj<1

�1ÿu2��nÿ3�=2 dujujn
Z

jsj<jxjjuj

jsjnÿ1d��s�

� j�nÿ2j
jxjn

Z
jsj<jxj

jsjnÿ1d��s�
Z1
jsj=jxj

�1ÿu2��nÿ3�=2du
un
�h�x�:

The relations (i), (ii) follow from Lemma 2.1 of [9].

Proof of Theorem 1.1. The statement (i) (and therefore the implication
�a� ) �b�) follows from Lemma 3.1 due to the standard machinary of ap-
proximation to the identity. Let us prove ��b� ) �a���. Assume that T"'
converges in the Lp-norm to some function f 2 Lp�Rn�. Given a test function
! 2 ��~Rn�, by taking into account the equality RR#! � �ÿ1n Inÿ1!,
�n � 2ÿ1�2��1ÿn, we have

�Rf ; !�~� �f ;R#!� � lim
"!0
�T"';R#!� � lim

"!0

Z 1
"

�R#�' � �t�;R#!� dt
tn

� lim
"!0

Z 1
"

�' � �t;RR#!�~dt
tn

� lim
"!0

�ÿ1n

Z 1
"

�' � �t; Inÿ1!�~dttn � lim
"!0

�ÿ1n

�
';

Z 1
"

Inÿ1! � ��t
tn

dt
�
~
:

According to Lemma 2.4 from [9], this yields
�Rf ;!�~� lim

"!0
�ÿ1n �';!� �V"�~� lim

"!0
�ÿ1n �'�V";!�~where V"�s�� "ÿ1V�s="�;

s 2 R1,
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V�s� � 2ÿn

ÿ ��nÿ 1�=2�
Z 1
jsj2
�� ÿ jsj2��nÿ3�=2��1��;nÿ1����1ÿn=2d�;

�
�1�
�;nÿ1��� � ��ÿ ��n� 1�=2��ÿ1

Z
jyj2<�
�� ÿ jyj2��nÿ1�=2d��y�:

The function V�s� belongs to L1�R�, and R1ÿ1 V�s�ds � c1;� where

c1;� �

�ÿ1�n=22ÿn�3=2
ÿ�n=2�ÿ��n� 1�=2�

Z 1
ÿ1
jsjnÿ1d��s� if n is even;

�ÿ1��n�1�=221ÿn�1=2
ÿ�n=2�ÿ��n� 1�=2�

Z 1
ÿ1
jsjnÿ1 log jsjd��s� if n is odd

8>>><>>>:�3:2�

(see Lemma 2.2 from [9]). This gives �Rf ; !�~� c��'; !�~; c� � c1;�=�n.
Hence, by Lemma 2.5, Rf �a:e: c�', which implies (a).
The implication �a� ) �c� follows from (3.1). Let us prove ``�c� ) �a�''.

According to �c�, the set of functionals  ! �T"';  �,  2 Lp0 �Rn�, is bouded
in �Lp0 ��. Since the unit ball in the space, which is dual to the reflexive Banach
space, is compact in the weak� topology, there exist a function f 2 Lp�Rn� and
a sequence "k ! 0 such that �T"k';  � ! �f ;  � as "k ! 0 for all  2 Lp0 �Rn�.
For this f and arbitrary ! 2 ��~Rn� as above we have �Rf ; !�~� �f ;R#!� �
lim
"k!0
�T"k';R#!� � lim

"k!0
�ÿ1n �' � V"k ; !�~� c��'; !�; i.e. c�' � Rf .

The described method can be used for inversion and characterization of
Radon transforms of finite measures. Assume for simplicity that the wave-
let measure � 2 M�R� is absolutely continuous with the density
g�s�2C0�R� \ L1�R�. We recall (see Section 2) that, given a finite Borel mea-
sure � 2M�Rn�, the Radon transform R�� is a finite Borel measure on R (for
each � 2 �nÿ1). LetM#�~Rn� be the set of all even finite Borel measures on ~Rn.
For � 2 �nÿ1 and � 2M#�~Rn� we denote by �� the image of � under the pro-
jection ��; s� ! s ``along the sphere'' so that ���
� � ���nÿ1 �
�; 
 � R:
Clearly, �� is a finite Borel measure on R (cf. [4], p. 16) and k��k � k�k. Given
� 2M#�~Rn� and g�s� 2 C0�R� \ L1�R�, let

T"��
Z 1
"

