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BROWN REPRESENTABILITY FOR STABLE
CATEGORIES

PETER J�RGENSEN

Abstract

This paper proves Brown Representability for stable categories. These categories are obtained
from additive categories by declaring all morphisms which factor through objects from a fixed
pre-enveloping class to be zero. Brown Representability for such categories is obtained by first
proving that stable categories are what Brown in [2] calls ``abstract homotopy categories'', next
using Brown's theory for these categories.
The result is applied to two cases: one is a category of complexes of modules over a ring. Here

we recover a representability theorem for functors on derived categories, first given by Neeman
in [11, Thm. 3.1]. The other case is the category of modules over an Artinian ring. Here we ob-
tain a result on representability, Theorem 4.4, which appears to be new.

0. Introduction

Brown Representability in various incarnations. Brown Representability is a
central piece of wisdom to homotopy-theorists. So it is certainly something
that one needs to mimick if one wants to mimick homotopy-theory success-
fully in a non-topological setting. That is the philosophy of this paper, which
deals (roughly speaking) with homotopy-theory for modules, and culminates
in a version of Brown Representability.
Let us take a more leisurely trip through some history and background for

this paper. The first version of Brown Representability, proved in the fun-
damental paper [3], is a result in topology. It considers a functor H defined
on the homotopy-category of topological spaces, and gives an easy condition
which is equivalent to the representability of H (a functor is called re-
presentable if it is equivalent to a functor on the form Hom�ÿ;X�). Later
versions of Brown's result do the same thing, but on other categories. One
should think of these other categories as being analogous to the homotopy-
category of topological spaces, and think of results such as the general-
izations of Brown's result as being part of the ``homotopical algebra'' of
these categories; cf. [12].
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Notable among the abstract versions of Brown Representability is
Brown's own result [2, Thm. 2.8], which works for any category c satisfying
a list of axioms which resemble topological facts (Brown calls such a c ``an
abstract homotopy-category''). One should also mention Neeman's version
[11, Thm. 3.1], which works on many triangulated categories.
The present paper also gives an abstract Brown-theorem, carried by the

so-called stable categories from relative homological algebra (see [1] or be-
low for their definition). These categories were introduced into homological
algebra by Hilton in [7, chp. 13], as a vehicle for transferring homotopy-
theoretical ideas into homological algebra. They are, in fact, direct additive
analogues of the usual homotopy-category of topological spaces, that is, of
the category on which Brown's original result lives (we shall expound on the
analogy in section 1 below). It is thus obvious to seek a result of Brown-type
for stable categories.
The full story of the paper is a bit longer than so far indicated. The modus

operandi below is not to aim directly for a Brown-result; instead, we will use
Brown's own abstract theory from [2] as a stepping-stone. Our main result,
Theorem 2.1, states that under suitable conditions, a stable category is one
of the ``abstract homotopy-categories'' defined in [2]; as mentioned, this
means that it satisfies a certain list of axioms resembling facts known from
topology, see [2, sec. 2]. By the results from [2], this gives us Brown Re-
presentability for stable categories. (But not without one final hurdle: not all
abstract homotopy-categories support good versions of Brown's result. This
is why theorem 2.1, and not Brown Representability itself, is our main re-
sult.)
Along the way, we will have occasion to use the concept of right-triangu-

lated categories introduced in [1] a great deal, since stable categories are
right-triangulated. Indeed, many of the nice properties of stable categories
are encoded in the axioms of right-triangulated categories ^ so many, that I
think of right-triangulated categories in general, and not just of stable cate-
gories, as being additive cousins of the homotopy-category of topological
spaces.

Applications. The developments described have various applications, of
which two are carried through below. One, described in section 3, is really
just an example, which shows how an instance of Neeman's result [11, Thm.
3.1], dealing with cohomological functors on the derived category of a ring,
is contained in the present theory: if A is a ring and H : D�A� ÿ! Ab a
contravariant additive functor to the category of abelian groups, then H is
representable if and only if H is cohomological and sends small coproducts
to the corresponding products. The other application, described in section 4,
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shows how the present theory can be used on additive functors defined on a
stable module-category over an Artinian ring. We give representability-cri-
teria for such functors in Theorem 4.4. This application ties in with the fact
that stable categories are one of the central tools in the modern theory of
Artinian rings, see [5]. We also widen the scope, and contemplate what a
``cohomology-theory'' defined on the stable module-category might look
like. It turns out that when we borrow the topologists' definition, such a
theory can be represented by what we will call an 
-spectrum of modules;
we also borrow this definition from topology. That this should be so is no
surprise: in the topological case, it is a classical result contained in [3].
A few words about an obvious missing application: the pre-enveloping

classes appearing in the theory below are really a device from relative
homological algebra. It therefore seems likely that applications should exist
in that area, although I have yet to find some.

Layout of the paper. To sum up, section 1 below is preparatory, and shows
how some constructions from topological homotopy-theory can be trans-
ferred to stable categories. The idea is that, since Brown's abstract homo-
topy-categories are characterized by axioms reminiscent of topological
homotopy-theory, our section 1 will help us to connect stable categories with
Brown's work. Section 2 contains the central proof that stable categories are
``abstract homotopy-categories'' in the terminology from [2]; this implies by
[2, Thm. 2.8] that stable categories admit a Brown Representability theorem.
Section 3 applies the theory to the case of complexes of modules, reproving a
special case of the result [11, Thm. 3.1], and section 4 applies the theory to
modules over Artinian rings.

Comments about stable categories. One thing to note is that these cate-
gories have been named in a most unfortunate way, since their position close
to homotopy-theory makes one believe that the word ``stable'' in ``stable
category'' must have something to do with stable homotopy. This is not the
case! In fact, as mentioned, I think of stable categories as additive analogues
of the usual homotopy-category of topological spaces, i.e. of the unstable
homotopy-category.
Another comment concerns abstract right-triangulated categories. As in-

dicated above, I think of all these categories, not just of stable categories, as
additive generalizations of the homotopy-category of topological spaces.
And so of course I tried first to prove Brown Representability for an arbi-
trary right-triangulated category, not just for a stable category. However,
this endeavour failed, because it turned out to be unclear how to perform a
key construction, that of homotopy colimits, in the abstract case. In stable
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categories, however, the construction is not too difficult, and this is the rea-
son why this paper deals only with stable categories.

