STRONG n-GENERATORS AND THE RANK OF SOME NOETHERIAN ONE-DIMENSIONAL INTEGRAL DOMAINS

KERSTIN PETTERSSON

1. Introduction

Throughout this paper any ring is a commutative Noetherian ring with identity. If A is a ring, I and J are ideals of A such that $I \supset J$, and S is a multiplicative set of A then let $\mu(I), \mu(I / J)$, and $\mu\left(S^{-1} I\right)$ respectively be the minimal number of generators of $I, I / J$, and $S^{-1} I$ respectively as an $A, A / J$, or $S^{-1} A$-module respectively.

Definition. Let A be a ring and n a positive integer. An ideal I of A is $n-$ generated if $\mu(I) \leq n$, and if $\mu(I) \leq n$ for each ideal I of A then I.S. Cohen [6] says that A is of finite rank n. S.T. Chapman and N.H. Vaughan [5] call a non-zero element a in A a strong n-generator if a can be chosen as the first of n generators of each ideal in which it is contained, and if moreover a is contained in some ideal I such that $\mu(I)=n$ then we introduce the concept proper strong n-generator for a. An ideal I of A is strongly n-generated if I is n-generated and $\mu(I /(a))<n$ for each non-zero element a of I.

Notation. If A is an integral domain then let \bar{A} be the integral closure of A, and if A is of finite rank then let $\mu_{*}(A)=\max \{\mu(I): I$ is an ideal of $A\}$. Let R be a one-dimensional integral domain, let F be the field of fractions of R, and let C be the conductor of R in \bar{R}, i.e. $C=(R: \bar{R})_{R}$. If I is a non-zero ideal of R then $\operatorname{Ass}(I)$ is the set of maximal ideals that contain I.

We have that \bar{R} is an integrally closed one-dimensional domain, and hence \bar{R} is a Dedekind domain. It is well-known that a Dedekind domain is strongly two-generated, and we also know that $\operatorname{Ass}(I)$ is finite for each nonzero ideal I of R since R is Noetherian.

Let C be non-zero which is the same as \bar{R} being a fractional ideal of R, and hence \bar{R} is a finitely generated R-module. By I.S. Cohen [6], Theorem 10 and Corollary $3, R$ is of finite rank, and if $\mu_{*}\left(R_{M}\right) \leq n-1$ for each maximal

[^0]ideal M of R then $\mu_{*}(R) \leq n$ for some integer n. By H. Bass [4], Proposition 1.4, $\mu_{*}(R) \leq \max (2, k)$ if $\mu_{*}\left(R_{M}\right) \leq k$ for each maximal ideal M of R. A specification of these results is that if R is not integrally closed then $\mu_{*}(R)=\mu(C)=\mu\left(C_{M}\right)=\mu_{*}\left(R_{M}\right)$ for some $M \in \operatorname{Ass}(C)$ (Theorem 15). In Proposition 3 is proved that an ideal I of R is strongly $\mu(I)$-generated if and only if $\mu(I)=2$, and $\mu\left(I / I^{2}\right)=1$. Let $M \in \operatorname{Ass}(C)$. Then there is a unique biggest M-primary ideal I such that $\mu(I)=\mu_{*}\left(R_{M}\right)$ (Proposition 16), and hence if M is such that $\mu_{*}\left(R_{M}\right)=\mu_{*}(R)$ then $\mu(I)=\mu_{*}(R)$. In [12], Theorem 21 we have already proved that the set of strong $\mu_{*}(R)$-generators of R is $R \backslash \bigcup_{i \in S}\left(I_{i} M_{i}\right)$ where $\left\{M_{i}\right\}_{i \in S}$ is the set of maximal ideals of R such that $\mu_{*}\left(R_{M_{i}}\right)=\mu_{*}(R)$, and I_{i} is the unique biggest M_{i}-primary ideal of R such that $\mu\left(I_{i}\right)=\mu_{*}(R)$. Let P be the set of proper strong $\mu_{*}(R)$-generators of R. If $\mu_{*}(R)=2$, and $\left\{M_{i}\right\}_{i \in T}$ is the set of maximal ideals of R such that $M_{i} \notin \operatorname{Ass}(C)$, and $M_{i} \bar{R} \neq r \bar{R}$ for any $r \in R$ then $P=\bigcup_{M \in A s s(C)}\left(M \backslash M^{2}\right) \bigcup_{i \in T}$ M_{i} (Theorem 11). If $\mu_{*}(R)>2$ then the set $\left\{M_{i}\right\}_{i \in S}$ of maximal ideals of R such that $\mu_{*}\left(R_{M_{i}}\right)=\mu_{*}(R)$ is finite and contained in $\operatorname{Ass}(C)$. If $S=\{1, \ldots, k\}$ then $P=\bigcup_{i=1}^{k}\left(I_{i} \backslash I_{i} M_{i}\right)$, where I_{i} is the unique biggest $M_{i^{-}}$ primary ideal of R such that $\mu\left(I_{i}\right)=\mu_{*}(R), i=1, \ldots, k$ (Theorem 18). In Section 4 we treat rings strictly between K and $K[X]$ where K is a field. In Proposition 19 we prove that any such ring has non-zero conductor in its integral closure. If R is a ring such that $K\left[X^{k}\right] \subseteq R \subseteq K[X]$ where k is a positive integer, and $R \nsubseteq K\left[X^{l}\right]$ for any $l>1$ then the field of fractions of R is $K(X)$ (Lemma 20), the integral closure of R is $K[X]$, and $\mu_{*}(R) \leq k$ (Proposition 21). For the special case $R=K\left[X^{k}, a X^{l}\right]$ with a in $K\left[X^{k}\right] \backslash K$ and some $k, l \in \mathrm{~N}$ such that $(k, l)=1$ we show that $\mu_{*}(R)=k$, and for each maximal ideal M such that $\mu_{*}\left(R_{M}\right)=k, M^{k-1}$ is the biggest M-primary ideal I such that $\mu(I)=k$ (Proposition 23). Let n_{1}, \ldots, n_{l} be positive integers such that $\left(n_{1}, \ldots, n_{l}\right)=1$, and let N be the least integer such that for any $i \geq 0, N+i$ belongs to the numerical semigroup generated by $\left\{n_{1}, \ldots, n_{l}\right\}$. If the numerical semigroup ring $K\left[X^{n_{1}}, \ldots, X^{n_{l}}\right]$ is contained in R, and R is contained in $K[X]$ then $C=X^{N} K[X]$, and if $M=X K[X] \cap R$ then $\mu_{*}(R)=\min v(M)$ where $v: K(X) \longrightarrow \mathbf{Z}$ is the valuation of $K(X)$ with $K[X]_{(X)}$ as valuation ring (Proposition 24).

