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NORMS OF POLYNOMIALS AND CAPACITIES ON
BANACH SPACES

MIGUEL LACRUZ

Added in proof. Although I never submitted this paper for publication
anywhere else, by a mistake I sent it to Integral Equations Operator Theory
who printed it, also by a mistake, in Vol. 34 (4) (1999), 494^499.

1. Introduction

Recall that a function P defined on a complex Banach space X is a homo-
geneous polynomial of degree 0 if P is constant, a homogeneous polynomial
of degree d � 1 if there is a bounded, symmetric d-linear form A on X such
that P�x� � A�x; . . . ; x� for all x 2 X , and a polynomial of degree d if P can
be written as P � P0 � P1 � � � � � Pd , where each Pk is a homogeneous
polynomial of degree k. There is a natural norm on the vector space of
polynomials; it is given by the expression

kPk � supfjP�x�j : x 2 BXg:
This paper concerns a general procedure for estimating norms of poly-

nomials. Such procedure can be described as follows. Let S be a subset of
BX , put

jPjS � supfjP�x�j : x 2 Sg;
cd�S� � supfkPk : deg P � d; jPjS � 1g;

and observe that the inequality jPjS � kPk � cd�S�jPjS holds for every
polynomial P of degree d on X . Thus, giving upper bounds on cd�S� pro-
vides a way for estimating kPk in terms of jPjS.
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Durand [2] introduced this scheme for polynomials in one complex vari-
able and computed the precise values of cd�S� for some specific subsets of
the unit disc, obtaining the results that are shown in the table below.
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Aron, Beauzamy, and Enflo [1] analyzed the problem of comparing real
and complex norms of polynomials in many variables. They looked at poly-
nomials P of degree d in N variables

P�x1; . . . ; xN� �
X
j�j�d

a�x
�1
1 � � � x�ÿNN

and considered the norms

kPkR � supfjP�x1; . . . ; xN�j : ÿ1 � x1; . . . ; xN � 1g;
kPkC � supfjP�eit1 ; . . . ; eitN �j : 0 � t1; . . . ; tN � 2�g;

for which they obtained the inequality

kPkC �
�3 ���

2
p � 4�d � �3 ���

2
p ÿ 4�d

2
kPkR:

This estimate represents an upper bound on cd�S� when X � `�N�1 and
S � �ÿ1; 1�N . Notice that the bound is independent of the number of vari-
ables.
Siciak [6] improved their inequality later on. Using the notions of extremal

functions and capacities in CN allowed him to obtain the sharp estimate

cd �ÿ1; 1�N
� �

� �1�
���
2
p
�d :

The aim of this paper is on the one hand to give upper bounds on cd�S� for
certain subsets of general Banach spaces, and on the other hand to extend
Durand's inequalities to polynomials in many variables.
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2. Results on general Banach spaces

This section is devoted to give an upper estimate on cd�S� when S is an "^net
of BX and to compute cd�S� when S is a ball of radius r > 0 centered at
a 2 X .
Theorem 2.1. Let X be a complex Banach space, let d � 1, and let

0 < " < log 2=�ed�. If S" is an "^net of BX then

cd�S"� � 1
2ÿ eed"

:

The proof of Theorem 2.1 relies on an infinite^dimensional version of
Bernstein's inequality due to Harris [3], who stated it only for homogeneous
polynomials, although it also works for arbitrary polynomials, as Tonge and
Lacruz [4] pointed out.

Lemma 2.2 (Harris^Bernstein inequality). Let P be a polynomial of degree
d on X and let DkP denote its kth Frëchet derivative, where 1 � k � d. If
x; y 2 BX then

jDkP�x��yk�j � dd

�d ÿ k�dÿk kPk:

Proof of Theorem 2.1. Let P be a polynomial of degree d on X , let � > 0,
and pick an x 2 BX with jP�x�j � �1ÿ ��kPk. Now take a point y 2 S" such
that kxÿ yk < " and expand P in Taylor series around y to obtain

P�x� ÿ P�y� �
Xd
k�1

kxÿ ykk
k!

DkP�y� xÿ y
kxÿ yk
� �k

:

It follows from Harris^Bernstein inequality that

jP�x� ÿ P�y�j � kPk
Xd
k�1

dd

�d ÿ k�dÿk
"k

k!
; �

but �d=�d ÿ k��dÿk � ek so the last expression is

� kPk
Xd
k�1

�ed"�k
k!

� kPk eed" ÿ 1
ÿ �

:

Hence, �1ÿ ��kPk � jP�x� ÿ P�y�j � jP�y�j � kPk�eed" ÿ 1� � jP�y�j, which
leads to the inequality jP�y�j � kPk�2ÿ eed" ÿ ��. Since � > 0 is arbitrary, it
follows that jPjS" � kPk�2ÿ eed"�.
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Remarks. (i) Notice that cd�S"� ! 1 as "! 0�, so that the error when
approximating kPk in terms of jPjS" can be made as small as desired.
(ii) Let T be a subset of BX such that kPk � jPjT for every P. The proof

of Theorem 2.1 shows that the same result holds when S" is just an "^net of
T . This is the case when X � `�N�1 , T is the distinguished boundary of the
polydisc, and S" consists of the points in CN all of whose coordinates are
dkth roots of unity. This can be regarded as an extension of Durand's fourth
result.

Theorem 2.3. Let X be a complex Banach space, let a 2 X, and let r > 0. If
d � 1 then

cd�a� rBX � � 1� kak
r

� �d

;

and the estimate is best possible.

