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PROBABILITY AND QUASI-MEASURES ^ A NEW
INTERPRETATION

JOHAN F. AARNES and ALF B. RUSTAD

1. Introduction

Let X be a compact Hausdorff space, and let c (respectively o) denote the
collection of closed (respectively open) subsets of X . Let a � c [ o. A
quasi-measure in X is a function � :a! R� which is monotone, additive
and regular. More precisely we have:
(i) ��A1� � ��A2� if A1 � A2

(ii) ��Un
i�1 Ai� �

Pn
i�1 �Ai (

U
indicates disjoint union, and we assume all

Ai and
Un

i�1Ai in a)
(iii) �U � supf�C : C � U ;C 2 cg for all U in o.

One may show that a quasi-measure has a (necessarily unique) extension
to a regular Borel measure in X if and only if it is subadditive on c, i.e. if it
satisfies
(iv) ��C1 [ C2� � �C1 � �C2 for all C1;C2 in c.

The whole point here is that quasi-measures that do not satisfy condition
(iv) exist. Their basic construction has been given in [1], [2] and [3]. The main
construction result ([1], Theorem 5.1) assumes that a set function � initially
is given on a fundamental family of sets as, called the solid sets, and ex-
tended to all of a (a set A 2a is solid if A and its compliment are both
connected). A function � :as ! R� is a solid set-function if it satisfies
(A)

Pn
i�1 �Ci � �C whenever

Un
i�1 Ci � C; Ci;C 2 cs for i � 1; 2; :::; n

(B) �U � supf�C : C � U ;C 2 csg for all U 2 os
(C) �A� ��XnA� � �X
Here cs (respectively os) denotes the family of closed (respectively open)

solid sets in X . We assume here that X is connected and locally path con-
nected, and for simplicity we will also require that it has genus g � 0 (for
details see [1]). These conditions will be met in standard spaces like balls and
spheres, for instance. The main construction theorem now states that each
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solid set function has a unique extension to a quasi-measure in X . By this
result, the construction problem is reduced to that of obtaining the solid set-
functions. It is the purpose of this note to describe how to do this by means
of applying certain functions to existing (Borel or quasi-) measures. By this
process we also obtain a new interpretation in probability theory, presented
in the final section of this paper.

2. Functions composed with measures

We first introduce the class of functions we are going to consider.

Definition 2.1. A function f : �0; 1� ! �0; 1� is called a q-function if it is
continuous from the right and satisfies
1. f �0� � 0; f �xÿ� � f �1ÿ x� � 1
2.
Pn

i�1 f �xi� � f �Pn
i�1 xi� whenever x1; x2; :::; xn 2 �0; 1� and

Pn
i�1 xi < 1.

Let � be a normalized Borel (or quasi-) measure in X , i.e. ��X� � 1. We
say that � is on-splitting if there is no disjoint pair C1;C2 2 cs such that
�C1 > 0; �C2 > 0 and �C1 � �C2 � 1. For instance, Lebesgue-measure on
the unit disk, or the unit sphere (normalized) is non-splitting.

Proposition 2.2. Let f be a q-function, and let � be a normalized regular
Borel (or quasi-) measure in X. Define � on as by: �C � f ��C�; C 2 cs and
�U � 1ÿ ��XnU�; U 2 os. If either � is non-splitting or f is continuous, then
� is a solid set-function.

Proof. We first verify that f is non-decreasing: Let 0 � x < y < 1. By
2.1.2: f �x� � f �x� � f �yÿ x� � f �x� �yÿ x�� � f �y�. Also, by 2.1.1: f �1ÿ��
f �0� � 1) f �1ÿ� � 1. Putting x � 0 in 2.1.1 yields f �0� � f �1� � 1)
f �1� � 1. Then we verify condition (A) for a solid set-function: Let
C1; :::;Cn;C 2 cs and suppose

Un
i�1 Ci � C. First if

Pn
i�1 �Ci < 1 then by

2.1.2 X
�Ci �

X
f ��Ci� � f �

X
�Ci� � f ���

]
Ci�� � f ��C� � �C

since f is non-decreasing. Now if
P
�Ci � 1 and � is non-splitting then

n � 1. This follows from lemma 3.3 in [1]. So, if
P
�Ci � 1 we may assume

that f is continuous. Condition 2.1.1 then yields f �x� � f �1ÿ x� � 1 for all
x 2 �0; 1� so that

P
�Ci � 1 � �C. Next, to show that � is regular (condition

(B)) we first note that if C � U ; C 2 cs;U 2 os, then �C � �U . For if
C0 � XnU then C \ C0 � ; and it follows from the argument above that
�C � �C0 � 1) �C � 1ÿ �C0 � �U . Now let U 2 os be arbitrary. Since �
is (inner) regular we get
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�U � 1ÿ ��XnU� � 1ÿ f ���XnU��
� 1ÿ f �1ÿ �U� � f ��Uÿ�
� sup

C�U
f ��C� � sup

C�U
�C

The last equality follows from Lemma 3.1 and 3.1 in [2], which implies that
for each compact C � U 2 os there is a solid compact set C0 � U with
C � C0. We have now verified conditions �A� and �B� for a solid set-func-
tion. Finally, condition �C� holds trivially by construction.
We next turn to the question of determining which functions that are q-

functions.