2. Preliminaries

Let A be a domain, let I be a non-zero ideal of A, and let $S_{I}=A \backslash \bigcup_{i \in S} M_{i}$ where $\left\{M_{i}\right\}_{i \in S}$ is the set of maximal ideals of A which contain I.

Proposition 1. Let A be a one-dimensional domain, and let I be an ideal of A such that $\mu(I)>2$. Then $\mu\left(I_{M}\right)=\mu\left(S_{I}^{-1} I\right)=\mu(I)$ for some $M \in \operatorname{Ass}(I)$.

Proof. We have $\mu\left(I_{M}\right) \leq \mu(I)$ for each maximal ideal M of A. By [8], Satz 1, $\mu(I) \leq \max \left\{\mu\left(I_{p}\right)+\operatorname{dim} A / p: p \in \operatorname{Spec} A\right\} \leq \max \left\{\mu\left(I_{M}\right), 2: M \in\right.$ $\operatorname{Ass}(I)\} \leq \mu(I)$ whence $\mu(I)=\mu\left(S_{I}^{-1} I\right)=\mu\left(I_{M}\right)$ for some $M \in \operatorname{Ass}(I)$.

Lemma 2. Let A be an integral domain with non-zero conductor C in the integral closure \bar{A} of A. If s is comaximal to $C, a \in \bar{A}$, and $s a \in A$ then $a \in A$.

Proof. We have $s b=1+r$ for some $r \in C$, and some $b \in A$. Then $a s b=a+r a \in A$, and hence $a \in A$.

3. One-dimensional integral domains

Let R be a one-dimensional integral domain with field of fractions F, and let the conductor C of R in \bar{R} be non-zero. If M is a maximal ideal of R then $\overline{R_{M}}=(R \backslash M)^{-1} \bar{R}$ by [2], Proposition 5.12.

Proposition 3. Let I be an ideal of R. Then the following are equivalent:

1) I is strongly $\mu(I)$-generated.
2) $\mu(I)=2$, and $\mu\left(S_{I}^{-1} I\right)=1$.
3) $\mu(I)=2$, and $\mu\left(I / I^{2}\right)=1$.
4) $\mu(I)=2$, and $\mu\left(I_{M}\right)=1$ for each maximal ideal M of R.

Proof. 1) $\Rightarrow 2$) Let I be an ideal of R which is strongly $\mu(I)$-generated. By [1], Theorem $8, \mu\left(S_{I}^{-1} I\right)<\mu(I)$, and hence $\mu(I)=2$ by Proposition 1, and $\mu\left(S_{I}^{-1} I\right)=1$.
2) \Leftrightarrow 3) By [1], Proposition 1, $\mu\left(I / I^{2}\right)=\mu\left(S_{I}^{-1} I\right)$.
$2) \Rightarrow 4$) is obvious.
$4) \Rightarrow 1)$ By [12], Proposition $19, I$ is strongly two-generated.
Lemma 4. Let M be a maximal ideal of R such that $M \notin \operatorname{Ass}(C)$. Then there is a unique maximal ideal N of \bar{R} such that $N \cap R=M$. Moreover $M \bar{R}=N$, and $\overline{R_{M}}=R_{M}$ is a discrete valuation ring (DVR).

Proof. By [14], Ch. 5, §5, Lemma, $R_{M}=\overline{R_{M}}$. By [2], Proposition 9.2, R_{M} is a DVR, and by [2], Proposition 3.11, $M R_{M}=N \overline{R_{M}}$ for some unique maximal ideal N of \bar{R}. Then $N \cap R=M$, and by [2], Proposition 1.14, $M \bar{R}$ is N-primary. Since \bar{R} is a Dedekind domain $M \bar{R}=N^{l}$ for some $l \in \mathrm{~N}$. But $N \overline{R_{M}}=M R_{M}=M \overline{R_{M}}=N^{l} \overline{R_{M}}$, and hence $l=1$.

Corollary 5. Let I be an ideal of R such that $\mu(I)>2$. Then $\mu\left(I_{M}\right)=\mu(I)$ for some $M \in \operatorname{Ass}(C)$.

Proof. The result follows from Proposition 1 and the previous lemma.
If $R \neq \bar{R}, \mu(I)=2$, and I is not comaximal to C then we see in the fol-
lowing example that $\mu\left(S_{I}^{-1} I\right)$ is not in general equal to $\mu(I)$, and $\mu\left(I_{M}\right)$ can be less than $\mu(I)$ for each $M \in \operatorname{Ass}(C)$ whence I is strongly $\mu(I)$-generated by Proposition 3.

