
{orders}ms/990839/hedberg.3d -21.11.00 - 11:09

ON THE STABILITY OF SOBOLEV SPACES WITH ZERO
BOUNDARY VALUES

LARS INGE HEDBERG and TERO KILPELA« INEN

Abstract

In this note we characterize the open sets 
 for which

W 1;p�
� \
\
q<p

W 1;q
0 �
� �W 1;p

0 �
� :

We apply our result to establish the stability of the first eigenvalues of the p-Laplacians with
varying p.

1. Introduction

Let 
 be a bounded open set in Rn. By W 1;q�
� we denote the usual Sobolev
space of those p-integrable functions u whose first distributional derivatives
are also p-integrable in 
. The closure in W 1;p�
� of compactly supported
smooth functions on 
 is denoted by W 1;p

0 �
�. The space W 1;p
0 �
� is often

vaguely described as the collection of those functions from W 1;p�
� that
``vanish on the boundary @
''. This statement has been made precise in the
Havin-Bagby Theorem (see Theorem 2.1 below).
The purpose of this note is to find properties of 
 that would allow us to

conclude that

W 1;p�
� \
\
q<p

W 1;q
0 �
� �W 1;p

0 �
� :�1:1�

This question has arisen in stability problems for certain partial differential
equations; see e.g: [11] or Section 5 below. Of course the inclusion ``�� in
(1.1) always holds as is seen by Ho« lder's inequality. Moreover, we infer from
the Havin-Bagby theorem 2.1 that (1.1) holds for p > n. If 1 < p � n, there
are domains 
 for which (1.1) fails to hold: for instance, let 
 � B n C,
where B is a ball and C a compact subset of B such that the p-capacity (see
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Section 2) of C is positive but the Hausdorff dimension of C is nÿ p (It is
well known that such sets exist; see [1, Ch. 5] or 11, 7.1] for explicit con-
structions.)
As the above example indicates, a thickness condition on the complement

of 
 must be imposed in order to obtain (1.1). In this paper we give two
approaches to treat the problem. The first one is rather elementary and self
contained. It gives a sufficient condition for 
 to enjoy the property (1.1).
This condition can be spelled out in terms of Hausdorff measure densities
which makes it rather usable in practice.
The second approach uses more advanced results of potential theory. The

resulting theorem gives a complete solution to problem (1.1), but the condi-
tion is somewhat difficult to verify. Hence we decided to present both
methods here.
For the first approach we introduce a class of open sets whose comple-

ment is quasi everywhere sufficiently dense: We use the capacity density; the
upper p-capacity density of a set E at the point x is the number

densp�E; x� � lim sup
r!0

capp�E \ B�x; r�;B�x; 2r��
rnÿp

and the class of open sets satisfying the p-density condition is


dens
p � f
 � Rn : for p-q.e. x 2 @
 there is q < p such that densq�{
; x� > 0g;

for the precise definitions the reader is referred to Section 2.
Observe that q < p may depend on x in the definition for 
dens

p . In Lemma
3.1 below we describe the class 
dens

p in terms of Hausdorff measure den-
sities.
There is an abundance of domains that satisfy the density condition. For

instance, one easily infers that smooth or Lipschitz domains and domains
satisfying an exterior cone condition are in 
dens

p for each p. Moreover, if
p > n, then 
dens

p contains all open sets. If 
 2 
dens
p and K is a compact set

of p-capacity zero, then 
 n K 2 
dens
p .

Our first result states that if a bounded open set 
 satisfies the p-density
condition, then (1.1) holds:

1.2. Theorem. Let u 2W 1;p�
� and 
 2 
dens
p . If u 2W 1;q

0 �
� for each
q < p, then u 2W 1;p

0 �
�.
We need more notation for the second approach. Let

Ep � fx 2 {
 : {
 is q-thin for all q < pg
and
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Bp � fx 2 {
 : {
 is q-thick for some q < pg
(see definitions in Section 2 below). Then

{
 n Ep � Bp

and the set of p-admissible open sets is


p � f
 � Rn : {
 n Ep is p-thick p-q.e. on @
g
� f
 � Rn : Bp is p-thick p-q.e. on @
g :

1.3. Theorem. Let 
 be a bounded open set in Rn. Then

W 1;p�
� \
\
q<p

W 1;q
0 �
� �W 1;p

0 �
�

if and only if 
 2 
p.

