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FRACTIONAL INTEGRATION ALONG
HOMOGENEOUS CURVES IN R3

SILVIA SECCO

1. Introduction

Given the curve

ÿ�t� � �t�; t�; t�; t > 0�1�
in R3, with �; �;  positive exponents, we consider the ``fractional integration
operator of order � along ÿ ''

T�f �x� �
Z �1
0

f �xÿ ÿ�t��t�ÿ1 dt; x 2 R3�2�

defined for <e� > 0.
We are interested in studying the boundedness properties of T� as an

operator from Lp�R3� to Lq�R3�. In order to have positive results, we shall
suppose that �; �;  are distinct. Therefore we may assume � < � < . The
homogeneity of the operator T� with respect to the dilations

� � �x1; x2; x3� � ���x1; ��x2; �x3��3�
implies the condition

1
p
ÿ 1
q
� <e�

Q

where Q � �� � �  is the homogeneous dimension of R3 with respect to
the dilations (3). If � 2 R, another necessary condition on p and q is due to
the fact that T� dominates the operator T0 which is defined by limiting the
integration in (2) to a bounded interval of R which doesn't contain the ori-
gin. According to what has been proved in [3] and later improved in [4], T0 is
bounded from Lp�R3� to Lq�R3� when �1p ; 1q� belongs to the closed trapezoid
with vertices A � �0; 0�; B � �1; 1�; C � �23 ; 12�; D � �12 ; 13�. As we will prove,
this condition is also necessary when � 2 C.

MATH. SCAND. 85 (1999), 259^270

Received May 19, 1999.



{orders}ms/990839/secco.3d -21.11.00 - 11:24

In the special case of � � Q
6 , Drury has proved in [2] that the operator T�

is bounded from L
3
2�R3� to L2�R3� for ��; �; � � �1; 2; k� and k � 4; subse-

quently Pan has extended the same estimate to 3 � k < 4, [5]. More recently
Pan has shown in [6] that this result holds also for � �  � 5�.
In this paper we will prove the following Theorem.

Theorem 1. For <e� > 0, T� is bounded from Lp�R3� to Lq�R3� if and only
if
(i) �1p ; 1q� 2 ABCD,
(ii) 1

pÿ 1
q � <e�Q ,

where ABCD is the closed trapezoid with vertices

A � �0; 0�; B � �1; 1�; C � �23 ; 12�; D � �12 ; 13�:
We consider now the arc-length ds on the arc ÿ 0 obtained by taking

t 2 �0; 1� and the convolution operator

f �x� 7ÿ!
Z
ÿ 0

f �xÿ ÿ�t�� ds; x 2 R3:�4�

In order to express ds it is convenient to renormalize the exponents of the
curve ÿ so to obtain � � 1. This can be done without loss of generality, by
changing variable t� � u. The operator in (4) becomes essentially

Tf �x� �
Z 1

0
f �xÿ �t; t�; t�� dt; x 2 R3:�5�

As a consequence of Theorem 1 we have the following result for the operator
T .

Corollary 2. Let T be the operator defined in (5). Then
(i) if � �  � 5 the typeset for T is the closed trapezoid with vertices

A � �0; 0�; B � �1; 1�;C0 � �Qÿ2Q ; Qÿ3Q �;D0 � �3Q ; 2Q�;
(ii) if � �  < 5 the typeset for T is the whole trapezoid with vertices

A � �0; 0�; B � �1; 1�;C � �23 ; 12�;D � �12 ; 13�.
This paper is organized as follows. In the next section we present an esti-

mate on the decay of certain oscillatory integrals that will be used in the
proof of Theorem 1. In the third section we prove Theorem 1 with the
method used by Christ in [1] which consists in introducing a Littlewood-Pa-
ley decomposition adapted to the homogeneity of the curve (1).
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2. Notation and preliminary estimates

Definition 3. Given a function f on R3 and " � �"1; "2; "3� 2 R3, we put

D�"1;"2;"3�f �x1; x2; x3� � f �"1x1; "2x2; "3x3�; �x1; x2; x3� 2 R3:

Definition 4. Given a vector-valued function f � ffj; g 2 Lp�lr� where j
varies over Z, we define

kf kLp�lr� �
�X

j2Z
jfjjr
�1

r

Lp�R3�

and we denote by k � kp;q;r the norm of an operator from Lp�lr� to Lq�lr�.
Now let I � R be a closed interval and let c be a curve in R3 defined by

c : t 2 I 7ÿ! � 1�t�;  2�t�;  3�t�� �  �t� 2 R3;

where  1;  2;  3 are smooth real-valued functions and let ! be a smooth
function with compact support in I . For � � ��1; �2; �3� 2 R3 we define the
oscillatory integral

I��� �
Z
I

eÿi�� �t�!�t� dt:

We have the following result:

Lemma 5. Suppose that for every t 2 I, the vectors  0�t�;  00�t�;  000�t� span
R3 and that  

0
1�t� 6� 0;  

0
2�t� 6� 0;  

0
3�t� 6� 0 for all t 2 I. Then

I��� � O�j�jÿ1
3� as j�j ! 1:

Moreover there exists a constant C > 1 such that

I��� � O�j�jÿN� as j�j ! 1
for all N � 0, in the regions of the space �1; �2; �3 where

j�1j > C�j�2j � j�3j��6�
j�2j > C�j�1j � j�3j�
j�3j > C�j�1j � j�2j�:

The proof of Lemma 5 is an application of van der Corput's lemma and
therefore we omit the details.
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3. Proof of Theorem 1

For <e� > 0, let K��x1; x2; x3� be the kernel on R3 defined by

hK�; f i �
Z �1
0

f �t�; t�; t�t�ÿ1 dt

so that

T�f �x1; x2; x3� � f � K��x1; x2; x3�:
We prove first the necessity of conditions (i) and (ii). As we have already ob-
served, condition (ii) is necessary for � 2 C and condition (i) is necessary for
� 2 R. Therefore it remains only to prove the necessity of condition (i) for
� 2 C. Given 0 < � < 1, let ' be a smooth positive real-valued function in R3

compactly supported in a ball of radius � centered at the point x0 � �1; 1; 1�
and identically one in a ball of radius �

2 centered at x0. We may write

'�x� �
Z

eÿi��x�fÿ1'���� d�

�
Z b���fÿ1'���� d�:

Then if we define

K�' �
Z b��K��fÿ1'���� d�;

we have

kK�'kpq �
Z
kb��K�kpqjfÿ1'���j d��7�

� kK�kpqkfÿ1'k1
� CkK�kpq:

Since

<e�t�ÿ1� � t<e�ÿ1cos�=m� logt�;
then if � has been chosen sufficiently small and f 2 Lp�R3� is a positive real-
valued function, we obtain

kK<e�' � f kq � CkK�' � f kq�8�
� CkK�'kpqkf kp:

By combining (7) and (8) we get
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kK<e�'kpq � CkK�kpq:
The necessity of condition (i) then follows from the fact that the kernel
K<e�' defines a convolution operator which is bounded only on the closed
trapezoid ABCD.
To prove the sufficiency of the conditions (i) and (ii) we first observe that

since

kT�kpq � kT<e�kpq;
we may assume � 2 R and � > 0.
Then we make a dyadic decomposition of the kernel K�. Let !�t� be a

smooth function on R�, supported on f t : 1
2 < t < 4 g and such thatP

j2Z !�2j t� � 1 for t > 0. We define the kernels

hK�
j ; f i �

Z
f �t�; t�; t�!�2j t�t�ÿ1 dt:�9�

Every kernel K�
j may be obtained from the kernel K�

0 by dilation and with a
multiplicative factor in fact, by changing variable in (9), we have

hK�
j ; f i � 2ÿ�jhK�

0 ;D�2ÿ�j ;2ÿ�j ;2ÿj�f i:
Then we define the operators

T�
j f �x1; x2; x3� �

Z
f �x1 ÿ t�; x2 ÿ t�; x3 ÿ t�!�2j t�t�ÿ1 dt

so that T� �Pj2Z T
�
j .