Example. Let $\quad R=K\left[X^{2}, X^{3}\left(1+X^{2}\right)\right]$, let $\quad M_{1}=\left(X^{2}, X^{3}\left(1+X^{2}\right)\right)$, $M_{2}=\left(1+X^{2}, X^{3}\left(1+X^{2}\right)\right)$, and let $I=\left(X^{3}\left(1+X^{2}\right),\left(1+X^{2}\right)^{2}\right)$. Then $\mu(I)=2, C=X^{2}\left(1+X^{2}\right)(1, X)$ (see Proposition 22), $\operatorname{Ass}(C)=\left\{M_{1}, M_{2}\right\}$, and I is M_{2}-primary. Hence $I_{M_{1}}=R_{M_{1}}$, and $S_{I}^{-1} I=I_{M_{2}}$. Since $\left(1+X^{2}\right)^{2}=\left(X^{3}\left(1+X^{2}\right)\right)^{2} / X^{6}$ we have $\mu\left(I_{M_{2}}\right)=1$.
E.D. Davis and A.V. Geramita have proved in [7], Theorem 1 that $\mu(M)=\mu\left(M_{M}\right)$ if R_{M} is not regular, i.e. if R_{M} is not a DVR.

Lemma 6. Suppose $R \neq \bar{R}$. If $M \in \operatorname{Ass}(C)$ then $\mu(M)=\mu\left(M_{M}\right) \geq 2$, and M is not strongly $\mu(M)$-generated. Moreover $\mu_{*}(R)=2$ if and only if $\mu_{*}\left(R_{M}\right)=2$ for each $M \in \operatorname{Ass}(C)$.

Proof. Suppose $M \in \operatorname{Ass}(C)$. If M is principal then M_{M} is principal, and by [2], Proposition $9.2, R_{M}$ is integrally closed. By [14], Ch. 5, §5, Lemma, $C \nsubseteq M$ which is a contradiction. Thus $\mu(M) \geq \mu\left(M_{M}\right) \geq 2$. By Proposition 1, $\mu(M)=\mu\left(M_{M}\right)$, and by Proposition 3, M is not strongly $\mu(M)$-generated. The last statement is true since $2 \leq \mu_{*}\left(R_{M}\right) \leq \mu_{*}(R)$.

Lemma 7. Let I be an ideal of R which is comaximal to C. Then I is a product of maximal ideals.

Proof. By [2], Proposition 9.1, $I=\prod_{i=1}^{l} q_{i}$ where q_{i} is M_{i}-primary for $i=1, \ldots, l$, and $M_{i} \neq M_{j}$ if $i \neq j$. By Lemma 4, $R_{M_{i}}$ is a DVR, and by [2], Proposition 9.2, $q_{i M_{i}}=M_{M_{M_{i}}}^{k_{i}}$ for some $k_{i} \in \mathrm{~N}, i=1, \ldots, l$. By [2], Propositions 3.11 and $4.8, q_{i}=M_{i}^{k_{i}}, i=1, \ldots, l$.

Lemma 8. Let I be an ideal of R which is comaximal to C. Then $I=I \bar{R} \cap R$.
Proof. By Lemma 7, I $\bar{R} \cap R=\left(\prod_{i=1}^{l} M_{i}^{k_{i}}\right) \bar{R} \cap R=\left(\prod_{i=1}^{l}\left(M_{i} \bar{R}\right)^{k_{i}}\right) \cap R$. By Lemma 4, $I \bar{R} \cap R=\bigcap_{i=1}^{l}\left(M_{i} \bar{R}\right)^{k_{i}} \cap R \subseteq \bigcap_{i=1}^{l}\left(\left(M_{i} R_{M_{i}}\right)^{k_{i}} \cap R\right)$ and by [2], Proposition 3.11 and $4.8, I \bar{R} \cap R \subseteq \bigcap_{i=1}^{l} M_{i}^{k_{i}}=I$. Hence $I \bar{R} \cap R=I$.

Proposition 9. Let I be an ideal of R which is comaximal to C. Then I is strongly two-generated.

Proof. If $M \in \operatorname{Ass}(C)$ then $I_{M}=R_{M}$, and if $M \notin \operatorname{Ass}(C)$ then by Lemma 4, R_{M} is a DVR. Hence I_{M} is principal for each maximal ideal M of R, and by [12], Proposition 19, I is strongly two-generated.

Lemma 10. Let I be an ideal of R which is comaximal to C. Then I is principal if and only if there is $r \in R$ such that $I \bar{R}=r \bar{R}$.

Proof. \Rightarrow) Suppose I is principal. Then $I=(r)$ for some $r \in R$. Hence $I \bar{R}=r \bar{R}$.
$\Leftarrow)$ Assume there is $r \in R$ such that $I \bar{R}=r \bar{R}$. By Proposition 9, $I=(s, t)$ for some $s, t \in R$, and $(s, t) \bar{R}=r \bar{R}$. Hence $s=u r$ and $t=v r$ for some $u, v \in \bar{R}$. Since $r \bar{R} \nsubseteq M \bar{R}$ for any $M \in \operatorname{Ass}(C)$ we have that r is comaximal to C, and by Lemma $2, u, v \in R$, and thus (u, v) is comaximal to C. By Lemma $8,(u, v)=(u, v) \bar{R} \cap R=R$, and thus I is principal.

Theorem 11. Let R be a one-dimensional domain with non-zero conductor C in the integral closure \bar{R} of R. Let $\mu_{*}(R)=2$, and let $\left\{M_{i}\right\}_{i \in S}$ be the maximal ideals of R such that $M_{i} \notin \operatorname{Ass}(C)$, and $M_{i} \bar{R} \neq r \bar{R}$ for any $r \in R$ and $i \in S$. Then the set of proper strong two-generators of R is $\bigcup_{M \in \operatorname{Ass}(C)}\left(M \backslash M^{2}\right) \bigcup_{i \in S} M_{i}$.