By the Kellogg property we have:

1.4. Corollary. Let 
 be a bounded open set in Rn. If Ep \ @
 is of p-ca-
pacity zero, then

W 1;p�
� \
\
q<p

W 1;q
0 �
� �W 1;p

0 �
� :

Note that Ep \ @
 is of q-capacity zero for each q < p by the Kellogg
property. Moreover, Ep \ @
 is of p-capacity zero for instance when 
 is
regular for the q-Laplacian Dirichlet problem for some q < p, because then
{
 is q-thin nowhere on @
 [6].
The problem (1.1) seems to be rather untouched in the literature. Natu-

rally, (1.1) is known to be true for Lipschitz domains. Martio informed us
that he and Li [9] have proven the equality (1.1) for domains 
 whose com-
plement is uniformly p-fat (see 3.6 below; see also [7]). The key point in their
argument is that then, according to Lewis' nice paper [8], a uniform Hardy
inequality holds for C10 �
� functions.
Problem (1.1) arose in the work [11], where Lindqvist studied the con-

vergence of the first eigenvalues and eigenfunctions of the p-Laplacian op-
erators with varying p. We apply our analysis of Sobolev spaces to these
convergence problems; see section 5 for a more thorough discussion.

Acknowledgement. We thank Peter Lindqvist for proposing this pro-
blem and for stimulating discussions.
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2. Preliminaries

In this section we give the necessary definitions and state the auxiliary re-
sults for the reader's convenience.
We use the p-capacity that is naturally connected with the Sobolev space

W 1;p. The Sobolev p-capacity of the set E � Rn is the number

Cp�E� � inf
u

Z
Rn
�jujp � jrujp� dx ;

where the infimum is taken over all u 2W 1;p�Rn� such that u � 1 on an open
neighborhood of E.
As usual, we say that a property holds p-quasi everywhere (abbreviated p-

q.e:) on a set A if it holds at each x 2 A n E, where Cp�E� � 0. Recall that for
p > n each nonempty set has positive p-capacity. For relations to Hausdorff
measures see 2.2 below.
A set E � Rn is called p-thin at x ifZ 1

0

Cp�E \ B�x; r��
rnÿp

� �1=�pÿ1�dr
r
<1 :

If E is not p-thin at x it is p-thick at x. Write

ep�E� � fx 2 Rn : E is p-thin at xg
and

bp�E� � fx 2 Rn : E is p-thick at xg :
Then the Kellogg property holds, i.e.

Cp�ep�E� \ E� � 0

[1, Cor. 6.3.17]. Further, one easily shows that ep�E� � eq�E� if 1 � q � p;
see [1, 6.5.8].
Each function u 2W 1;p�
� has a p-quasi continuous representative v (i.e.

for each " > 0 there is an open set G with Cp�G� < " such that the restriction
of v to 
 n G is continuous). The quasi continuous representative is unique in
the sense that two p-quasi continuous functions that agree almost every-
where coincide p-quasi everywhere. This representative is found by

v�x� � lim
r!0

Z
B�x;r�

u dy ;

which limit exists p-q.e. Moreover, v is p-finely continuous p-q.e., that is, for
p-q.e. x 2 
 there is a set E such that vj
nE is continuous at x and E is p-thin
at x (see [1, Thm. 6.4.5]).
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A very convenient characterization of W 1;p
0 �
� functions is provided by

the following:

2.1. The Havin-Bagby Theorem. Let u 2W 1;p�
�. Then u 2W 1;p
0 �
� if

and only if there is a p-quasi continuous function v on Rn such that v � u a.e. on

 and v � 0 p-quasi everywhere on {
.

If p > n, then p-quasi continuous functions are continuous whence it fol-
lows that for p > n, u 2W 1;p

0 �
� if and only if there is a continuous function
v 2W 1;p�Rn� such that v � 0 on {
 and v � u a.e. in 
.
For these well known results we refer to the monographs [1], [2], [4], [13].
For technical reasons we shall use the relative p-capacity: for E � 
 the p-

capacity of E in 
 is the number

capp�E; 
� � inf
u

Z



jrujp dx ;

where the infimum is taken over all u 2W 1;p
0 �
� such that u � 1 on an open

neighborhood of E.
The relative p-capacity admits the same null sets as the Sobolev p-capacity

defined above. The relations to Hausdorff measures are well known: the
Hausdorff dimension of a set of p-capacity zero does not exceed nÿ p, and if
the nÿ p-dimensional Hausdorff measure of E is finite, then E is of p-capa-
city zero (see e.g: [1], [4], [2] etc.). We shall need the following density esti-
mate (see [14] or [12]).