The Fourier multiplier corresponding to the operator T�
j is

cK�
j ��1; �2; �3� � 2ÿ�jcK�

0 �2ÿ�j�1; 2ÿ�j�2; 2ÿj�3�
and by Lemma 5, we know that the multiplier

cK�
0 ��1; �2; �3� �

Z 4

1
2

eÿi��1;�2;�3���t
�;t�;t�!�t�t�ÿ1 dt

decays slowly in the complementary set of the region of the space �1; �2; �3
defined by (6). We say that this set contains the singular directions for cK�

0
and we decompose it into four subsets:
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ÿ 1
0 � f ��1; �2; �3� 2 R3 : aj�3j < j�2j < bj�3j; j�1j < �j�3j g

ÿ 2
0 � f ��1; �2; �3� 2 R3 : aj�3j < j�1j < bj�3j; j�2j < �j�3j g

ÿ 3
0 � f ��1; �2; �3� 2 R3 : aj�2j < j�1j < bj�2j; j�3j < �j�2j g

ÿ 4
0 � f ��1; �2; �3� 2 R3 : aj�3j < j�1j < bj�3j; aj�3j < j�2j < bj�3j g

where a; b; � are positive constants and � is sufficiently small.
Since the region [4i�1ÿ i

0 contains the singular directions for cK�
0 , then the

singular directions for cK�
j are contained in the union of the cones

ÿ i
j; i � 1; . . . ; 4, where

ÿ i
j � f��1; �2; �3� 2 R3 : �2ÿ�j�1; 2ÿ�j�2; 2ÿj�3� 2 ÿ i

0 g:
For fixed i � 1; . . . ; 4, as j varies in Z, the sets ÿ i

j are essentially disjoint.
Now, for i � 1; . . . ; 4, we introduce a C1 partition of unity f�ijg in R3

minus the coordinate planes with �ij homogeneous of degree zero (with re-
spect to the Euclidean dilation group), supported in a set like ÿ i

j , but a little
bit larger and identically one in the set ÿ i

j. Moreover let �ij be such that
�ij��1; �2; �3� � �i0�2ÿ�j�1; 2ÿ�j�2; 2ÿj�3�.
Let Qi

j; i � 1; . . . ; 4, be the operator with �ij as Fourier multiplier and let �
be a smooth function on R3, compactly supported and identically one in a
neighborhood of the origin. Finally let Pj be the operator with
��2ÿ�j�1; 2ÿ�j�2; 2ÿj�3� as Fourier multiplier. Following Christ [1], for fixed
� we write

T� �
X
j2Z

T�
j�10�

�
X
j2Z

T�
j Pj �

X
j2Z

T�
j �I ÿ Pj�

�
X
j2Z

T�
j Pj �

X
j2Z

T�
j �I ÿ Pj�Q1

j �
X
j2Z

T�
j �I ÿ Pj��I ÿQ1

j �

. . .

�
X
j2Z

T�
j Pj �

X
j2Z

T�
j �I ÿ Pj�Q1

j �
X
j2Z

T�
j �I ÿ Pj��I ÿQ1

j �Q2
j

�
X
j2Z

T�
j �I ÿ Pj�

Y2
i�1
�I ÿQi

j�
 !

Q3
j

264 silvia secco



{orders}ms/990839/secco.3d -21.11.00 - 11:27

�
X
j2Z

T�
j �I ÿ Pj�

Y3
i�1
�I ÿQi

j�
 !

Q4
j

�
X
j2Z

T�
j �I ÿ Pj�

Y4
i�1
�I ÿQi

j�

where I is the identity operator.
We consider first the operator

P
j2Z T

�
j Pj. Each term T�

j Pj has a smooth,
compactly supported Fourier multiplier given by

2ÿj�cK�
0 �2ÿ�j�1; 2ÿ�j�2; 2ÿj�3���2ÿ�j�1; 2ÿ�j�2; 2ÿj�3�

therefore it is a convolution operator with a Schwartz kernel. Let
Hj�x1; x2; x3� be such a kernel. By homogeneity we have

Hj�x1; x2; x3� � 2�Qÿ��jH0�2�jx1; 2�jx2; 2jx3�
where H0 is the convolution kernel corresponding to the operator T�

0P0. Let
��x1; x2; x3� be a homogeneous norm with respect to the dilations (3), we
prove that the sum over all j of the absolute values of the convolution ker-
nels of T�

j Pj is bounded by a constant times the kernel ���x1; x2; x3��ÿQ��. We
consider the seriesX

j2Z
jHj�x1; x2; x3�j �

X
j2Z

2�Qÿ��jjH0�2�jx1; 2�jx2; 2jx3�j�11�

�
X

2j��x1;x2;x3��1
2�Qÿ��jjH0�2�jx1; 2�jx2; 2jx3�j

�
X

2j��x1;x2;x3�>1
2�Qÿ��jjH0�2�jx1; 2�jx2; 2jx3�j:

For N 2 N we denote by kH0k�N� the norm of H0 in s�R3� given by

kH0k�N� �
X
j�j�N

sup
x2R3
�1� jxj�N j@�H0�x�j

where � is a multi^index.
Observe that from hypotheses (i) and (ii) we get Qÿ � > 0. In the first

sum of (11) we put

jH0�2�jx1; 2�jx2; 2jx3�j � kH0k�0�
so that
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X
2j��x1;x2;x3��1

2�Qÿ��jjH0�2�jx1; 2�jx2; 2jx3�j � C���x1; x2; x3��ÿQ��:�12�

Since ��x1; x2; x3� � Cj�x1; x2; x3�j
1
� when j�x1; x2; x3�j � 1, in the second sum

of (11) we put

jH0�2�jx1; 2�jx2; 2jx3�j �
kH0k�M�

1� j�2�jx1; 2�jx2; 2jx3�jM

� C

�2j��x1; x2; x3��M�

for a positive integer M such that M� > Qÿ �. In this way we haveX
2j��x1;x2;x3��1

2Qÿ�jH0�2�jx1; 2�jx2; 2jx3�j � C���x1; x2; x3��ÿQ��:�13�

By combining (12) and (13) we getX
j2Z
jHj�x1; x2; x3�j � C���x1; x2; x3��ÿQ��:

Therefore by applying the Hardy-Littlewood-Sobolev's Theorem, it follows
that the operator

P
j2Z T

�
j Pj is bounded from Lp to Lq whenever 1

pÿ 1
q � �

Q.
We may repeat the previous arguments also for the operator

X
j2Z

T�
j �I ÿ Pj�

Y4
i�1
�I ÿQi

j�

because every term T�
j �I ÿ Pj�

Q4
i�1�I ÿQi

j� has a Fourier multiplier which
belongs to the Schwartz class. This is because the multiplier of the operator
T�
j decays rapidly with all its derivatives outside the regions ÿ i

j; i � 1; . . . ; 4.
So the operator

P
j2Z T

�
j �I ÿ Pj�

Q4
i�1�I ÿQi

j� is bounded from Lp to Lq

when 1
pÿ 1

q � �
Q. Therefore it remains only to study the central terms of (10).

We treat explicitly only the operator
P

j2Z T
�
j �I ÿ Pj�Q1

j , since the other ones
are analogous.
Let fe�1j g another C1 partition of unity in R3 minus the coordinate planes

with e�1j homogeneous of degree zero (with respect to the Euclidean dilation
group), supported in the set ÿ 1

j ulteriorly enlarged and identically one on the
support of �1j . Moreover let e�1j be such that e�1j ��1; �2; �3� �e�10�2ÿ�j�1; 2ÿ�j�2; 2ÿj�3�. Let eQ1

j be the operator with e�1j as Fourier multi-
plier, then

Q1
j � eQ1

j � Q1
j�14�

for all j 2 Z.
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We prove thatX
j2Z

T�
j �I ÿ Pj�Q1

j f

q
� CkfT�

j �I ÿ Pj�Q1
j f gkLq�l2��15�

for any f 2 s�R3�.
Since (14) holds we haveX

j2Z
T�
j �I ÿ Pj�Q1

j f

q
�
X

j2Z
eQ1
j T

�
j �I ÿ Pj�Q1

j f

q
:

Moreover the linear operator
P

j2Z �j eQ1
j is bounded on Lq�R3�, uniformly in

all choices of �j � �1. This is because the multiplier corresponding to the
operator

P
j2Z �j eQ1

j is a Marcinkiewicz multiplier. Therefore by applying the
Littlewood-Paley inequality, we get (15). Since Pj is a convolution operator
with a Schwartz kernel and the vector-valued Hardy-Littlewood maximal
function is bounded on Lq�l2� for 1 < q < �1, we get from (15) the follow-
ing estimatesX

j2Z
T�
j �I ÿ Pj�Q1

j f

q
� CkfT�

j �I ÿ Pj�Q1
j f gkLq�l2��16�

� C�kfT�
j Q

1
j f gkLq�l2� � kfPjT�

j Q
1
j f gkLq�l2��

� C�kfT�
j Q

1
j f gkLq�l2� � C1kfMT�

j Q
1
j f gkLq�l2��

� CkfT�
j Q

1
j f gkLq�l2�

� CkfT�
j fjgkLq�l2�

� kfT�
j gkp;q;2kffjgkLp�l2�

where fj � Q1
j f .