Proof. Let I be an ideal of R such that $\mu(I)=2$. If I is not comaximal to C then $I \subseteq M$ for some $M \in \operatorname{Ass}(C), R \neq \bar{R}$ and $\mu(M)=\mu\left(M_{M}\right)=2$ by Lemma 6. If I is comaximal to C then I is a product of maximal ideals by Lemma 7, and hence there is a non-principal maximal ideal M which contains I and is comaximal to C. By Lemma $10, M \in\left\{M_{i}\right\}_{i \in S}$. By [12], Theorem 21 the set of proper strong two-generators of R is $\bigcup_{M \in \operatorname{Ass}(C)}\left(M \backslash M^{2}\right) \bigcup_{i \in S} M_{i}$.

Definition. Let (A, M) be a one-dimensional local Noetherian domain, let I be an ideal of A, and let $\ell(B)$ be the length of a finitely generated A module B. Then C. Gottlieb [9] calls I a maximally generated ideal if $\mu(I)=\min \{\ell(A /(a)): a \in M\}$ or equivalently $M I=a I$ for some $a \in M$, and then $\mu(I)=\mu_{*}(A)$. An element a of M is superficial if there exists a positive integer c such that $\left(M^{l}: a\right) \cap M^{c}=M^{l-1}$ for any sufficiently large integer l cf. [14], p. 285.

Remark 12. If (A, M) is a one-dimensional local Noetherian domain then A is Cohen-Macaulay. Suppose a is a superficial element of M. By definition $a^{-1} M^{l} \cap M^{c}=M^{l-1}$, and thus $a M^{l-1}=a\left(a^{-1} M^{l} \cap M^{c}\right)=M^{l} \cap a M^{c}$. Since a is M-primary, $M^{c+i} \subseteq a M^{c}$ for some positive integers c, i, and hence $a M^{k}=M^{k+1}$ for each integer k which is large enough. Then M^{k} is a maximally generated ideal, and $\min \{\ell(A /(b)): b \in M\}=\ell(A /(a))=\mu\left(M^{k}\right)=$ $\mu_{*}(A)$. By [10], Theorems 14.13 and 17.11, $e(A)=e(M, A)=e((a), A)=$ $\ell(A /(a))=\mu\left(M^{k}\right)$ where $e(A)$ is the multiplicity of A. If A has infinite residue field then A has a superficial element by [14], p. 287.

Lemma 13. Let (A, M) be a one-dimensional local domain with a superficial element s. Let \bar{A} be the integral closure of A, and let C be the non-zero conductor of A in \bar{A}. Then C is a maximally generated ideal of A.

Proof. By Remark 12, $s M^{k}=M^{k+1}$ for some $k \in \mathrm{~N}$, and hence
$s \bar{A}(M \bar{A})^{k}=s M^{k} \bar{A}=M^{k+1} \bar{A}=(M \bar{A})^{k+1}$. Because of unique factorization of an ideal in \bar{A} as a product of prime ideals we have $s \bar{A}=M \bar{A}$. Since C is an ideal of \bar{A} we have $M C=M C \bar{A}=s C \bar{A}=s C$, and C is maximally generated by definition.

Notation. If M is a maximal ideal of R then let $R_{M}(u)=R[u]_{M[u]}$.
Remark 14. Since $R_{M}(u)$ is CM and has infinite residue field, $R_{M}(u)$ has a superficial element and a maximally generated ideal by Remark 12. If I is an ideal of R then $\mu\left(I R_{M}(u)\right)=\ell_{R_{M}(u)}\left(\operatorname{IR}_{M}(u) / I M R_{M}(u)\right)=\ell_{R_{M}}\left(I_{M} / I_{M} M_{M}\right)=$ $\mu\left(I_{M}\right)$, and since any ideal of $R_{M}(u)$ is an extended ideal of R_{M}, $\mu_{*}\left(R_{M}(u)\right)=\mu_{*}\left(R_{M}\right)$. By [10], Theorem $12.4, \overline{R_{M}}[u]$ is integrally closed, and hence $\overline{R_{M}}(u)$ is also. The integral closure of $R_{M}[u]$ in $F[u]$ is $\overline{R_{M}}[u]$ by [2], Ch. 5, Exercise 9, and thus $\overline{R_{M}[u]}=\overline{R_{M}}[u]$, and by [2], Proposition 5.12, $\overline{R_{M}(u)}=(R[u] \backslash M R[u])^{-1} \overline{R_{M}}[u]$.

Theorem 15. Let R be a one-dimensional domain with non-zero conductor C in the integral closure \bar{R} of R, and let $R \neq \bar{R}$. Then $\mu_{*}(R)=\mu(C)=$ $\mu\left(C_{M}\right)=\mu_{*}\left(R_{M}\right)$ for some $M \in \operatorname{Ass}(C)$. If moreover \bar{R} is a principal ideal domain (PID) then $\mu_{*}(R)=\mu(\bar{R})$ where \bar{R} is considered as a fractional ideal of R.