R#�� � gt�dttn ; " > 0; �� � gt���; s� � 1
t

Z 1
ÿ1

g
�
sÿ �
t

�
d�����:

�3:3�
Since k� � gtk1;1 � k�kkgk1, then R#�� � gt� is well-defined almost every-
where on Rn and T"� 2 L1

loc�Rn� \ S0�Rn�.
Theorem 3.2. Let g 2 C0�R� satisfy the following conditions:
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Z
jsj>1

jsj�jg�s�jds<1 for some �>nÿ 1;

Z1
ÿ1

sjg�s�ds�0 for all j � 0; 1; ::: ; 2��nÿ1�=2�:

(i) If � � R�, � 2 M�Rn�, then for each u 2 C0�Rn�,
lim
"!0
�T"�; u� � cg��; u��3:4�

where the constant cg is defined by (1.6) with d��s� � g�s�ds.
(ii) If cg 6� 0 , then for � 2M#�~Rn� the following statements are equivalent:

�a��2R�M�Rn��; �b� the sequence T"� is weakly convergent as "!0;
�c� sup

">0
kT"�k1<1.

Proof. (i) For  2 C1c �Rn� by (3.1) we have

�T"�;  � �
Z 1
"

�� � gt;R �~dttn �
�
�;

Z 1
"

R � � gt dttn
�
~

�
�
�;

Z 1
"

R#�R � � gt� dttn
�
� ��; � � h"� � �� � h";  �;

where h" is the same as in (3.1) with d��s� � g�s�ds. Hence

T"� � � � h";�3:5�
and the required result follows in an obvious way.
(ii) The implications �a� ) �b� and �a� ) �c� are implied by (3.4) and (3.5)

respectively. If �b� holds, then, owing to the weak completeness of M�Rn�,
there is a measure � 2 M�Rn� such that �T"�; u� � ��; u� 8u 2 C0�Rn�. Pro-
ceeding as in the proof of Theorem 1.1, for any !2��~Rn� we have
�R�;!�~���;R#!�� lim

"!0
�T"�;R#!���c1;g=�n���;!�� cg��;!�: By Lemma

2.4(ii) it follows that R�� cg� which gives �a�. If �c� holds, then there is a se-
quence "k!0 and a measure �2M�Rn� such that �T"k�;u�!��;u� as "k!0
for each u2C0�Rn�. It remains to repeat the proof of ``�b�)�a�'' with " re-
placed by "k.

4. The second approach

In order to prove Theorem 1.4 we first represent the truncated integral
B"'; ' � Rf , (see (1.14)) as the approximate identity.

Lemma 4.1. Assume that � satisfies the conditions of Theorem 1:4: If
' � Rf , f 2 Lp�Rn�, 1 � p < n=�nÿ 1�, then
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B"' � 2�2��nÿ1f �U";�4:1�

U"�x��"ÿnU�x="�; U�x�� 21ÿn

ÿ��nÿ1�=2�j�nÿ1j
Z 1
jxj2
��ÿjxj2��nÿ3�=2��n��;nÿ1����ÿn�3=2d�;

�
�n�
�;nÿ1��� � ��ÿ��n� 1�=2��ÿ1

Z
jyj2<�
�� ÿ jyj2��nÿ1�=2d��y�:

The function U�x� enjoys the following properties:

(i) U�x� 2 L1�Rn�; U�x� � O�jxjÿ1� if jxj � 1;
O�jxjÿ1ÿ
�; 
 � min��; 2��nÿ 1�=2� � 2�; if jxj>1;

(

(ii) cn;� �
Z
Rn
U�x�dx �

�

2ÿn�ÿ1�n=2�ÿ �n=2�
ÿ�nÿ 1=2�ÿ��n� 1�=2�

Z
Rn
jyjnÿ1d��y� if n is even;

21ÿn�ÿ1��n�1�=2ÿ�n=2�
ÿ�nÿ 1=2�ÿ��n� 1�=2�

Z
Rn
jyjnÿ1 log jyjd��y� if n is odd:

8>>><>>>:�4:2�

Proof. The relations (i), (ii) follow from [9, Lemma 2.2]. Let us prove
(4.1). Owing to the equality R#Rf � �ÿ1n Inÿ1f , �n � �2��1ÿn=2, by Lemma
2.4 from [9] for each u 2 ��Rn� we have

�B"'; u� �
�Z

SO�n�
d

Z 1
"