Notation and mathematical background. Let C be a category, X a class of
objects of C. We will follow the terminology from [4] and call a morphism
f : C1ÿ!C2 an X-monic if

for X 2 X and g1 : C1ÿ!X ; we can find g2 : C2ÿ!X with g2f � g1:

An X-monic f : Cÿ!X , where X is in X, is called an X-pre-envelope. We call
X a pre-enveloping class if every object C of C has an X-pre-envelope.
As an example, think of C as a category of modules, X as the injective

modules. Then the X-monics are the usual injective homomorphisms, and an
X-pre-envelope is an injection into an injective module.
The notions dual to X-monic and X-pre-envelope are called X-epic and X-

pre-cover; there is an ensuing notion of pre-covering class.
We use MacLane's definition of additive categories, see [9, sec. VIII.2]. If

A is an additive category with a pre-enveloping class X, we will call a
morphism null-homotopic (with respect to X) if it factors through an object
from X. It is easy to see that a morphism going out of the object C is null-
homotopic precisely if it factors through any one of C's X-pre-envelopes. We
call two different morphisms homotopic to each other (with respect to X) if
their difference is null-homotopic. We construct the so-called stable category
AX by dividing away from A the ideal of null-homotopic morphisms (so AX

has the same objects as A, but its morphisms are equivalence classes of
morphisms from A). The canonical functor exhibiting AX as factor of A will
be denoted Q : A ÿ! AX, and for a morphism f in A, we follow [1] and
write

Q�f � � f :

Occasionally, we shall follow [7, chp. 13] and denote the homomorphism-
functor HomAX by �.
In [1], the notion of right-triangulated category was introduced, and it was

realized that if one equips AX with a suitable suspension-functor �, and a
suitable class of distinguished right-triangles �, then �AX; �;�� is a right-
triangulated category (to be more accurate, [1] really deals with the case
where X is pre-covering and AX left-triangulated, but everything can be
dualized).
Finally, we will be using the notion of small sets a great deal. For an ex-

planation of small sets and their significance to category theory, see [9, sec.
I.6]. As shorthand, when we mean e.g. the coproduct of a family indexed by
a small set, we talk of ``a small coproduct''.
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1. Homotopical algebra in a stable category

In this section, we shall see how some elementary constructions from topo-
logical homotopy-theory can be transferred to categories of the form AX:
homotopy-extension, factorization through the mapping-cylinder, some
homotopy colimits, coproducts, and exact homotopy-sequences. They are all
easy to perform in our additive setting. This section is very close in spirit to
[7, chp. 13]; just like Hilton, we shall try to write all results up in a way
making the formal resemblance to topological homotopy-theory as good as
possible.
We begin with two ``classical'' results.

Lemma 1.1 (Homotopy-extension). Let A be an additive category with a
pre-enveloping class X. Suppose that we have a diagram

which is commutative up to X-homotopy, that is, b� is homotopic to a, and in
which � is X-monic.
Then there exists a morphism b0 : B ÿ! C such that
� b0� � a,
� b0 is homotopic to b.

Proof. This is [7, Thm. 13.6]. Note that Hilton operates with X � inj,
the class of injectives, but that his proof works for a general pre-enveloping
class X.

Lemma 1.2 (Factorization through the mapping-cylinder). Let A be an
additive category with a pre-enveloping class X. Any morphism � : A ÿ! B in
A can be factored as

where
� � is an X-monic,
� ' is an X-homotopy-equivalence, i.e., ' is an isomorphism in AX.

Proof. This is also contained in [7], on page 132: Hilton operates with
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X � inj, but his method works for general X's. Note that M� is not in gen-
eral uniquely determined by �, so the notation M� is a bit misleading.

We want to go on and study homotopy colimits in AX. The following
lemma paves the way.

Lemma 1.3. Let A be an additive category with a pre-enveloping class X. If
we have a system in A,

A1 ÿ!�1 A2 ÿ!�2 � � � ;
then we can find a new system,

B1 ÿ!�1 B2 ÿ!�2 � � � ;
and morphisms 'i : Bi ÿ! Ai, such that
� the diagram of A's and B's is commutative, that is, for each i we have

�i'i � 'i�1�i,
� each 'i is an X-homotopy-equivalence,
� each �i is an X-monic.

Note that by the two first points, the B-system is isomorphic to the A-system
in AX.

Proof. This simply consists in successive applications of Lemma 1.2:

setting B2 �M�1 , and Bi �M�iÿ1'iÿ1 for all i � 3.
We finish the diagram by setting B1 � A1 and '1 � 1.

The lemma will be used for the following construction: suppose that we
are given an additive category A with a pre-enveloping class X, and suppose
that we have a system in AX given by

X1 ÿ!
f1

X2 ÿ!
f2 � � � :�1�

We perform the construction from Lemma 1.3 to get a commutative dia-
gram
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B1 ÿ!
�1

B2 ÿ!
�2 � � �??y'1 ??y'2

X1 ÿ!
f1

X2 ÿ!
f2
� � � ;

in which all the �i's are X-monics, and all the 'i's are X-homotopy-equi-
valences.
Now suppose that A contains the colimit of the system

B1 ÿ!�1 B2 ÿ!�2 � � �. Write X for this colimit, and let bi : Bi ÿ! X be the
canonical maps. Set gi � bi � �'i�ÿ1 (remember that 'i is a homotopy-
equivalence, so 'i is an invertible morphism in AX). We then get morphisms
gi : Xi ÿ! X in AX, and they are compatible with the fi's.