Lemma 2.3. Let f : �0; 1� ! �0; 1� be a function satisfying:
1. f �0� � 0, f �x� � f �1ÿ x� � 1

2. f �x�
x is increasing on �0; 12�

Then f is non-decreasing and satisfies

Xn
i�1

f �xi� � f
Xn
i�1

xi

 !
whenever

Xn
i�1

xi � 1; x1; :::; xn 2 �0; 1�; n 2 Z�:���

Proof. Let 0 < c < 1
2 and let l � l�x� be the straight line through the ori-

gin and the point �c; f �c��. By condition 2.2 we have

f �x� � l�x� if 0 � x � c

f �x� � l�x� if c � x � 1
2

We first prove (*) when n � 2.
i) Let 0 < x1 � x2; x1 � x2 � 1

2. Taking c � x2 we get f �x1� � f �x2� �
l�x1� � l�x2� � l�x1 � x2� � f �x1 � x2�.
ii) 0 < x1 � x2 � 1

2; x1 � x2 � 1
2. By 2.3.1 we get f �x� � x if x � 1

2 and
f �x� � x if x � 1

2. Hence f �x1� � f �x2� � x1 � x2 � f �x1 � x2�.
iii) 0 < x1 < 1

2 < x2 < 1; x1 � x2 � 1. We have 0 � 1ÿ x1 ÿ x2 � 1
2, and

�1ÿ x1 ÿ x2� � x1 � 1ÿ x2 < 1
2 ; so by 2.3.1 and case i) above we get

f �1ÿ x1 ÿ x2� � f �x1� � f �1ÿ x2�; i:e:
1ÿ f �x2 � x1� � f �x1� � 1ÿ f �x2�

) f �x1� � f �x2� � f �x1 � x2�
This establishes (*) when n � 2. An easy induction argument shows that it is
true in general.

Corollary 2.4. Let f : �0; 1� ! �0; 1� be continuous, convex on �0; 12� and
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satisfy f �0� � 0; f �x� � f �1ÿ x� � 1. Then �A � f ��A�; A 2as is a solid set-
function for each normalized quasi-measure � in X.

Proof. The proof follows from lemma 2.

Remark 1. As described in the introduction, each solid set-function ex-
tends to a unique quasi-measure in X . In general the quasi-measures ob-
tained by q-functions will be proper quasi-measures, they are not sub-
additive. To illustrate this, let X � D �unit disk, and let � be normalized
Lebesgue measure. If f is a continuous, convex q-function which is not the
identity function, we must have f �14� < 1

4. Let C1 and C2 be disks in X with
area ��C1� � ��C2� � 1

4. Assume C1 \ C2 6� ; and C1 [ C2 2 cs. We have
�C1 � �C2 � f ��C1� � f ��C2� � 2f �14� < 1

2. On the other hand, by making
��C1 \ C2� small we can have ��C1 [ C1� ! 1

2, and then by the continuity of
f we can get ��C1 [ C2� � f ���C1 [ C2�� > �C1 � �C2. Hence � is not sub-
additive.

We conclude this section with some examples.

Example 2.5. Let n 2 Z� be arbitrary, and let

Ik � k
n� 1

;
k� 1
n� 1

� �
; k � 0; 1; :::; nÿ 1

In � n
n� 1

; 1
� �

Define f �x� � k
n on Ik; k � 0; :::; n. Then f is a q-function. If � is a non-split-

ting regular Borel measure we therefore obtain a quasi-measure �. If n � 1 �
is simple, i.e. it only takes the values 0 and 1. For general n one may show
that � is an extreme point in the set Q�X� of all normalized quasi-measures
in X .

Example 2.6. f �x� � sin2��2 x� � 1
2 �1ÿ cos�x� is a continuous q-function

which is convex on �0; 12�.
Example 2.7. p�x� � 3x2 ÿ 2x3 and q�x� � 2x2 � 2x3 ÿ 5x4 � 2x5 are

polynomials of the type above.