Proof. Let $M \in \operatorname{Ass}(C)$. By [14], Ch. 5, $\S 5$, Lemma, C_{M} is the conductor of R_{M} in $\overline{R_{M}}$. Obviously $C R_{M}[u]$ is contained in the conductor of $R_{M}[u]$ in $\overline{R_{M}[u]}$. If $b \notin C R_{M}[u]$ then there is $a \in \overline{R_{M}}$ such that $a b \notin R_{M}[u]$. Hence $C R_{M}[u]$ is the conductor of $R_{M}[u]$ in $\overline{R_{M}[u]}$, and by [14], Ch. 5, $\S 5$, Lemma, the conductor of $R_{M}(u)$ in $\overline{R_{M}(u)}$ is $C R_{M}(u)$. By Remark 14 there is a superficial element s in $R_{M}(u)$, and by Lemma 13, $C R_{M}(u)$ is a maximally generated ideal of $R_{M}(u)$. By Remark $14, \mu(C) \geq \mu\left(C_{M}\right)=\mu\left(C R_{M}(u)\right)=$ $\mu_{*}\left(R_{M}(u)\right)=\mu_{*}\left(R_{M}\right)$. Let I be an ideal of R such that $\mu(I)=\mu_{*}(R)>2$. By Corollary 5, $\mu(I)=\mu\left(I_{M^{\prime}}\right)$ for some $M^{\prime} \in \operatorname{Ass}(C)$, and hence $\mu_{*}(R)=$ $\mu_{*}\left(R_{M^{\prime}}\right)$ for some $M^{\prime \prime} \in \operatorname{Ass}(C)$. If $\mu_{*}(R)=2$ then $\mu_{*}\left(R_{M^{\prime}}\right)=2$ for any $M^{\prime} \in \operatorname{Ass}(C)$ by Lemma 6. Let M be such that $\mu_{*}\left(R_{M}\right)=\mu_{*}(R)$. Then $\mu(C)=\mu\left(C_{M}\right)=\mu_{*}\left(R_{M}\right)=\mu_{*}(R)$. If \bar{R} is a PID then $C=c \bar{R}$ for some $c \in R$, and hence $\mu(C)=\mu(\bar{R})$ if \bar{R} is considered as a fractional ideal of R.

Proposition 16. Let $R \neq \bar{R}$ and $M \in \operatorname{Ass}(C)$. Then there is a unique biggest M-primary ideal I of R such that $\mu(I)=\mu_{*}\left(R_{M}\right)$.

Proof. Let $\mu_{*}(R)>2$, and let I_{M} and J_{M} be maximal among ideals of R_{M} such that $\mu\left(I_{M}\right)=\mu\left(J_{M}\right)=\mu_{*}\left(R_{M}\right) . \quad$ By Remark $14, \quad \mu\left(I R_{M}(u)\right)=$ $\mu\left(J R_{M}(u)\right)=\mu_{*}\left(R_{M}(u)\right)$, and $I R_{M}(u)$ and $J R_{M}(u)$ are maximally generated ideals of $R_{M}(u)$. By [9], Lemma 4, $\mu\left(I R_{M}(u)+J R_{M}(u)\right)=\mu_{*}\left(R_{M}(u)\right)$, and by Remark 14, $\mu\left(I_{M}+J_{M}\right)=\mu_{*}\left(R_{M}\right)$ whence $I_{M}=J_{M}$, and I_{M} is the unique
biggest ideal of R_{M} such that $\mu\left(I_{M}\right)=\mu_{*}\left(R_{M}\right)$. Let I be the ideal of R such that $I=I_{M} \cap R$. Then I is M-primary, and $S_{I}^{-1} I=I_{M}$. By Lemma 6, $\mu(I) \geq \mu\left(I_{M}\right)=\mu_{*}\left(R_{M}\right) \geq 2$, and by Proposition $1, \mu(I)=\mu\left(I_{M}\right)=\mu_{*}\left(R_{M}\right)$. Let q be an M-primary ideal of R such that $\mu(q)=\mu_{*}\left(R_{M}\right)$. If $\mu_{*}\left(R_{M}\right)=2$ then $\mu\left(M_{M}\right)=2$ by Lemma 6 , and $q \subseteq M=I$. If $\mu_{*}\left(R_{M}\right)>2$ then $\mu\left(q_{M}\right)=\mu(q)$ by Proposition 1, and hence $q_{M} \subseteq I_{M}$, whence $q \subseteq I$. If $\mu_{*}(R)=2$ then $\mu(M)=\mu_{*}\left(R_{M}\right)$ by Lemma 6.

Remark 17. Let $R \neq \bar{R}$ and $M \in \operatorname{Ass}(C)$. If $\left(\overline{R_{M}}, m\right)$ is local, and $\overline{R_{M}} / m \simeq$ R_{M} / M_{M} then let I be the biggest maximally generated ideal of $R_{M}(u), s$ a superficial element of $R_{M}(u)$, and J a fractional ideal of $R_{M}(u)$ which fulfils $M_{M}(u)=(s)+s J$ and such that $J \subseteq \overline{R_{M}(u)}$. Then by [3], Corollary 4, $I=\left(\ldots\left((C: J)_{R_{M}(u)}: J\right)_{R_{M}(u)} \ldots: J\right)_{R_{M}(u)}$, and $I^{\prime}=I \cap R$ is the biggest M primary ideal of R such that $\mu\left(I^{\prime}\right)=\mu_{*}\left(R_{M}\right)$. If there is a superficial element in R_{M}, and $\left(\overline{R_{M}}, m\right)$ is as above then the biggest maximally generated ideal of R_{M} can be determined by [3], Corollary 4.

Theorem 18. Let R be a one-dimensional domain with non-zero conductor C in the integral closure \bar{R} of R. Let $\mu_{*}(R)>2$, let $\left\{M_{i}\right\}_{i=1}^{k}$ be the set of maximal ideals of R such that $\mu_{*}\left(R_{M_{i}}\right)=\mu_{*}(R)$. Then there is a unique biggest M_{i}-primary ideal I_{i} of R such that $\mu\left(I_{i}\right)=\mu_{*}(R), i=1, \ldots, k,\left\{M_{i}\right\}_{i=1}^{k} \subseteq \operatorname{Ass}(C)$, and the set of proper strong $\mu_{*}(R)$-generators of R is $\bigcup_{i=1}^{k}\left(I_{i} \backslash I_{i} M_{i}\right)$.