Proof of Theorem 2.3. First of all consider the case a � 0. Let � > 0,
pick an x 2 BX such that jP�x�j � �1ÿ ��kPk, and define f �z� � P�zx�. Then
f �z� is a polynomial of degree d in one complex variable. Now apply Dur-
and's first result to get

1
rd

supfjf �z�j : jzj � rg � kf k � jf �1�j � jP�x�j � �1ÿ ��kPk

so that there exists a z 2 C with jzj � r and jP�zx�j � �1ÿ ��rdkPk. This
gives the desired inequality, since kzxk � r and � > 0 is arbitrary.
Next, no longer assume a � 0, consider the polynomial Q�x� � P�xÿ a�

and observe that

1
rd
jPja�rBX

� 1
rd
jQjrBX

� kQk � sup jQ��1� kak�x�j : kxk � 1
1� kak

� �
� 1
�1� kak� supfjQ��1� kak�x�j : kxk � 1g

� 1
�1� kak� supfjQ�y�j : kyk � 1� kakg

� 1
�1� kak� supfjQ�x� a�j : kxk � 1g � 1

�1� kak�d kPk;

so the inequality follows. Finally, consider the polynomial f �z� �
��zÿ a�=r�d , where a 2 C and r > 0, and conclude that the inequality is best
possible.
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3. Extremal functions and capacities

According to Siciak [5], the extremal function associated with a subset
S � CN is defined by

�S�x� � sup
d�1

������������
�d�x�d

p
;

where �d�x� � supfjP�x�j : degP � d; jPjS � 1g: The �^capacity of S is de-
fined by

1
��S� � supf�S�x� : kxk � 1g:

Notice that these definitions also make sense when S is a subset of a complex
Banach space X . The following result is a well^known fact about sequences
of real numbers.

Lemma 3.1. Let fadg1d�1 be a sequence of positive numbers that satisfies the
condition ad�d 0 � adad 0 for all d; d 0 � 1. Then

lim
d!1

�����
add
p � sup

d�1
ad :

Since the product of a polynomial of degree d and a polynomial of degree d 0

is a polynomial of degree d � d 0, it follows from Lemma 3.1 that

�S�x� � lim
d!1

������������
�d�x�d

p
:

There is a strong connection between the �^capacity of a set S and the
quantities cd�S�; it is given by the following

Lemma 3.2. If S is a subset of a complex Banach space then

1
��S� � sup

d�1

������������
cd�S�d

p
� lim

d!1

������������
cd�S�d

p
Proof of Lemma 3.2. First of all, notice that

1
��S� � sup

x2BX

�S�x� � sup
x2BX

sup
d�1

������������
�d�x�d

p
� sup

d�1
sup
x2BX

������������
�d�x�d

p
� sup

d�1

������������
cd�S�d

p
:

The second equality follows from Lemma 3.1, taking into account the sub-
multiplicativity of the norm of polynomials.
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Notice that, as an application of Lemma 3.2, the result obtained in Theo-
rem 2.3 admits of an equivalent formulation in terms of capacities, namely,

��a� rBX � � r
1� kak :

4. Estimates for polynomials in many variables

The following result is due to Siciak [5]; it concerns the computation of the
maximal function for a product of subsets of the complex plane.

Lemma 4.1. Let S1; . . . ;SN � C and let S � S1 � � � � � SN � CN. If
z � �z1; . . . ; zN� 2 CN then

�S�z� � maxf�S1�z1�; . . . ; �SN �zN�g:
A straightforward consequence of Lemma 4.1 is the following

Lemma 4.2. Suppose S1; . . . ;SN � C and let S � S1 � � � � � SN � `�N�1 .
Then

��S� � minf��S1�; . . . ; ��SN�g:
Proof of Lemma 4.2. Just notice that

1
��S� � sup

kzk1�1
�S�z� � sup

jzkj�1
maxf�S1�z1�; . . . ; �SN �zN�g

� max sup
jz1j�1

�S1�z1�; . . . ; sup
jzN j�1

�SN �zN�
( )

� max
1

��S1� ; . . . ;
1

��SN�
� �

;

and the desired identity follows at once.

Now everything is ready to extend Durand's second result to polynomials
in many variables.

Theorem 4.3. Let X � `�N�1 and ÿ � f�eit1 ; . . . ; eitN � 2 CN : jtk ÿ �kj �
"k=2g, where �1; . . . ; �N are fixed real numbers and 0 < "1; . . . ; "N < 2�. Then

cd�ÿ� � cot
"

8

� �d
;

where " � minf"1; . . . ; "Ng.

Proof of Theorem 4.3. For each 1 � k � N, put ÿ k � f�eitk 2 C :

jtk ÿ �kj � "k=2g, so that ÿ � ÿ 1 � � � � � ÿN . Durand's second result in
combination with Lemma 3.2 leads to
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1
��ÿ k� � lim

d!1

��������������
cd�ÿ k�d

p
� lim

d!1
cd�1�ÿ k�
cd�ÿ k� � cot

"k
8

� �
:

Now Lemma 4.2 gives

��ÿ� � minf��ÿ 1�; . . . ; ��ÿN�g

� min tan
"1
8

� �
; . . . ; tan

"N
8

� �n o
� tan

"

8

� �
:

Thus, cd�ÿ� � 1=��ÿ�d � cot�"8�d .
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