Since also the linear operator
P

j2Z �jQ
1
j is bounded on Lp�R3�, uniformly

in all choices of �j � �1, because its Fourier multiplier is a Marcinkiewicz
multiplier, by the Littlewood-Paley theory we get

kfQ1
j f gkLp�l2� � Ckf kp:�17�

By combining (16) and (17) we haveX
j2Z

T�
j �I ÿ Pj�Q1

j f

q
� CkfT�

j gkp;q;2kf kp:�18�

By repeating the previous considerations, we get an analogous estimate also
for the remaining operators in (10).
Now we consider exponents p � 2 because the other ones may be treated
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by duality. For 0 < � < 1, we write 1
2 � �

p� 1ÿ�
1 . Given the vector-valued op-

erator

fT�
j g : Lp�l2� ! Lq�l2�
fgjg 7! fT�

j gjg;
by Holder's inequality we have that

kfT�
j gkp;q;2 � kfT�

j gk�p;q;p kfT
�
j gk1ÿ�p;q;1:�19�

Therefore, by the previous estimates on the operators in (10) and by (19), we
have proved that

kT�kpq � C�1� kfT�
j gk�p;q;p kfT

�
j gk1ÿ�p;q;1�:�20�

Since T�
j is a convolution operator with a positive kernel we get

kfT�
j gkp;q;1 � kT�kpq:�21�

Furthemore, by Minkowski's integral inequality we get, for x 2 R3

kfT�
j gjgkLq�lp� �

Z X
j2Z
jT�

j gj�x�jp
 !q

p

dx

0@ 1A1
q

�
Z X

j2Z
jT�

j gj�x�jp
 !q

p

dx

0@ 1A
p
q�1p

�
X
j2Z

Z
jT�

j gj�x�jq dx
� �p

q

 !1
p

� sup
j2Z
kT�

j kpq
X
j2Z
kgjkpp

 !1
p

� sup
j2Z
kT�

j kpqkfgjgkLp�lp�

that is

kfT�
j gkp;q;p � sup

j2Z
kT�

j kpq:�22�

Then we shall prove that T�
j ; j 2 Z, are uniformly bounded from Lp�R3� to

Lq�R3�.
By homogeneity we have
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T�
j �x1; x2; x3� � 2ÿj�D�2�j ;2�j ;2j��T�

0D�2ÿ�j ;2ÿ�j ;2ÿj�f ��x1; x2; x3�
and since 1

pÿ 1
q � �

Q we get

kT�
j f kq � 2ÿj�kD�2�j ;2�j ;2j��T�

0D�2ÿ�j ;2ÿ�j ;2ÿj�f �kq�23�

� 2ÿj���
Q
q�kT�

0D�2ÿ�j ;2ÿ�j ;2ÿj�f kp
� 2ÿj���

Q
q�kT�

0 kpqkD�2ÿ�j ;2ÿ�j ;2ÿj�f kp
� 2ÿj���

Q
qÿQ

p�kT�
0 kpqkf kp

� kT�
0 kpqkf kp:

But

T�
0 f �x1; x2; x3� �

Z 4

1
2

f �x1 ÿ t�; x2 ÿ t�; x3 ÿ t�!�t�t�ÿ1 dt

is a convolution operator with a finite measure supported on the curve ÿ�t�
for t 2 �12 ; 4�. Therefore by Pan's theorem [4], T�

0 is bounded on the whole
trapezoid ABCD and so T�

j ; j 2 Z; are uniformly bounded from Lp�R3� to
Lq�R3� when 1

pÿ 1
q � �

Q.
By combining (19) with (20), (21), (22), we get

kT�kpq � C�1� kT�k1ÿ�pq �:�24�
Now, by replacing on both sides of (24) the operator T� by the operator

T�
N �

X
jjj�N

T�
j�25�

for a finite N, we may repeat the previous arguments and prove that

kT�
Nkpq � C�26�

where C is a positive constant independent of N. By taking the limit of (25)
and (26) as N ! �1 we conclude the proof.
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