Definition 1.4. We shall call an X as constructed above a homotopy coli-
mit of the system (1), and write

X � hocolim Xi:

The gi's will be called canonical maps (associated to the homotopy colimit of
the system (1)).

But note that it is not obvious that our construction provides an X which
is unique.
The reason for introducing homotopy colimits is that they have some nice

properties, well-known to topologists. They are expressed in the following
two lemmas, cf. [2, Axiom (2.4)]:

Lemma 1.5. Let A be an additive category with a pre-enveloping class X, and
let the system (1) be given. Assume that an X � hocolim Xi as in Definition 1.4
can be constructed.
Then for any object Z 2 A, the maps

HomAX�gi;Z� : HomAX�X ;Z� ÿ! HomAX�Xi;Z�
induce a map


 : HomAX�X ;Z� ÿ! lim HomAX�Xi;Z�;
and 
 is an epimorphism.

Proof. In the category AX, the system of Xi's and the system of Bi's are
isomorphic. So to prove that 
 is surjective, we can replace Xi by Bi and gi
by bi.
Let us suppose that we have an element in the limit

lim HomAX�Bi;Z�:
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It will be given by a compatible family in AX,

�hi : Bi ÿ! Z�i;�2�
where the compatibility means that hi�1 � �i � hi for every i.
We will now use Lemma 1.1 successively, to find morphisms qi which

``improve'' the hi's. This can be done since all the �i's are X-monics:
1� : Put q1 � h1.
2� : Since h2 � �1 is homotopic to h1, it is also homotopic to q1. So by

Lemma 1.1, we may choose q2 : B2 ÿ! Z such that q2 � �1 � q1, and such
that q2 is homotopic to h2.
3� : Since h3 � �2 is homotopic to h2, it is also homotopic to q2. So we may

choose q3 : B3 ÿ! Z such that q3 � �2 � q2, and such that q3 is homotopic to
h3.
If we go on in this way, we get a system

�qi : Bi ÿ! Z�i
which is compatible in A. But this induces q : colim Bi ÿ! Z, that is,
q : X ÿ! Z. And it is clear that if we view 
�q� as a compatible system, its
i'th component is qi which is equal to hi, so 
�q� is equal to the lim-element
given by the system (2).
This proves that an arbitrary element of lim HomAX�Bi;Z� lies in the im-

age of 
.

Lemma 1.6. Let A be an additive category with a pre-enveloping class X, and
let the system (1) be given. Assume that an X � hocolim Xi as in Definition 1.4
can be constructed.
Then for any object Z 2 A, the maps

HomAX�Z; gi� : HomAX�Z;Xi� ÿ! HomAX�Z;X�
induce a map

� : colim HomAX�Z;Xi� ÿ! HomAX�Z;X�:
Suppose now that Z has the X-pre-envelope z : Z ÿ! Y, and that both functors
HomA�Z;ÿ� and HomA�Y ;ÿ� preserve colimits of systems of the form

A1 ÿ!�1 A2 ÿ!�2 � � �
where each �i is an X-monic. Then � is an isomorphism.

Proof. Again we use that in the category AX, the system of Xi's and the
system of Bi's are isomorphic: we replace Xi by Bi and gi by bi.
But
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� : colim HomAX�Z;Bi� ÿ! HomAX�Z;X�
can be computed to be

colim
HomA�Z;Bi�
z�HomA�Y ;Bi� ÿ!

HomA�Z;X�
z�HomA�Y ;X� :

colim is exact, so we can ``move it in'' to numerator and denominator on the
left-hand side. And both HomA�Z;ÿ� and HomA�Y ;ÿ� preserve colimits of
systems like the Bi-system. And colim Bi � X , so we see that � is an iso-
morphism.

It is convenient that AX frequently has small coproducts.

Lemma 1.7. Let A be an additive category with a pre-enveloping class X.
Suppose that A has small coproducts, and that X is closed under such small
coproducts.
Then the canonical functor Q : A ÿ! AX preserves small coproducts. In

particular, the category AX has small coproducts.

Proof. We let fAkgk2K be a small family in A, and denote by
ik : Ak ÿ!

`
` A` the corresponding injections. Choose an X-pre-envelope

�k : Ak ÿ! Xk for each k 2 K. Note that
`

` �` :
`

` A` ÿ!
`

` X` is an X-
pre-envelope.
We have Q�ik� : Q�Ak� ÿ! Q�`` A`�, and we look at

HomAX�Q�
`

` A`�;Q�B�� ÿ! Q
kHomAX�Q�Ak�;Q�B��


 




HomA�
`

` A`;B�
�`` �`��HomA�

`
` X`;B� ÿ!

Q
k

HomA�Ak;B�
��kHomA�Xk;B� ;

where the upper arrow is induced by the Q�ik�, while the lower arrow is in-
duced by the ik. Since the lower arrow is easily seen to be an isomorphism,
the upper arrow is also an isomorphism, and we conclude that Q�`` A`� is
the coproduct of the Q�Ak�'s, and that the canonical injections are the
morphisms Q�ik� : Q�Ak� ÿ! Q�`` A`�.
Finally, we look at exact homotopy-sequences. We will see that they exist

for any right-triangulated category; in particular, they exist for AX since this
category is right-triangulated by the arguments in [1].

Definition 1.8. Let �C; �;�� be a right-triangulated category; see [1, Def.
2.2] for the definition (or rather, the dual definition, namely that of left-tri-
angulated categories).
A contravariant additive functor H : C ÿ! Ab will be called half-exact if

it satisfies: when
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A ÿ!a B ÿ!b C ÿ!c ��A��3�
is in the class � of distinguished right-triangles, the sequence

H�C� ÿÿ!H�b� H�B� ÿÿ!H�a� H�A�
is exact.