2.2. Lemma. Let E � Rn. Suppose that 1 � p � n and s > nÿ p. Then

hs
1�E \ B�x; r��

rs
� c

capp�E \ B�x; r�;B�x; 2r��
rnÿp

;

where c � c�n; p; s� > 0 and

capp�E \ B�x; r�;B�x; 2r��
rnÿp

� c
hnÿp
1 �E \ B�x; r��

rnÿp
;

where c � c�n; p� > 0.

Herehs
1�E� is the s-Hausdorff content of the set E,

hs
1�E� � inf

nX
i

rsi : E � [iB�xi; ri�
o
:

We also employ a simple Hausdorff measure estimate that follows from a
covering argument (see [2, p. 77]).

2.3. Lemma. Let u 2 L1
loc�Rn� and 0 � s < n. Then
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hs
��

y 2 Rn : lim sup
r!0

rÿs
Z
B�y;r�

juj dx > 0
��
� 0 :

Finally, we state a capacitary version of the Sobolev inequality, due to
Maz'ya (an easy proof can be found in [5, 3.1], see also [13, 10.1.2] or [1,
Cor. 8.2.7] and historical remarks there).

2.4. Lemma. Let u be a p-quasicontinuous function in W 1;p�B�, where B is a
ball. There is a constant c � c�n; p� > 0 such thatZ

B
juj�p dx

� �1=�p

� c
1

capp�fy 2 B : u�y� � 0g; 2B�
Z
B
jrujp dx

 !1=p

;

where

� �
n

nÿ p
if 1 < p < n

2 if p � n:

8<:
Of course, for p � n � could be any positive number in Lemma 2.4, but

then the constant c would depend on � too.
We close this section by proving that


dens
p � 
p :�2:5�

Indeed, if densq�{
; x� > 0 for q < p, then densq�{
 n Ep; x� > 0 since Ep is
of q-capacity zero by the Kellogg property. Consequently, {
 n Ep is q-thick
at x whence it is p-thick. Thus we have

ep�{
 n Ep� \ @
 � fx 2 @
 : densq�{
; x� � 0g
and (2.5) follows.

3. The first approach

In this section we analyze the p-density condition 
dens
p and prove Theorem

1.2. We also present other results in this direction.
As discussed in the Introduction, the case where p > n is settled so we are

free to assume that p � n.
We first characterize 
dens

p in terms of Hausdorff measures. Employing the
standard notation we write

�� s1�E; x� � lim sup
r!0

hs
1�E \ B�x; r�

rs

for the upper s-density of the set E.
The following lemma makes it easy to check whether 
 is in 
dens

p .
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3.1. Lemma. Let 1 < p � n. Then 
 2 
dens
p if and only if for p-quasi every

x 2 @
 there is s > nÿ p with

�� s1�{
; x� > 0 :

Proof. This follows easily from Lemma 2.2. Indeed, Let 
 2 
dens
p and

x 2 @
 such that densq�{
; x� > 0 for some q < p. Then by Lemma 2.2

�� nÿq1 �{
; x� � cdensq�{
; x� > 0 ;

and s � nÿ q > nÿ p.
On the other hand, if s > nÿ p is such that �� s1�{
; x� > 0, choose q with

nÿ s < q < p and obtain

0 < �� s1�{
; x� � cdensq�{
; x� ;
whence the lemma follows.

3.2. Remark. Belonging to 
dens
p is a rather mild condition. Indeed, for

any domain 
 we have that the Hausdorff dimension of the set

�p � fx 2 @
 : �� s1�{
; x� � 0 for each s > nÿ pg
does not exceed nÿ p (see [3, 2.10.19]. The condition that 
 2 
dens

p would
require that �p is of p-capacity zero. Thus, if 
 62 
dens

p , then �p is of posi-
tive p-capacity and hence the Hausdorff dimension of �p is exactly nÿ p and
hnÿp��p� � 1.
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Since u 2W 1;q
0 �
� its zero extension is in