3. Quasi-measures and probability

A normalized quasi-measure in X is called a quasi-probability. The preceding
section has shown how one may construct quasi-probabilities from q-func-
tions and a given probability measure � in X . We formalize this procedure.
Let Q�X� denote the set of quasi-probabilities in X and let q�0; 1� denote the
set of q-functions. Both these sets are convex. If � is a fixed non-splitting
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element of Q�X� we obtain a map F
�

: q�0; 1� ! Q�X� by defining � � F
�
�f �

where � is given by Proposition 2.2 on as and then extended to all of a
(Theorem 5.1 in [1]). Since � is uniquely determined by its values on as it
follows that F

�
is an affine map so the range of F

�
is a convex subset of Q�X�

which we will denote by Q
�
�X�, and consists of the quasi-probabilities that

are associated with �. Note that if � is simple then Q
�
�X� only consists of �,

i.e. F
�
�f � � � for all f 2 q�0; 1�. Our goal here is to give a probabilistic in-

terpretation of the quasi-probabilities that are associated with an ordinary
probability �. This will be done by considering concrete examples. A more
general approach to quasi-probabilities may be found in [4].

Example 3.1. (Quasi-probability) Let D be the unit disk, and let � be the
normalized Lebesgue measure in D. Then �D3;b�D3�; �3� where b�D3� is the
Borel sets in D3 is a probability space. Further let Xi be the i'th projection
map for i � 1; 2; 3 (i.e. Xi�x1; x2; x3� � xi). Then fXig are independent ran-
dom variables on D3. Hence P�T3

i�1Xi 2 Ai� � P�X1 2 A1��P�X2 2 A2��
P�X3 2 A3� for any triple fAig3i�1 � b�D�, where of course P�Xi 2 Ai� �
�3�Xÿ1i �Ai�� � ��Ai�; i � 1; 2; 3. We define a set function � :as ! �0; 1� on
the solid subsets of D by

��A� � P�Xi 2 A for at least two values of i��1�
� may be calculated combinatorially considering D3 with the Xi occurring
respectively in the three disks. We then obtain ��A� � ��A�3�
�32���A�2��DnA� � 3��A�2 ÿ 2��A�3. Notice that � 2 Q

�
�X� by the q-function

p�x� in Example 1 and hence determines a unique quasi-measure in D. One
might be tempted to think that � determines a new probability measure on D
but this is not so (see Remark 1). It is not difficult to imagine a situation
where the set-function � is interesting: Imagine an airdrop of three objects
where in order for the drop to be successful you need to find two objects and
the ground you cover searching is a solid set.

Remark 2. Although the specific problem above can be solved with or-
dinary probability theory one should bear in mind that this is a very simple
example to illustrate that the quasi-measures arises naturally in probability
theory. Note that the construction above could analogously be done on the
sphere. The resulting quasi-measure � would then be rotation invariant and
yet still not a measure. The ``quasi'' behavior of � appears when the sets get
larger.

Example 3.2. In the example above the observations are made in triples
where we can split the triple into three independent variables. However ex-
perimental statisticians often face the problem of choosing a model for de-
pendent observations. In the example above this can be illustrated by the
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three points being charged particles dropped simultaneously onto the disk.
The standard approach is then to try to determine how the observations are
dependent, an approach often without success. Again consider observations
on the disk in triples. After a series of experiments one might find an esti-
mate for � in (1). For instance, F

�
�f � where � is the Lebesgue measure and f

is the function in Example 2.6 could be a suitable model. A statistical inter-
pretation of this model can be that the three points are less likely to cluster
in small disks than if they were independent. This can be seen from the po-
sitivity of the function p�x� ÿ f �x� � 3x2 ÿ 2x3 ÿ sin2��2 x�:

Example 3.3. (Quasi-variable) Given any continuous function
f : X ! �0; 1� and quasi-measure � 2 Q�X� one may show that we obtain a
probability measure �f on �0; 1� by �f �A� � ��f ÿ1�A�� for all open or closed
sets A � �0; 1�. Let X � D �unit disk, let � be the quasi-probability in Ex-
ample 3.2 and define f : D! �0; 1� by rei� 7! r. Then �f �0; r� is the prob-
ability of at least two points being within a radius r of the origin. Using the
formula (2) with Dx being the disk with radius x we find that

FX �x� � �f �0; x� � sin2 �

2
x2

� �
; x 2 �0; 1�;

where FX �x� is the cumulative distribution function of a random variable X
on �0; 1�. Differentiating we find the Radon-Nikodym derivative of �f with
respect to the Lebesgue measure on �0; 1�, fX �x� � 2 sin 1

2�x
2 cos 1

2�x
2

ÿ �
�x (of

course fX �x� is the probability distribution function of X ). Now we may
calculate the expectation of X : E�X� � R 10 xfX �x�dx. But what is X? The
variable X interpreted in this example is the distance of the second point
from the origin.

Remark 3. Notice that the argument above relies on the fact that any
continuous map f : D! �0; 1� maps � onto a probability measure in �0; 1�.
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This enables us to calculate directly from � without considering the (possi-
bly) underlying three dependent variables in D3.
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