Recall from [1] that a right-triangulated category is an additive category C
with an additive endofunctor � and a class of distinguished triangles �,
subject to Axioms (RT1) to (RT4). For instance, Axiom (RT2) for right-tri-
angulated categories, dual to (LT2) in [1, Def. 2.2], states that if we have the
distinguished right-triangle (3), then the right-triangle

B ÿ!b C ÿ!c ��A� ÿÿÿ!ÿ��a�
��B�

is also distinguished. This makes it plain that if H is half-exact, the dis-
tinguished right-triangle (3) gives rise to a long-exact sequence

� � � H���C�� ÿÿÿ!
H���b��

H���B�� ÿÿÿ!
H���a��

H���A��
.H�c�

H�C� ÿÿÿ!
H�b�

H�B� ÿÿÿ!
H�a�

H�A�:

Lemma 1.9 (Valid for abstract right-triangulated categories). Let �C; �;��
be a right-triangulated category. For any object X 2 C, the functor
HomC�ÿ;X� is half-exact.
Proof. One can use the standard-proof from the theory of triangulated

categories.
Note, however, that the same trick does not work in the second variable:

the functor HomC�X ;ÿ� does not in general send right-triangles to exact se-
quences. The reason that the usual argument from triangulated categories
does not work here is that �ÿ1 is not known to exist.

2. Stable categories as abstract homotopy categories

In this section, we shall prove our main result, Theorem 2.1: that categories
of the form AX are what Brown in [2] calls ``abstract homotopy-categories'',
when A and X have certain properties. As stated in the introduction, this is
good because in many cases, it implies that AX admits a Brown Represent-
ability Theorem which gives an easy necessary and sufficient criterion for an
additive functor F : AX ÿ! Ab to be representable (Ab is the category of
abelian groups).
The reason that our main result is Theorem 2.1 instead of Brown Re-
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presentability itself is the ``in many cases'' above ^ even when we are in a
case where Theorem 2.1 is valid, Brown Representability is not necessarily
true.
Abstract homotopy-categories are simply categories satisfying some ax-

ioms resembling familiar facts from topological homotopy-theory (existence
of homotopy colimits being the most important one). So the proof of
Theorem 2.1 will simply consist in checking these axioms for a stable cate-
gory. The proof is made possible by the results of section 1 which make
manifest the homotopical nature of AX.
It will be handy to introduce short-hand notation for some conditions

which can be imposed on an additive category A with a pre-enveloping class
X:
� Condition (A): any X-monic has a cokernel.
� Condition (B): A has small coproducts, that is, coproducts of families

indexed by small sets.
� Condition (C): X is closed with respect to small coproducts (we only

impose this condition when it makes sense, i.e. when condition (B) is also in
force).
� Condition (D): a system of the form

A1 ÿ!�1 A2 ÿ!�2 � � � ;
where each �i is an X-monic, has a colimit in A.
Note that in practice, the conditions are frequently satisfied. For instance,

when A is abelian and closed under small colimits, conditions (A), (B) and
(D) hold automatically.
Now we can prove the main result:

Theorem 2.1. Let A be an additive category with a pre-enveloping class X,
satisfying conditions (A) to (D).
Write c � AX, and suppose that we have chosen a small set c0 of objects in

A; we will think of this small set as a full subcategory of c. Assume
�1�� : if C1; . . . ;CN are elements of c0, then c0 contains a coproduct of

C1; . . . ;CN.
�2�� : if C 2 c0, then HomA�C;ÿ� respects the colimits mentioned in con-

dition (D).
�3�� : if C 2 c0, then we can find an X-pre-envelope C ÿ! X where also

X 2 c0.
�4�� : if we have an X-monic 
 : C1 ÿ! C2 with C1 and C2 in c0, then the

cokernel of 
 can be chosen in c0.
Then the pair �c;c0� is an abstract homotopy-category, in the sense of [2, p.

79].
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Proof. Before starting the actual proof, let us briefly review Brown's ax-
ioms for abstract homotopy-categories, to get a feeling for what we are try-
ing to prove. Brown considers a pair �c;c0� where c0 is a subcategory of c.
His first two axioms, [2, (2.1) and (2.2)], are ``background'': they just require
that c0 is a small full subcategory of c, that c has small coproducts, and
that c0 is closed under finite coproducts.
Axiom [2, (2.3)] requires the existence of what one can call homotopy

push-outs (though Brown calls them ``equalizers''): for fi : A ÿ! Xi with
i � 1; 2, one must be able to form gi : Xi ÿ! Z such that g1f1 � g2f2 and such
that: if g0i : Xi ÿ! Z0 satisfy g01f1 � g02f2, we can find h : Z ÿ! Z0 with
g0ih � gi. Note that h is not assumed to be unique. It is also required that if A
and the Xi's are in c0, then Z can be chosen in c0.
Finally, Axiom [2, (2.4)] requires the existence of homotopy colimits of

sequences: for a sequence X1 ÿ! X2 ÿ! � � �, there should exist an X and
compatible maps gi : Xi ÿ! X such that the following two conditions hold:

[2, (2.4)(i)]: if Z 2 c0; then colim�gn�� : colimHomc�Z;Xn� ÿ!� Homc�Z;X�
is a bijection.

[2, (2.4)(ii)]: if Z 2 c; then lim�g�n � : Homc�X ;Z�ÿ!ÿ! limHomc�Xn;Z��
is a surjection.