�R#' � �
;t� dttn ; u
�
�
�
�ÿ1n

Z
SO�n�

d

Z 1
"

Inÿ1f � �
;t
tn

dt; u
�

� �ÿ1n
ÿ
f ;
Z

SO�n�
d

Z 1
"

Inÿ1u � ��
;t
tn

dt
� � ��ÿ1n �f ; �U" � u� � �ÿ1n �f �U"; u�:

Since U 2 L1�Rn�, then f �U" 2 Lp�Rn�. By the Hardy-Littlewood-Sobolev
theorem, for p > 1 we have Inÿ1f 2 Lq�Rn�, qÿ1 � pÿ1 � nÿ1 ÿ 1. If p � 1, then
Inÿ1f �c�g1 � g2� where g1��1jxjÿ1 � f 2 Lp�Rn� and g2 � �1ÿ �1�jxjÿ1 � f 2
L��Rn�, �ÿ1 < pÿ1 � nÿ1 ÿ 1, �1�x� being the characteristic function of the
unit ball. The same relations hold for B"'. By Lemma 2.3 it follows that
B"' � �ÿ1n f �U" which coincides with (4.1).

Proof of Theorem 1.4. The statement (i) and the implication �a� ) �b�
follow from Lemma 4.1. In order to prove ``�b� ) �a�'' we first remark that
' � Rf if and only if R#' � 2�2��nÿ1Inÿ1f in the �0�Rn�-sense. Indeed, let
' � Rf , i.e. �'; !�~� �f ;R#!� 8! 2 ��~Rn�. Then by (2.6) for u 2 ��Rn� we
have �R#'; u� � �';Ru�~� �f ;R#Ru� � �ÿ1n �f ; Inÿ1u� � �ÿ1n �Inÿ1f ; u� where
�ÿ1n � 2�2��nÿ1. Conversely, let R#' � �ÿ1n Inÿ1f in the �0�Rn�-sense. Then for
each u 2 ��Rn� we get �R#'; u� � �ÿ1n �Inÿ1f ; u�; i.e. �';Ru�~� �ÿ1n �f ; Inÿ1u�:
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Given a function ! 2 ��~Rn�, put ! � Ru0, u0 2 ��Rn�. Then �'; !�~� �';Ru0�~
� �ÿ1n �f ; Inÿ1u0� �

�2:6��f ;R#!� � �Rf ; !�~. Since Rf 2 L1;r�~Rn� ([6]), then Lem-
ma 2.4 yields ' �a:e:Rf .
Now let lim

"!0
B"' � f in the Lp�Rn�-norm. According to the remark from

above it suffices to show that the function g � R#' is represented by the
Riesz potential Inÿ1f in the �0�Rn�-sense. Denote

D
� nÿ1
" g �

Z
SO�n�

d

Z 1
"

g � �
;t
tn

dt �� B"'�:

By making use of the relation

D
� nÿ1
" Inÿ1u �

Z
SO�n�

d

Z 1
"

Inÿ1u � �
;t
tn

dt � U" � u; u 2 ��Rn�;�4:3�

(see Lemma 2.4 from [9]), for the arbitrary u 2 ��Rn� we obtain

�Inÿ1f ; u� � lim
"!0
�D� nÿ1" g; Inÿ1u� � lim

"!0

�
g;D
�
nÿ1
" Inÿ1�u

�
� lim

"!0
�g;U" � �u�:

Let us show that lim
"!0
�g;U" � �u� � cn;��g; u� where cn;� is defined by (4.2).

Denote  � Ru. Then �" �
���g;U" � �u� ÿ cn;��g; u�

�� � j�R#'; �U" � uÿ �cn;�u�j
� j�';R �U" �  ÿ �cn;� �~j: We note that R�

�U" � �R�
�U�" and

R1
ÿ1�R�

�U��s�ds �R
Rn

�U�x�dx 8� 2 �nÿ1. Hence lim
"!0

�" � 0, i.e. �Inÿ1f ; u� � cn;��R#'; u� which
was required.
The implication �a� ) �c� is clear from (4.1). Let us explain ``�c� ) �a�''. If

sup
">0
kB"'kp <1, then for g � R#' we have sup

">0
kD� nÿ1" gkp <1. Hence

there exist f 2 Lp�Rn� and a sequence "k ! 0 such that �D� nÿ1" g; u� !
�f ; u� 8u 2 ��Rn�. Proceeding as in the proof of ``�b� ) �a�'', we get
�Inÿ1f ; u� � cn;��R#'; u� which implies �a�.
In the framework of the method described in this section one can invert

and characterize the Radon transforms of finite measures. Let � in (1.15) be
absolutely continuous with the rapidly decreasing continuous density g�x�
such that sup

x
�1� jxj�kjg�x�j <1, 8k 2 N. The collection of all such func-

tions g�x� will be denoted by Crap�Rn�. For an even finite Borel measure � on
~Rn (we recall the notationM#�~Rn� for this set) let