W 1;q�Rn�. In particular, u (extended as zero) has distributional derivatives in
Rn and therefore u 2W 1;p�Rn�. Next we pick the p-quasi continuous re-
presentative of u. It is also q-quasi continuous. Using the Havin-Bagby the-
orem and the uniqueness of quasi continuous functions (i.e. two q-quasi
continuous functions that agree a.e. on an open set agree in fact q-quasi
everywhere) we infer that u � 0 q-q.e. on {
 for each q < p.
We claim that the estimate

lim inf
r!0

Z
B�x0;r�

juj dx � lim sup
r!0

c�rpÿn
Z
B�x0;r�

jrujp dx�1=p :�3:3�

holds for p-q.e. x0 2 {
 (here the constant c may depend on the point x0).
Indeed, choose x0 and q < p such that densq�{
; x0� > 0. Hence there are
� > 0 and a sequence of r's tending to zero so that

(3.4) rnÿq � � capq�{
 \ B�x0; r�;B�x0; 2r�� :
Then we use the capacitary Sobolev inequality 2.4 to obtain
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Z
B�x0;r�

juj dx � c

R
B�x0;r� jruj

q dx

capq�fy 2 B�x0; r� : u�y� � 0g;B�x0; 2r��

 !1=q

:

Since u � 0 q-q.e. on {
 we have

capq�fy 2 B�x0; r� : u�y� � 0g;B�x0; 2r��

� capq�{
 \ B�x0; r�;B�x0; 2r�� �
rnÿq

�

by (3.4). Consequently,Z
B�x0;r�

juj dx � c�rqÿn
Z
B�x0;r�

jrujq dx�1=q � c�rpÿn
Z
B�x0;r�

jrujp dx�1=p

and (3.3) follows.
By Lemma 2.3 the right hand side of (3.3) is 0hnÿp a.e. and hence p-q.e.

on {
. Since u is p-quasi continuous we thus obtain

ju�x0�j � lim inf
r!0

Z
B�x0;r�

juj dx � 0

for p-q.e. x0 2 {
. It follows that u 2W 1;p
0 �
� by the Havin-Bagby theorem.

By repeating the above argument we obtain:

3.5. Corollary. Suppose that 1 � q < p . If densq�@
; x� > 0 for p-quasi
every x 2 @
, then

W 1;p�
� \W 1;q
0 �
� �W 1;p

0 �
� :
The same holds if for p-q.e. x 2 @
, �� s1�{
; x� > 0 for some s > nÿ q.

Remarks. i) If {
 is uniformly p-fat, i.e. there is a constant c such that

(3.6) capp�{
 \ B�x; r�;B�x; 2r�� � crnÿp

for all r � r0 and x 2 @
, then by a theorem of Lewis [8] {
 is uniformly q-
fat for some q < p. Hence we have
If {
 is uniformly p-fat, there is a number q < p such that

W 1;p�
� \W 1;q
0 �
� �W 1;p

0 �
� :
ii) It is easy to see that Lipschitz domains satisfy the condition of Cor-

ollary 3.5 for each q � 1. Furthermore this condition holds for each q � 1 if
there is a corkscrew in {
 at p-q.e. point on @
 (i.e. for p-q.e. x 2 @
 there
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is a constant c > 0 and a sequence yj ! x such that the balls B�yj; cjyj ÿ xj�
do not touch 
). In both cases we conclude

W 1;p�
� \W 1;1
0 �
� �W 1;p

0 �
� :

4. The second approach

In this section we prove the following theorem.

4.1. Theorem. Let 
 be a bounded open set in Rn and 1 < q � p. Then

W 1;p�
� \W 1;q
0 �
� �W 1;p

0 �
�
if and only if bq�{
� � {
 n eq�{
� is p-thick p-q.e. on @
.

Proof. Write E � eq�{
� \ {
 and observe that E � @
. If the condition
is not satisfied, then there is a compact set K � @
 of positive p-capacity
such that {
 n E is p-thin at each point of K . If K \ �{
 n E� � ;, then there
is a ball B such that B \ �{
 n E� � ;, and Cp�K \ B� > 0. Any w 2 C10 �B�
such that w > 0 on a subset of K \ B with positive p-capacity satisfies
w 2W 1;p�
� \W 1;q

0 �
�, since Cq�E� � 0 by the Kellogg property, but
w =2W 1;p

0 �
�, since Cp�K� > 0 and K � @
 Thus, we can assume that there is
a compact K as above, such that K � {
 n E. Invoking [1, Cor. 6.3.16] we
find a ball B and a bounded p-quasicontinuous function v in W 1;p�Rn� such
that