We shall now check these axioms for the case at hand.
Axiom [2, (2.1)]: requires c0 to be small and full, which it is.
Axiom [2, (2.2)]: small coproducts in c exist because of Lemma 1.7. And

c0 has finite coproducts because of condition �1��.
Axiom [2, (2.3)]: suppose that we are given morphisms

A ÿ!
f1

X1

f2
??y
X2

in c. Using the right-triangulated structure of c � AX, we can construct a
distinguished right-triangle

A ÿÿÿ!
f1
ÿf2

� �
X1

a
X2 ÿÿÿ!�g1;g2�

Z ÿ! ��A�:
We claim that the Z thus constructed satisfies Brown's axiom: let
g0i : Xi ÿ! Z0 be given such that g01f1 � g02f2. We combine the g0i's to

�g01; g02� : X1
`
X2 ÿ! Z0, which then satisfies �g01; g02� �

f1
ÿf2

� �
� 0. By
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Lemma 1.9, we can find h : Z ÿ! Z0 such that h � �g1; g2� � �g01; g02�, but
then, hgi � g0i for i � 1; 2.
We also need to see that if A and the Xi's are in c0, then we can choose Z

in c0. But if A ÿ!a Y is an X-pre-envelope then by the procedure dual to
that in [1, p. 5026], we form Z as the push-out

A ÿÿÿ!
f1
ÿf2

� �
X1
`
X2

a
??y ??y
Y ÿÿÿ! Z;

that is, we form Z as the cokernel of the X-monic

A ÿÿÿ!

ÿa
f1
ÿf2

� �
Y
a

X1

a
X2:

By condition �3��, we may choose Y in c0. But then by condition �4��, we
can suppose that Z is in c0.
Axiom [2, (2.4)]: here we suppose that we are given a system

X1 ÿ!
f1

X2 ÿ!
f2 � � � in A, and use Definition 1.4 to get X � hocolimXi and

canonical maps gi : Xi ÿ! X .
Part (i): when Z 2 c0, condition �3�� says that we can choose an X-pre-

envelope Z ÿ! Y with Y 2 c0. According to condition �2��, both functors
HomA�Z;ÿ� and HomA�Y ;ÿ� respect colimits of A-systems
A1 ÿ! A2 ÿ! � � � where each arrow is an X-monic. But then, Lemma 1.6
states that Brown's Axiom [2, (2.4.i)] is satisfied.
Part (ii): follows directly from Lemma 1.5.

Note again that the conditions listed in the statement of this theorem are
frequently satisfied: When A is abelian and closed under small colimits,
conditions (A), (B) and (D) hold automatically. Condition (C) is not too
outlandish. And conditions �1�� to �4�� are just finiteness-conditions on the
objects of c0; they too will hold if we choose c0 to consist of sufficiently
``finite'' objects. An example could be finitely generated modules.
As mentioned, the point of introducing abstract homotopy-categories is

that one can characterize the representable functors defined on them. [2,
Thm. 2.8] states: suppose that c0 � c, in the notation of [2, p. 80]. Then a
functor H : c ÿ! Sets is representable precisely if H is a homotopy-func-
tor, i.e., precisely when H satisfies the conditions [2, (2.6) and (2.7)].
Let us recall from [2] what ``c0'' and ``a homotopy-functor'' mean:
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The class c0 consists of objects Y for which the condition ``f : Y ÿ! Y 0 is
an isomorphism'' is equivalent to the condition ``for all X 2 c0, the map
Homc�X ; f � is bijective''.
And as stated, a homotopy-functor is a functor satisfying [2, Cond. (2.6)

and (2.7)]. Condition [2, (2.6)] says that H should send coproducts to pro-
ducts. Condition [2, (2.7)] says that if we have one of the diagrams from
Axiom [2, (2.3)],

A ÿ!
f1

X1

f2
??y ??yg1
X2 ÿ!

g2
Z;

and H�f1��u1� � H�f2��u2�, then there exists v 2 H�Z� such that
H�gi��v� � ui. It is a nice point that in the case of the categories AX, condi-
tion [2, (2.7)] is equivalent to half-exactness of H:

Lemma 2.2. Suppose that we are in the situation of Theorem 2.1, and let
H : AX ÿ! Ab be a contravariant additive functor. Let U : Ab ÿ! Sets be
the forgetful functor.
Then U �H satisfies [2, Cond. (2.7)] precisely when H is half-exact in the

sense of our Definition 1.8.

Proof. Suppose that U �H satisfies [2, (2.7)], and let

A ÿ!a B ÿ!b C ÿ!c ��A�

be a distinguished right-triangle. We need to see that H�C� ÿ!H�b�

H�B� ÿ!H�a� H�A� is exact.
``Im � Ker'': this is true simply because H is additive, since one can easily

prove that b � a � 0 (the usual argument from triangulated categories applies
to prove that the composition of two consecutive arrows in a distinguished
triangle is zero).
``Im � Ker'': by the proof of Theorem 2.1, part (2.3), the following is one

of the diagrams from axiom [2, (2.3)]:

A ÿ!a B??y ??yb
0 ÿ! C:

And if u 2 H�B� satisfies H�a�u � 0, and we set u1 � u and u2 � 0, we have
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H�a�u1 � H�0�u2, so since H is a homotopy-functor, we can find v 2 H�C�
such that H�b�v � u1 � u (and H�0�v � u2 � 0).
Suppose on the other hand that H is half-exact, and let

A ÿ!
f1

X1

f2
??y ??yg1
X2 ÿ!

g2
Z

be one of the diagrams from Axiom [2, (2.3)]. Choose a distinguished right-
triangle

A ÿÿÿ!
f1
ÿf2

� �
X1

a
X2 ÿÿÿ!�p1;p2�

Cÿÿÿ!��A�:

We have �p1; p2� � f1
ÿf2

� �
� 0, that is, p1f1 � p2f2, so by the property char-

acterizing Z there exists h : Z ÿ! C such that hgi � pi.
If we have ui 2 H�Xi� with the property H�f1�u1 � H�f2�u2, we can combine

the ui to
u1
u2

� �
2 H�X1

a
X2� and get

H
f1
ÿf2

� �� �
u1
u2

� �� �
� 0;

and by the half-exactness of H, we can find w 2 H�C� such that

H��p1; p2��w � u1
u2

� �
. But setting v � H�h�w, we see

H�gi�v � H�gi�H�h�w � H�hgi�w � H�pi�w � ui;

showing that U �H satisfies [2, (2.7)].