B"� �
Z

SO�n�
d

Z 1
"

�R#� � g
;t� dttn ; " > 0;�4:4�

where R#� is a tempered Borel measure on Rn (not necessarily finite) defined
by the duality: �R#�; !� � ��;R!�~, ! 2 Cc�Rn�. The integral B"� is well-de-
fined and belongs to L1

loc�Rn� \ S0�Rn�.
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Theorem 4.2. Let g 2 Crap�Rn� be such thatZ
Rn
xjg�x�dx � 0 for jjj � 0; 2; 4; :::; 2��nÿ 1�=2�:�4:5�

(i) If � � R�, � 2 M�Rn�, then for each  2 C0�Rn�
lim
"!0
�B"�;  � � dg��;  ��4:6�

where dg is defined by (1.16) with d��y� � g�y�dy.
(ii) If dg 6� 0, then for � 2 M#�~Rn� the following statements are equivalent:

�a� �2R�M�Rn��; �b� the integral B"� weakly converges as "!0;
�c� sup

">0
kB"�k1<1.

Proof. Denote g�
;t�x� � �g
;t�ÿx�. For each u 2 C1c �Rn� as in the proof of
Lemma 4.1 we have

�B"�;u� �
Z

SO�n�
d

Z 1
"

�R#� � g
;t;u�dttn �
Z

SO�n�
d

Z 1
"

��;R�u � g
;t��~dttn

� �ÿ1n
�
�;

Z
SO�n�

d

Z 1
"

�Inÿ1u � g�
;t�
dt
tn

�
� �ÿ1n ��; �U" � u� � �ÿ1n �� �U";u�:

Here the function U�x� has the same form as in Lemma 4.1 with
d��x� � g�x�dx. Hence

B"� �a:e: �ÿ1n �� �U"�;�4:7�
and the statement (i) (as well as the implication �a� ) �b�) follows.
In order to prove the inverse statement we note that given � 2M#�Rn�

and � 2M�Rn�, the equality � � R� holds if and only if
R#� � 2�2��nÿ1Inÿ1� in the �0�Rn�-sense. This assertion is based on Lemma
2.4(ii) and can be checked in the same manner as the similar one in the proof
of Theorem 1.4. Thus, it suffices to show that dg�R#�; u�
� 2�2��nÿ1��; Inÿ1u� 8u 2 ��Rn�. By making use of (4.3) we have

��; Inÿ1u� � lim
"!0
�B"�; Inÿ1u� � lim

"!0
�R#�;  "�;  " �

Z
SO�n�

d

Z 1
"

Inÿ1u � �g
;t
tn

dt:

Since g 2 Crap�Rn�, then  " 2 Crap�Rn� and by (4.3),  " � �U" � u. Put ! � Ru.
Then ��; Inÿ1u� � lim

"!0
�R#�; �U" � u� � lim

"!0
��;R �U" � !�~: Since � is finite, then

due to the uniform estimate

j�R �U" � !���; s�j � k!k1
Z 1
ÿ1
j�R�

�U"��s�jds � k!k1
Z
Rn
jU�x�jdx;

one can write (cf. the proof of Theorem 1.4)

��; Inÿ1u� � ��; lim
"!0

R �U" � !�~� cn;g��; !�~� cn;g�R#�; u�
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where cn;g has the form (4.2) with � replaced by g. This yields the equality
dg�R#�; u� � 2�2��nÿ1��; Inÿ1u�; and the implication �b� ) �a� follows. The
implication �a� ) �c� is clear from (4.7). If �c� holds, then there is a sequence
"k ! 0 and a measure � 2 M�Rn� such that �B"k�; v� ! ��; v� as "k ! 0 for
all v 2 C0�Rn�. Proceeding as above, for u 2 ��Rn� and ! � Ru we have
��; Inÿ1u� � ��; lim

"k!0
R �U"k � !� � cn;g�R#�; u� which implies �a�.
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