Cp�K \ B� > 0 ;

v � 1 p-q.e. on B \ {
 n E ;
and

v < 1 on K

(the �1; p�-capacitary potential of B \ {
 n E will do).
Next, let w 2 C10 �B� be such that w > 0 on a subset of K \ B that has

positive p-capacity. Then w�1ÿ v� � 0 q-q.e. on {
 since Cq�E� � 0 by the
Kellogg property. Thus we infer from the Havin-Bagby theorem that

w�1ÿ v� 2W 1;p�
� \W 1;q
0 �
� ;

but

w�1ÿ v� 62W 1;p
0 �
� :

To prove the sufficiency let u 2W 1;p�
� \W 1;q
0 �
�. As in the proof of

Theorem 1.2 we see that u 2W 1;p�Rn� is p-quasicontinuous and u � 0 q-q.e.
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on {
. Moreover, u is p-finely continuous at p-q.e. point in Rn. Let x0 2 @

be such a point. If x0 62 E, then the set

fy : u�y� � 0g
is q-thick, whence p-thick, at x0; thus u�x0� � 0 by p-fine continuity. It fol-
lows that u � 0 p-q.e. on {
 n E. Since by assumption, {
 n E is p-thick p-
q.e. on @
, the p-fine continuity yields u � 0 p-q.e. also on E, whence p-q.e.
on {
. Thus u 2W 1;p

0 �
� by the Havin-Bagby theorem.

Theorem 1.3 is proved in the same way. We leave the details to the reader.
The condition in Theorem 4.2 has many equivalent formulations; see [1,

Theorems 11.4.1, 11.4.2]. We thus obtain the following corollary.

4.2. Corollary. Let 
 be an open bounded set in Rn and 1 < q � p. Then

W 1;p�
� \W 1;q
0 �
� �W 1;q

0 �
�
if and only if one of the following conditions is satisfied:
(1) Cp�G \ bq�{
�� � Cp�G \ {
� for all open G;
(2) there is � > 0 such that Cp�G \ bq�{
�� � �Cp�G \ {
� for all open G;
(3) lim infr!0Cp�B�x; r� \ bq�{
��=Cp�B�x; r� \ {
� > 0 for p-q.e. x 2 @
;
(4) ep�bq�{
�� � ep�{
�;
(5) Cp�ep�bq�{
�� n ep�{
�� � 0.

Theorem 1.3 has a similar corollary, whose formulation we omit.
Observe that by the Kellogg property {
 n eq�{
� is always p-thick p-q.e.

on @
 n eq� {
�. Hence we obtain:

4.3. Corollary. Let 
 be a bounded open set in Rn and 1 < q � p. If
eq�{
� \ @
 is of p-capacity zero, then

W 1;p�
� \W 1;q
0 �
� �W 1;p

0 �
� :
The conclusion of Corollary 4.3 holds in particular when 
 is regular for

the q-Laplacian Dirichlet problem since then eq�{
� \ @
 � ; by [6].

5. Stability of nonlinear eigenvalues

In this section we apply Theorem 1.3 and discuss the stability of nonlinear
eigenvalues. Our results complement those of Lindqvist [11]. We closely fol-
low the terminology and notation of [11].
Let 
 be a bounded domain. The first eigenvalue �p � �p�
� of the p-La-

placian is the least real number � for which the equation

div�jrujpÿ2ru� � �jujpÿ2u � 0�5:1�
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has a nontrivial solution u in W 1;p
0 �
�, i.e. there is u 2W 1;p

0 �
�, u 6� 0, such
that Z




jrujpÿ2ru � r' dxÿ �
Z



jujpÿ2u' dx � 0

for all ' 2 C1
0 �
�; the nontrivial solution u of (5.1) with � � �p is called the

first eigenfunction of the p-Laplacian in 
. By approximation we may take any
' 2W 1;p

0 �
� as a test function above. In particular the choice ' � u yields

�p �
R

 jrujp dxR

 jujp dx

:

In fact, the first eigenvalue is the minimum of the Rayleigh quotient

�p � inf
v2W1;p

0
�
�

v 6�0

R

 jrvjp dxR

 jvjp dx

:�5:2�

This is seen as follows: using the weak compactness of W 1;p
0 �
� and the

Rellich^Kondrashov theorem we easily infer that there is a function
v 2W 1;p

0 �
�, jjvjjp � 1, that minimizes the Rayleigh quotient. Hence v is a
minimizer of the functionalZ




jrwjp dxÿ �
Z



jwjp dx

whose Euler equation is (5.1) with � � �p. Thus v satisfies equation (5.1) and
(5.2) holds.
Lindqvist proved in [10] that the first eigenvalue is simple, i.e. the ratio of

any two (nontrivial) solutions of (5.1) with � � �p is constant. Furthermore,
the first eigenfunction can be assumed to be positive, since u can be replaced
with juj in (5.2) and since eigenfunctions obey the minimum principle. This
gives rise to the following normalization : we let up stand for the first eigen-
function of the p-Laplacian in 
 such that up > 0 andZ




jupjp dx � 1 :