3. Application to derived categories

In this short section, we shall apply the theory of section 2 to the derived
category of a ring, recapturing in our Theorem 3.2 a special case of the
Brown Representability Theorem proved as [11, Thm. 3.1] for abstract tri-
angulated categories.
Let A be a ring, and let A be the additive category defined as follows: as

objects, A has all those K-projective complexes which consist of projective
A-left-modules (see [13, Def. 1.1] for the definition of K-projectivity). As
morphisms, A has all chain-maps of complexes.
If we take A modulo chain-homotopy, we get what we will call the classi-

cal homotopy-category of A. This category is isomorphic to the derived ca-
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tegory D�A� of A-left-modules. This is a well-known consequence of the re-
sults of [13].
And in fact, we can obtain A modulo chain-homotopy as the stable cate-

gory AX with respect to a suitable pre-enveloping class X. To define X, recall

from [5, p. 28] that a chain-map X ÿ!f Y is called a semi-split injection if it

is a split injection in each degree (the differentials do not play a role in this

connection). A complex I is called S-injective if, when we are given a semi-

split injection X ÿ!f Y of arbitrary complexes, any chain-map X ÿ!g I

extends to a chain-map Y ÿ!h I such that hf � g. Now let

X � the S ÿ injective A-complexes:

(Note that S-injectivity is defined by an extension-property in the category
of all complexes, not just in A.) It is easy to prove, by imitating the argu-
ments in [5, p. 28], that
� X is pre-enveloping in A; here one can use the same construction of pre-

envelopes as in [5, p. 28].
� The X-monics in A are exactly the semi-split injections.
� A morphism P ÿ! Q from A is null-homotopic (in the normal defini-

tion from the theory of chain-homotopy) precisely when it factors through
an object from X.
As a consequence of the last point, we see that as claimed, AX is iso-

morphic to the classical homotopy-category of A, that is, to D�A�.
In fact, as one can see by doctoring the arguments in [5, p. 28], we even get

that the suspension-functor � on AX is equal to the usual shifting-functor on
complexes, and that the notion of distinguished right-triangles in the right-
triangulated category AX coincides with the usual notion of distinguished
triangles of complexes. Hence

�AX; �;�� � �D�A�; shift; the usual triangles�:
So the theory of derived categories over rings is contained in the theory of
stable categories.
We can now prove

Proposition 3.1. Let A be a ring. Let c � D�A� be the derived category,
and let c0 be a full subcategory containing one element from each isomorph-
ism-class which contains a bounded complex of finitely generated projectives
(so c0 is small ).
Then the pair �c;c0� is a homotopy-category in the sense of [2, p. 79].

Moreover, we have c0 � c (for the definition of c0 see [2, p. 80], or above,
after the proof of Theorem 2.1).
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Proof. As shown above, c � D�A� can be obtained as AX. So we shall
apply Theorem 2.1 to this category. We must first consider conditions (A) to
(D) on A and X.
Condition (A): if ' : P ÿ! Q is an X-monic in A, we get a semi-split exact

sequence of complexes,

0! P ÿ! Q ÿ! R! 0:

Since the sequence is semi-split, R consists of projectives. And it is easy to
see that R is in fact K-projective, so R is the cokernel in A of the X-monic '.
Condition (B): the existence of small coproducts in A is clear.
Condition (C): if fP�g is a small system from X, every complex P� is S-

injective. So the coproduct
`

� P� is also S-injective, see [5, p. 28]. Therefore,
the coproduct is in X.
Condition (D): if we have a system P1 ÿ! P2 ÿ! � � � where all arrows are

split injections, it will in fact be what [13, Def. 2.6(a)] calls an A-special di-
rect system (strictly speaking, we need to add P0 � 0 to the beginning of the
system to satisfy [13]'s definition). We then see from [13, Cor. 2.8] that the
system's colimit is K-projective. And it is clear that all modules in the coli-
mit are projective (each module is the colimit of a sequence of split injections
of projectives). So the colimit is in A.
Now look at conditions �1�� to �4�� from Theorem 2.1: it is easy to see

that condition �1�� holds. Condition �2�� is well-known. Validity of condi-
tion �3�� follows from the concrete construction of pre-envelopes in [5, p.
28]. And condition �4�� is easy to check.
So �c;c0� with c � AX is an abstract homotopy-category by Theorem 2.1.
Lastly, we prove the proposition's statement about c0. Since c is not just

right-triangulated, but in fact triangulated, it is enough to see that if an ob-
ject Q 2 c has Homc�P;Q� � 0 for all P 2 c0, then Q � 0. But �i�A� (the
ring itself placed in degree ÿi) is in c0, and Homc��i�A�;Q� � hÿi�Q�, and
if this is always zero, Q itself is isomorphic to zero (here we use that if a
complex in D�A� is exact, it is isomorphic to zero).

Theorem 3.2 (Cf. [11, Thm. 3.1]). Let A be a ring. Let H : D�A� ÿ! Ab be
a contravariant additive functor.
Then the following two conditions are equivalent:
� (Representability): H is representable in the sense that there exists an

object YH 2 D�A� such that
H�ÿ� � HomD�A��ÿ;YH�:

� (Homology): H is cohomological and sends small coproducts to the cor-
responding products.
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Proof. Assume that H satisfies condition (Representability). It will then
clearly send (small) coproducts to the corresponding products, and it is
classical that H is cohomological (the latter fact also follows from our
Lemma 1.9). So H satisfies condition (Homology).
Assume conversely that H satisfies condition (Homology). Then the fact

that H is a cohomological functor implies that it is half-exact in the sense of
Definition 1.8. For the moment, let us think of H as a functor going into
Sets. Then by Lemma 2.2, H satisfies [2, Cond. (2.7)]. And since H also
satisfies [2, Cond. (2.6)], it is a homotopy-functor in Brown's sense.
So due to the facts stated in Proposition 3.1, if we regard H as a functor to

Sets, it is representable by [2, Thm. 2.8].
But by the Yoneda-lemma, [9, p. 61], when we have some natural trans-

formation

' : HomD�A��ÿ;YH� ÿ! H�ÿ�
of functors D�A� ÿ! Sets, there exists an element f 2 H�YH� such that for
any X and � we have 'X ��� � H����f �. In the case at hand, this prescription
certainly makes each 'X a homomorphism of abelian groups.
So the established equivalence from HomD�A��ÿ;YH� to H�ÿ� is, in fact, a

natural equivalence of functors D�A� ÿ! Ab, and this proves condition
(Representability).