Proof. Since $\mu_{*}(R)>2$ we have $R \neq \bar{R}$. By Theorem $15, R$ has finite rank. By Lemma $4, M_{i} \in \operatorname{Ass}(C), i=1, \ldots, k$. By Proposition 16 there is a unique biggest M_{i}-primary ideal I_{i} of R such that $\mu\left(I_{i}\right)=\mu_{*}\left(R_{M_{i}}\right)=\mu_{*}(R)$, $i=1, \ldots, k$. Let I be an ideal of R such that $\mu(I)=\mu_{*}(R)$. By Corollary 5, $\mu\left(I_{M_{i}}\right)=\mu_{*}(R)$, and $I_{M_{i}} \cap R$ is M_{i}-primary for some $i \in\{1, \ldots, k\}$. Since $\mu\left(I_{M_{i}} \cap R\right) \geq \mu\left(\left(I_{M_{i}} \cap R\right)_{M_{i}}\right)=\mu\left(I_{M_{i}}\right)=\mu_{*}(R)$ we have $I_{i} \supseteq I_{M_{i}} \cap R \supseteq I$. By [12], Theorem 21, the set of proper strong $\mu_{*}(R)$-generators is $\bigcup_{i=1}^{k}\left(I_{i} \backslash I_{i} M_{i}\right)$.

4. Integral domains contained in $K[X]$

Let K be a field, and let R be a subring of $K[X]$ which strictly contains K. Then $K[X]$ is integral over R, and hence R is a one-dimensional domain. By the next proposition R has non-zero conductor in its integral closure.

Notation. Let $v: K(X) \longrightarrow \mathbf{Z}$ be the valuation of $K(X)$ with $K[X]_{(X)}$ as the valuation ring.

From Lemma 20 on, the special case when $X^{k} \in R$ for some positive integer k is treated, and in Proposition $24, X^{l} \in R$ for each sufficiently large integer l, i.e. R contains the semigroup ring $K\left[X^{n_{1}}, \ldots, X^{n_{t}}\right]$ for some positive
integers n_{1}, \ldots, n_{t} such that $\left(n_{1}, \ldots, n_{t}\right)=1$. In that case we show that $\mu_{*}(R)=\min v(M)$ where $M=X K[X] \cap R$, and the conductor of R in $K[X]$ is equal to $X^{N} K[X]$ where N is the least integer such that $X^{N+i} \in R, i=0,1, \ldots$ The notation of Section 3 are used throughout this section.

Proposition 19. Let K be a field, let R be a subring of $K[X]$ which strictly contains K, and let F be the field of fractions of R. Then the conductor C of R in its integral closure \bar{R} is non-zero, and $\bar{R}=F \cap K[X]$.

Proof. Since X is integral over $R, R[X]=K[X]$ is a finitely generated R module, and hence $K[X]$ is a Noetherian R-module. By [2], Proposition 7.8, R is Noetherian. Since $K[X]$ is integrally closed, and $F \subseteq K(X)$ we have that $\bar{R} \subseteq K[X]$. Therefore $\bar{R}=F \cap K[X]$ is a finitely generated R-module, and hence $C \neq 0$.

Lemma 20. Let K be a field, and let k be a positive integer. If R is such that $K\left[X^{k}\right] \subseteq R \subseteq K[X]$, and $R \nsubseteq K\left[X^{l}\right]$ for any $l>1$ then $F=K(X)$.

Proof. We have that $K(X)$ contains F, and F strictly contains $K\left(X^{k}\right)$. The minimum polynomial of X over $K\left(X^{k}\right)$ is $t^{k}-X^{k}$. By [13], Theorem 3.2 the minimum polynomial m of X over F divides $t^{k}-X^{k}$ in F. By [13], Theorem 4.2 and Proposition 4.3 the degree of m is less than k. Let r be the degree of m, and let G be a splitting field of m. Then the zeros of m in G are $g_{1} X, \ldots, g_{r} X$ for some non-zero $g_{1}, \ldots, g_{r} \in G$, and hence the constant term of m is $(-1)^{r} \prod_{i=1}^{r} g_{i} X^{r}$ where $\prod_{i=1}^{r} g_{i}$ is non-zero. Then $K\left(X^{r}\right) \subseteq F$, and by induction $K(X) \subseteq F$.

Proposition 21. Let K be any field, let k be a positive integer, and let R be a ring such that $K\left[X^{k}\right] \subseteq R \subseteq K[X], X^{l} \notin R$ if $l<k$, and $R \nsubseteq K\left[X^{l}\right]$ for any $l>1$.

1) Then the integral closure of R is $K[X]$, and $\mu_{*}(R)=\mu(K[X]) \leq k$ where $K[X]$ is considered as a fractional ideal of R.
2) If $\sum_{i=1}^{k-1} a_{i} X^{i} \in R$ for some $a_{i} \in K\left[X^{k}\right], i=1, \ldots, k-1$, and $a_{j} \in K \backslash\{0\}$ for some $j \in\{1, \ldots, k-1\}$ then $\mu_{*}(R)<k$.

Proof. 1) By Proposition 19 and Lemma 20, $K[X]$ is the integral closure of R. As $K[X]=\left(1, X, \ldots, X^{k-1}\right) R$ we have that $\mu(K[X]) \leq k$. By Theorem $15, \mu_{*}(R)=\mu(K[X])$.
2) We have $K[X]=\left(1, X, \ldots, X^{k-1}\right) R$, and by assumption $X^{j} \in(1, X, \ldots$, $\left.X^{j-1}, X^{j+1}, \ldots, X^{k-1}\right) R$. Hence $\mu(K[X])<k$, and by 1) $\mu_{*}(R)<k$.

Proposition 22. Let $R=K\left[X^{k}, a X^{l}\right]$ for some positive integers k, l and some $a \in K\left[X^{k}\right] \backslash X^{k} K\left[X^{k}\right]$ such that $k>1,(k, l)=1$ and $X^{l} \notin R$ if $l<k$. Then

1) $C=X^{(k-1)(l-1)} a^{k-1} K[X]$, and
2) C_{M} is a maximally generated ideal of R_{M} for each $M \in \operatorname{Ass}(C)$.