We shall consider the convergence of eigenvalues and eigenfunctions as p
varies. Let us recall the following [11, 3.4, 3.5]:

5.3. Lemma. For any domain the following limits exist and

lim
q!pÿ�q � �p � lim

q!p��q :
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In what follows we let

�p � lim
q!pÿ�q :

There is an example in [11] showing that it may happen that �p < �p. We
shall now analyze this phenomenon. We start by showing an easy trick to
construct domains for which �p < �p. First we prove an auxiliary result, well
known for the ordinary Laplacian.

5.4. Theorem. Let D be a subdomain of 
. Then

�p�D� � �p�
� :
Moreover, the equality holds if and only if 
 nD is of p-capacity zero.

Proof. The monotonicity readily follows from the Rayleigh quotient (5.2).
If 
 nD is of p-capacity zero, then W 1;p

0 �
� �W 1;p
0 �D� by the Havin-Bagby

theorem 2.1 and thus �p�D� � �p�
�.
On the other hand, if �p�D� � �p�
� and if u is the first normalized ei-

genfunction in D, then it follows from the Rayleigh quotient that u is the
first normalized eigenfunction also in 
. If 
 nD is of positive p-capacity,
then u attains 0 at some point in 
 nD by the Havin-Bagby theorem. This is
absurd since the first eigenfunctions obey the minimum principle.

The following lemma can be used to create a lot of examples where
�p < �p.

5.5. Lemma. Suppose that that there is a domain ~
 � 
 such that ~
 n
 has
positive p-capacity but zero q-capacity for each q < p. Then

lim
q!pÿ�q�
� < �p�
� :

Proof. By applying Theorem 5.4 twice we obtain

�p�
� � �p� ~
� � �p� ~
� < �p�
� :
For instance, it follows from Lemma 5.5 that if K is a Cantor set in any

domain 
 such that K has positive p-capacity and Hausdorff dimension
nÿ p, then

�p�
 n K� < �p�
 n K� :
The next result follows by mimicking the proof of [11, 3.12].

5.6. Proposition. Each sequence qj � p that converges to p has a sub-
sequence denoted again by qj with the property: there is a function
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u 2W 1;p�
� \
\
q<p

W 1;q
0 �
�

such that uqj ! u in Lp�
� and

lim
j!1

Z



jruqj ÿrujqj dx � 0 :

Moreover,

�p �
Z



jrujp dx ;
Z



jujp dx � 1 ;

div�rujpÿ2ru� � �pjujpÿ2u � 0 ;

and

�p � inf
v2u�W1;p

0
�
�

v 6�0

R

 jrvjp dxR

 jvjp dx

:

Putting this and [11, 3.6] together with the uniqueness of the first eigen-
function we immediately obtain:

5.7. Corollary. Suppose that

W 1;p
0 �
� �W 1;p�
� \

\
q<p

W 1;q
0 �
� :

Then

�p � lim
q!p

�q

and

lim
q!p

Z



jruq ÿrupj~q dx � 0 ;

where ~q � min�q; p�.
Hence Theorem 1.3 yields

5.8. Corollary. If 
 2 
p, then

�p � lim
q!p

�q :

In particular, if p > n, then
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�p � lim
q!p

�q

is true for all bounded domains.

It remains in doubt whether 
 2 
p is a necessary condition to have
�p � �p.
We finish this paper by giving a uniform convergence result that is a

straightforward consequence of Corollary 5.7, Theorem 1.2 and [11, 6.3].

5.9. Theorem. If 
 2 
p and qj is any sequence converging to p, then
uqj ! up and ruqj ! rup locally uniformly in 
.
Proof. By [11, 6.3] there is a subsequence of qj such that uqji ! u and

ruqji ! ru locally uniformly in 
. By 1.2 and 5.7 the limit function is ne-
cessarily up. Hence, the limit is independent from the choice of the sub-
sequence and the theorem follows.
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