4. Application to Artinian rings

This section applies the results of section 2 to the category of left-modules
over a left-Artinian ring. It will be seen that, if we form the corresponding
stable category with respect to the pre-enveloping class of injective modules,
we get an abstract homotopy-category, and that in many cases, a good c0

can be found. Some consequences for functors defined on stable module-ca-
tegories over Artinian rings are derived; the central one is expressed in
Theorem 4.4.
We begin with a general observation: suppose that A is an additive cate-

gory, and let X be a class of objects of A which is both pre-enveloping and
pre-covering. Suppose that each X-pre-envelope has a cokernel, and that
each X-pre-cover has a kernel. By the general theory of [1], the stable cate-
gory AX is then equipped with a suspension-functor, �, and a loop-space-
functor, 
. It is easy to prove that ��;
� are adjoint functors, a fact we
need in this section. We omit the proof.
Now to the Artinian rings. Throughout this section, we let R be a left-

Artinian ring which has the property that if M is a finitely generated left-
module, then its injective envelope E�M� is also finitely generated. By [8,
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Thm. 2], this is for instance the case if R is PI, and so in particular if it is
finite over its center.
We let A stand for Mod�R�, the category of R-left-modules, and let X

stand for inj�R�, the class of all injective R-left-modules. Note that since R
is left-Artinian and therefore left-Noetherian, by [4, Prop. 2.2] the class inj

is pre-covering, so this places us in the situation described above: the sus-
pension-functor � : AX ÿ! AX has a right-adjoint functor 
. We write
c � AX, and let c0 be a full subcategory consisting of a representative from
each isomorphism-class of finitely generated modules (so c0 is small).
Our basic result is the following:

Proposition 4.1. When R is a ring as described in the introduction to this
section, and we use the definitions given above, conditions (A) to (D) are sa-
tisfied by A and X, and conditions �1�� to �4�� from Theorem 2.1 are satisfied
by c0.
So by Theorem 2.1, the pair �c;c0� is an abstract homotopy-category.
Proof. Conditions (A), (B) and (D) clearly hold. And condition (C) holds

because R is left-Artinian, and so in particular left-Noetherian.
Conditions �1�� and �4�� from Theorem 2.1 clearly hold. That condition

�2�� holds is well-known. And condition �3�� is satisfied because we have
required R to be a ring such that if M is finitely generated, then E�M� is also
finitely generated.

To be able to apply [2, Thm. 2.8], we need to see that c0 � c. This is
proved below in proposition 4.3 (c0 is defined in [2, p. 80], and above, after
the proof of Theorem 2.1).

Lemma 4.2. Let A be a left-Noetherian ring, and consider the stable category

Mod�A�inj�A�:
If C is a left-module with the property that for any finitely generated module

M, we have

HomMod�A�inj�A� �M;C� � 0;

then C is injective.

Proof. The assumption on C says that any morphism M ÿ! C, with M
finitely generated, factors through E�M�. In particular, let a be some left-
ideal of A, and let a : a ÿ! C be a homomorphism. a is finitely generated, so
if i : a,!E�a� is the injection, we can find e : E�a� ÿ! C such that ei � a.
But if j : a,!A is the canonical injection, we can also find k : A ÿ! E�a�
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such that kj � i, whence a � ei � �ek�j, showing that we have extended a to
A. By Baer's theorem, C is injective.

Proposition 4.3. When R is a ring as described in the introduction to this
section, we have c0 � c in Browns's notation from [2, p. 80].

Proof. Let �0 : B0 ÿ! B be a module-homomorphism with the property
that when M is finitely generated, ��M; �0� : ��M;B0� ÿ! ��M;B� is bijec-
tive (here we use Hilton's notation HomMod�R�inj�R� � �). What we need to see
is that �0 is an isomorphism.
Use the dual of Lemma 1.2 to factor �0 as B0 ÿ!' A ÿ!� B, where ' is an

X-homotopy-equivalence, and � an X-epic. Then ��M; �0� is bijective pre-
cisely when ��M; �� is bijective. By the assumption on �0, we thus know that
��M; �� is bijective for any finitely generated M, and need to prove that � is
an isomorphism.
So let us look at � : A ÿ! B. By construction, it is X-epic. In fact, it is also

a surjective homomorphism: let b be an element of B. Let i : Rb ,! B be the
canonical inclusion. Since Rb is finitely generated, our assumption tells us
that in the homotopy-category, we can lift i through �, that is, we can find a
homomorphism � : Rb ÿ! A such that � � � � i. But by the dual of
Lemma 1.1, there will then exist a homomorphism ~� : Rb ÿ! A such that
� � ~� � i, so b is seen to be in the image of �, proving its surjectivity.
Now construct a distinguished left-triangle 
�B� ÿ! C ÿ! A ÿ!� B. For

any moduleM, we obtain a long-exact sequence from the dual of Lemma 1.9,

����
��M; 
�A�� ÿÿÿÿÿ!

��M;
����
��M; 
�B�� ÿ! ��M;C�ÿ! ��M;A� ÿÿÿÿÿ!��M;��

��M;B�??y� ??y�
����M�;A� ÿÿÿÿÿ!