Proof. 1) Let $f=X^{(k-1)(l-1)} a^{k-1}$. By Proposition $21, \bar{R}=K[X]$. We will show that $f K[X] \subseteq R$. Since $K[X]=\left(1, X, \ldots, X^{k-1}\right) R$ it is enough to show that $f X^{i} \in R$ if $i \in\{0, \ldots, k-1\}$. Let $i \in\{0, \ldots, k-1\}$. As $(k, l)=1$ there is $\mu, \nu \in \mathbf{Z}$ such that $f X^{i}=X^{(k-1)(l-1)+i} a^{k-1}=X^{k \nu+l \mu} a^{k-1}$. Since $\mu=t k+j$ for some $j \in\{0, \ldots, k-1\}$, and $t \in \mathbf{Z}$ we have $k \nu+l \mu=k(\nu+l t)+l j$, and therefore we can assume that $0 \leq \mu \leq k-1$. Then $(k-1)(l-1)+i=$ $k \nu+l \mu$, and $(k-1-\mu) l+i+1=k \nu+k$. Thus $1 \leq k \nu+k$, and hence $0 \leq \nu$ whence $f X^{i} \in R$, and $f K[X] \subseteq R$. If $c \in R$ is such that $C=c K[X]$ then c divides f in $K[X]$. We have $i=k-1$ if and only if $(k-1-\mu) l=k \nu$, i.e. if and only if $\nu=0$ and $\mu=k-1$. Hence a^{k-1} divides c. If $(k-1) \times$ $(l-1)-1=k \nu+l \mu$ then $(k-1-\mu) l=k(\nu+1)$ which is impossible. Hence $f X^{-1} \notin C$, and thus $c=f$.
2) If $\quad M=X K[X] \cap R \quad$ then $\quad M_{M}=\left(X^{k}, X^{l}\right), \quad$ and $\quad C_{M}=X^{(k-1)(l-1)}$. $\left(1, X, \ldots, X^{\min \{k, l\}}\right)$. Thus $X^{\min \{k, l\}} C_{M}=M_{M} C_{M}$. If $M \in \operatorname{Ass}(C)$, and $a \in M$ then $M=\left(b, a X^{l}\right)$ for some $b \in K\left[X^{k}\right]$ such that b divides a in $K\left[X^{k}\right]$, and $C_{M}=a^{k-1}\left(1, X, \ldots, X^{k-1}\right)$. Hence $b C_{M}=M_{M} C_{M}$, and C_{M} is maximally generated for each $M \in \operatorname{Ass}(C)$.

Proposition 23. Let $R=K\left[X^{k}, a X^{l}\right]$ for some positive integers k, l and some $a \in K\left[X^{k}\right] \backslash X^{k} K\left[X^{k}\right]$ such that $k>1,(k, l)=1$, and $X^{l} \notin R$ if $l<k$. Let $\operatorname{Ass}(C)=\left\{M_{i}\right\}_{i=1}^{t}$, and let $M_{1}=X K[X] \cap R$.

1) Then $\mu\left(C_{M_{1}}\right)=\min \{k, l\}$, and if $a \notin K$ then $\mu\left(C_{M_{i}}\right)=\mu_{*}(R)=k$, for $i=2, \ldots, t$.
2) Let I_{i} be the unique biggest M_{i}-primary ideal of R such that $\mu\left(I_{i}\right)=\mu_{*}\left(R_{M_{i}}\right), i=1, \ldots, t$. Then $I_{i}=M_{i}^{\mu\left(C_{M_{i}}\right)-1}, i=1, \ldots, t$.

Proof. 1) Suppose $a \notin K$, let $i \in\{2, \ldots, t\}$ and let $S=R \backslash M_{i}$, where $M_{i}=\left(b, a X^{l}\right)$ for some $b \in K\left[X^{k}\right]$ such that b divides a in $K\left[X^{k}\right]$. By Proposition 22, $C_{M_{i}}=a^{k-1}\left(1, X, \ldots, X^{k-1}\right)$, and if $\mu\left(C_{M_{i}}\right)<k$ then $a^{k-1} X^{j}=$ $a^{k-1} \sum_{\nu=1, \nu \neq j}^{k-1} \frac{r_{\nu}}{s_{\nu}} X^{\nu}$ for some $j \in\{1, \ldots, k-1\}, r_{\nu} \in R$ and $s_{\nu} \in S$, such that $r_{\nu}=1$ or b divides $r_{\nu}, \nu=1, \ldots, j-1, j+1, \ldots, k-1$. Let $s=\prod_{\nu=1, \nu j}^{k-1} s_{\nu}$. Then $s\left(X^{j}-\sum_{\nu, r_{\nu}=1} \frac{X^{\nu}}{s_{\nu}}\right)=s\left(\sum_{\nu, r_{\nu} \neq 1} \frac{r_{\nu}}{s_{\nu}} X^{\nu}\right)$, and b divides the right side but not the left one which is impossible. Thus $\mu\left(C_{M_{i}}\right)=k$, and by Proposition 21, $\mu_{*}(R)=k$. Since $M_{1 M_{1}}=\left(X^{k}, X^{l}\right)$, and $C_{M_{1}}=X^{(k-1)(l-1)}\left(1, X, \ldots, X^{\min \{k, l\}}\right)$ we have $\mu\left(C_{M_{1}}\right)=\min \{k, l\}$.
2) We have that the embedding dimension emdim $R_{M_{i}}=\ell\left(M_{i M_{i}} / M_{i_{M_{i}}}^{2}\right)=2$, $i=1, \ldots, t$, and by [3], Theorem $1, I_{i M_{i}}$ is the conductor of $R_{M_{i}}$ in its blowing up ring at $M_{i M_{i}}$. By [11], Proposition 1.8, $I_{i M_{i}}=M_{i_{M_{i}}}^{e\left(R_{M_{i}}\right)-1}$, and by [2], Proposition 4.8, $I_{i}=M_{i}^{e\left(R_{M_{i}}\right)-1}, i=1, \ldots, t$ where $e\left(R_{M_{i}}\right)$ is the multiplicity of
$R_{M_{i}}$. By Proposition 22, $C_{M_{i}}$ is maximally generated, and by definition and Remark 12, $e\left(R_{M_{i}}\right)=\mu\left(C_{M_{i}}\right), i=1, \ldots, t$.