����M�;��
����M�;B�:

The vertical arrows are adjunction-isomorphisms. If M is finitely generated,
we can suppose that ��M� is finitely generated (since E�M� is), and then by
assumption, both maps ��M; �� and ����M�; �� are isomorphisms. Since
����M�; �� is an isomorphism, so is ��M; 
����. But when both ��M; 
����
and ��M; �� are isomorphisms, the diagram shows that we must have
��M;C� � 0. And when this holds for all finitely generated M's, we know
from Lemma 4.2 that C is an injective module.
However, � is an X-epic, so by the dual of [1, Prop. 2.10], the module C

can be taken to be Ker���. Collecting everything, we see that � is a surjective
homomorphism with kernel equal to an injective module ^ that is, � splits.
Of course, this shows that ��M; �� is surjective for any M. And the fact

that C � 0 in Mod�R�inj�R� along with the exact sequence ���� shows that
��M; �� is injective for any M. So � is an isomorphism, and this is what we
want.
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This places us in the best possible position, from which the central result
can be obtained:

Theorem 4.4. Let R be a ring as described in the introduction to this section,
and let H : Mod�R�inj�R� ÿ! Ab be a contravariant additive functor.
Then the following two conditions are equivalent:
� (Representability): H is representable in the sense that there exists a

module YH such that

H�ÿ� � ��ÿ;YH�:
� (Homology): H is half-exact and sends small coproducts to the corre-

sponding products.

Proof. If H satisfies condition (Representability), it clearly satisfies con-
dition (Homology) (use Lemma 1.9).
On the other hand, if H satisfies condition (Homology), we know from

Lemma 2.2 that when we regard H as a functor to Sets, it is a homotopy-
functor in the sense of [2, p. 80]. So condition (Representability) for H as a
functor into Sets follows immediately when we feed Propositions 4.1 and 4.3
into [2, Thm. 2.8].
To get the equivalence of functors into Ab, we use the same standard-

trick with Yoneda's lemma as in the proof of Theorem 3.2.

Let us show a few applications of the theory:

Example 4.5. Let R be a ring as described in the introduction to this section,
and let

F : Mod�R� ÿ! Ab

be a contravariant additive functor which sends small coproducts to the corre-
sponding products. Then for each i � 1, there exists an R-module Ai such that

LiF�ÿ� � ��Q�ÿ�;Ai�:
By Q, we mean the canonical functor Q : Mod�R� ÿ!Mod�R�inj�R�.

Proof. When i � 1, the derived functor LiF�ÿ� vanishes on injectives,
and so factors through Mod�R�inj�R�. It is thus enough to represent it when
we view it as defined on Mod�R�inj�R�.
LiF �ÿ� is half-exact in the sense of Definition 1.8; this follows from the

fact that LiF�ÿ� is half-exact in the usual sense, and from [1, Prop. 2.10]
which states that any distinguished right-triangle in Mod�R�inj�R� comes
from a short-exact sequence in Mod�R�.
And each LiF �ÿ� sends small coproducts to the corresponding products:

this follows because a small coproduct of injective resolutions is again an
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injective resolution, which again follows because a small coproduct of in-
jectives is injective over the left-Artinian and hence left-Noetherian ring R.
Now use Theorem 4.4.

Next let us be somewhat more systematic. Since we think of the stable
category Mod�R�inj�R�, and more generally of abstract right-triangulated
categories, as analogous to the homotopy-category from algebraic topology,
it is very obvious to make the two following definitions:

Definition 4.6. (For abstract right-triangulated categories; compare [6, p.
8]). Let �C; �;�� be a right-triangulated category. A cohomology-theory on
�C; �;�� is a collection

�Hi; �i : Hi ÿ!� Hi�1 ���i2Z;
where each Hi is a contravariant half-exact functor from C to Ab, and each
�i is a natural equivalence.

Definition 4.7. (Cf. [6, p. 14]). Let A be a left-Noetherian ring. An 
-
spectrum in Mod�A�inj�A� is a collection

�Bi; bi : Bi ÿ!� 
�Bi�1��i2Z;
where each Bi is an A-module, and each bi is an isomorphism in
Mod�A�inj�A�.

Note that using stable homotopy, we can easily construct cohomology-the-
ories in the sense of Definition 4.6. It was pointed out to me by Alex Mart-
sinkovsky that theories obtained in this way are isomorphic to the so-called
Vogel cohomology-theories of modules treated in [10], and thus have a
number of useful properties.
We can now prove that the connection between cohomology-theories and


-spectra is as expected from the topological theory, cf. [3, Thms. II and
III]:

Proposition 4.8. Let R be a ring as described in the introduction to this

section, and let H � �Hi; �i : Hi ÿ!� Hi�1 ���i2Z be a cohomology-theory
defined on Mod�R�inj�R�. Suppose that each Hi sends small coproducts to the
corresponding products.
Then there exists an 
-spectrum B � �Bi; bi : Bi ÿ!� 
�Bi�1��i2Z such that

Hi�ÿ� � ��ÿ;Bi�
for each i, and such that the equivalences �i are the compositions
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��ÿ;Bi� ÿÿÿÿ!��ÿ;bi�
��ÿ; 
�Bi�1�� ÿÿÿÿ! ����ÿ�;Bi�1�

(the last arrow is the adjunction-isomorphism). The 
-spectrum B is unique in
an obvious sense.
Conversely, given an 
-spectrum B, we can use the two displayed formulae

to define a cohomology-theory H, in which each Hi will send small coproducts
to the corresponding products.

Proof. The last statements, about uniqueness of the spectrum B, and the
possibility of using a B to define an H, are clear. So we just need to see that
we can obtain B when we are given the cohomology-theory H.
However, by Theorem 4.4, we can certainly find modules Bi such that

Hi�ÿ� � ��ÿ;Bi�. The �i's then give equivalences of functors

��ÿ;Bi� � ����ÿ�;Bi�1�;
and using the adjunction, we can write this isomorphism as
��ÿ;Bi� � ��ÿ; 
�Bi�1��. But now we just apply Yoneda's lemma to get the
isomorphisms bi.
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