By Proposition 23 and Theorems 11 and 18 the set of proper strong $\mu_{*}(R)$ generators of R is completely determined when $R=K\left[X^{k}, a X^{l}\right]$.

Let B be a primitive numerical semigroup generated by some positive integers n_{1}, \ldots, n_{l}. Then $\left(n_{1}, \ldots, n_{l}\right)=1$, and there is a least integer $g(B)$ such that $g(B)+i \in B$ for $i=1,2, \ldots$ The integer $g(B)$ is called the Frobenius number of B.

Proposition 24. Let n_{1}, \ldots, n_{t} be positive integers such that $\left(n_{1}, \ldots, n_{t}\right)=1$, and let $K[X ; B]=K\left[X^{n_{1}}, \ldots, X^{n_{t}}\right]$. Let R be a ring such that $K[X ; B] \subseteq R \subseteq$ $K[X]$ where B is maximal such that $K[X ; B] \subseteq R$. Let $N=g(B)+1$, and $M=X K[X] \cap R$. Then

1) $C=X^{N} K[X]$,
2) $\mu_{*}(R)=\min v(M)$, and if $\min v(M)=1$ then $R=K[X]$.

Proof. 1) By Proposition 21, $\bar{R}=K[X]$. As $X^{N} K[X] \subseteq C$, and $X^{N-1} \notin R$ we have $C=X^{N} K[X]$.
2) Let $\min v(M)=l$, and let f be a polynomial in M such that $v(f)=l$. Let $m \in \mathrm{~N}$ be minimal such that $X^{m} K[X] \subseteq\left(X^{N}, \ldots, X^{N+l-1}\right) R$. If $m>N$ then let $i \in\{0, \ldots, l-1\}$ and $j \geq 0$ be such that $N+j l+i=m-1$. Hence $X^{N+i} f^{j}$ and $X^{N+i}\left(f^{j}-a X^{j l}\right)$ belong to $\left(X^{N}, \ldots, X^{N+l-1}\right)$ for some $a \in K$ such that $f^{j}-a X^{j l}=0$ or $v\left(f^{j}-a X^{j l}\right)>j l$. Thus $X^{N+i+j l}=X^{m-1} \in\left(X^{N}, \ldots\right.$, X^{N+l-1}) which is a contradiction. Hence $m=N$, and $\mu(C) \leq l$. Since $C_{M} / M C_{M}=\left(\bar{X}^{N}, \bar{X}^{N+1}, \ldots, \bar{X}^{N+l-1}\right)$ where \bar{X} is the image of X in $R_{M} / M R_{M}$, and $\bar{X}^{N}, \bar{X}^{N+1}, \ldots, \bar{X}^{N+l-1}$ are linearly independent in the $R_{M} / M R_{M}$-vector space we have $\mu(C)=\mu\left(C_{M}\right)=l$. By Theorem 15, $\mu_{*}(R)=l$. If $\min v(M)=1$ then R is a PID, and hence integrally closed. Thus $R=K[X]$.

Remark 25. By Proposition 24, C is primary for $M=X K[X] \cap R$, and by Theorem 15, $\mu_{*}\left(R_{M}\right)=\mu_{*}(R)$. We have $K[X]_{M} / X K[X]_{M} \simeq R_{M} / M_{M}$, and $K[X]_{M}$ is local. By Remarks 12 and 17 the biggest M-primary ideal I such that $\mu(I)=\mu_{*}(R)$ can be determined, and by Theorems 11 and 18 the set of proper strong $\mu_{*}(R)$-generators in R is determined. If moreover K is infinite then R_{M} / M_{M} is infinite, and by Remark 12 there is a superficial element in R_{M}.

Acknowdgements. I am grateful to my supervisors R. Fröberg, C. Gottlieb and C. Löfwall for their advice and comments during the work with this paper.

REFERENCES

1. D.D. Anderson and L.A. Mahaney, Generating sets for ideals, Comment. Math. Univ. St. Paul. 37 (2) (1988), 173-177.
2. M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969.
3. V. Barucci and K. Pettersson, On the biggest maximally generated ideal as the conductor in the blowing up ring, Manuscripta Math. 88 (1995), 457-466.
4. H. Bass, Torsion free and projective modules, Trans. Amer. Math. Soc. 102 (1962), 319-327.
5. S.T. Chapman and N.H. Vaughan, A theorem on generating ideals in certain semigroup rings, Boll. Un. Mat. Ital. A. 7 (1991), 41-49.
6. I.S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950), 27-42.
7. E.D. Davis and A.V. Geramita, Efficient generation of maximal ideals in polynomial rings, Trans. Amer. Math. Soc. 231 (1977), 497-505.
8. O. Forster, Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring, Math. Z. 84 (1964), 80-87.
9. C. Gottlieb, On generators of ideals in one-dimensional local rings, Comm. Algebra 21 (2) (1993), 421-425.
10. H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, 1992.
11. F. Orecchia and I. Ramella, The conductor of one-dimensional Gorenstein rings in their blowing up, Manuscripta Math. 68 (1990), 1-7.
12. K. Pettersson, Strong n-generators in some one-dimensional domains, Comm. Algebra 22 (8) (1994), 2941-2953.
13. I. Stewart, Galois Theory, Chapman and Hall, 1973.
14. O. Zariski and P. Samuel, Commutative Algebra Vol. 2, Springer, 1976.

[^0]: Received March 5, 1997.

