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STRONG n-GENERATORS AND THE RANK OF SOME
NOETHERIAN ONE-DIMENSIONAL
INTEGRAL DOMAINS

KERSTIN PETTERSSON

1. Introduction

Throughout this paper any ring is a commutative Noetherian ring with
identity. If 4 is a ring, / and J are ideals of 4 such that / D J, and S is a
multiplicative set of 4 then let u(I), u(I1/J), and u(S~'1) respectively be the
minimal number of generators of 1, I/J, and S—'I respectively as an 4, A /J,
or S~'4-module respectively.

DEFINITION. Let 4 be a ring and n a positive integer. An ideal [ of 4 is n-
generated if p(I) < n, and if p(I) < n for each ideal I of A then I.S. Cohen
[6] says that A is of finite rank n. S.T. Chapman and N.H. Vaughan [5] call a
non-zero element a in A a strong n-generator if a can be chosen as the first of
n generators of each ideal in which it is contained, and if moreover a is
contained in some ideal 7 such that u(/) = n then we introduce the concept
proper strong n-generator for a. An ideal I of 4 is strongly n-generated if I is
n-generated and u(I/(a)) < n for each non-zero element a of 1.

NOTATION. If 4 is an integral domain then let A be the integral closure of
A, and if A is of finite rank then let u.(4) = max{u(l) : I is an ideal of 4}.
Let R be a one-dimensional integral domain, let F be the field of fractions of
R, and let C be the conductor of Rin R, i.e. C = (R: R)z. If I is a non-zero
ideal of R then Ass(]) is the set of maximal ideals that contain 7.

We have that R is an integrally closed one-dimensional domain, and hence
R is a Dedekind domain. It is well-known that a Dedekind domain is
strongly two-generated, and we also know that Ass([) is finite for each non-
zero ideal I of R since R is Noetherian.

Let C be non-zero which is the same as R being a fractional ideal of R,
and hence R is a finitely generated R-module. By I.S. Cohen [6], Theorem 10
and Corollary 3, R is of finite rank, and if p.(Ry) <n — 1 for each maximal
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ideal M of R then pu.(R) <n for some integer n. By H. Bass [4],
Proposition 1.4, 11, (R) < max(2,k) if . (Ry) < k for each maximal ideal M
of R. A specification of these results is that if R is not integrally closed then
wi(R) = u(C) = u(Cuyr) = pe(Ryps) for some M €Ass(C) (Theorem 15). In
Proposition 3 is proved that an ideal I of R is strongly p(/)-generated if and
only if p(I) =2, and u(I/1?) = 1. Let M €Ass(C). Then there is a unique
biggest M-primary ideal / such that u(I) = p.(Ry) (Proposition 16), and
hence if M is such that p.(Ry) = p(R) then u(I) = py(R). In [12], Theorem
21 we have already proved that the set of strong p.(R)-generators of R is
R\ U,es(IiM;) where {M;}, ¢ is the set of maximal ideals of R such that
w«(Ryr,) = pe(R), and I; is the unique biggest M;-primary ideal of R such
that u(l;) = p.(R). Let P be the set of proper strong pu.(R)-generators of R.
If p.(R)=2, and {M;},., is the set of maximal ideals of R such that
M;¢ Ass(C), and M;R # rR for any r € R then P = Uc 4550 (M \ M) Uicr
M; (Theorem 11). If p.(R) > 2 then the set {M;},.¢ of maximal ideals of R
such that u.(Ry,) = p.(R) is finite and contained in Ass(C). If
S={l,...,k} then P= Ule(Ii\IiMi), where I; is the unique biggest M;-
primary ideal of R such that u(l;) = p.(R), i=1,...,k (Theorem 18). In
Section 4 we treat rings strictly between K and K[X] where K is a field. In
Proposition 19 we prove that any such ring has non-zero conductor in its
integral closure. If R is a ring such that K[X*] C R C K[X] where k is a po-
sitive integer, and R Z K[X'] for any / > 1 then the field of fractions of R is
K(X) (Lemma 20), the integral closure of R is K[X], and u.(R) <k
(Proposition 21). For the special case R = K[X* aX!] with a in K[X*]\ K
and some k,/ € N such that (k,/) = 1 we show that u.(R) = k, and for each
maximal ideal M such that u,(Ry) = k, M*~! is the biggest M-primary ideal
I such that u(I) = k (Proposition 23). Let ny, ..., n; be positive integers such
that (ny,...,n;) =1, and let N be the least integer such that for any
i >0, N +ibelongs to the numerical semigroup generated by {n;,...,n}. If
the numerical semigroup ring K[X™,..., X™] is contained in R, and R is
contained in K[X] then C=XVK[X], and if M = XK[X]NR then
1«(R) = minv(M) where v: K(X) — Z is the valuation of K(X) with
K[X] y, as valuation ring (Proposition 24).

2. Preliminaries

Let 4 be a domain, let 7 be a non-zero ideal of 4, and let S; = 4\ J,cg M;
where {M;}, ¢ is the set of maximal ideals of 4 which contain 7.

PROPOSITION 1. Let A be a one-dimensional domain, and let I be an ideal of
A such that p(I) > 2. Then u(Iy) = u(S;1) = p(I) for some M € Ass(I).
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Proor. We have u(ly) < p(l) for each maximal ideal M of A. By [8],
Satz 1, p(I) < max{u(l,) +dimA/p: p € Spec A} < max{u(ly),2: M €
Ass(I)} < u(I) whence pu(I) = pu(S;y) = p(Iy) for some M €Ass(I).

LEMMA 2. Let A be an integral domain with non-zero conductor C in the in-
tegral closure A of A. If s is comaximal to C, a € A, and sa € A then a € A.

Proor. We have sb=1+r for some re€ C, and some b € A. Then
asb =a+ra € A, and hence a € A.

3. One-dimensional integral domains

Let R be a one-dimensional integral domain with field of fractions F, and let
the conductor C of R in R be non-zero. If M is a maximal ideal of R then
Ry = (R\ M) 'R by [2], Proposition 5.12.

PrOPOSITION 3. Let I be an ideal of R. Then the following are equivalent:
1) Iis strongly p(I)-generated.

2) u(l) =2, and p(S;'I) = 1.

3) u(I) =2, and pu(I/1*) = 1.

4y p(I) =2, and p(Iy) = 1 for each maximal ideal M of R.

PrOOF. 1) = 2) Let I be an ideal of R which is strongly u(I)-generated.
By [1], Theorem 8, u(S;'I) < u(I), and hence pu(I) = 2 by Proposition 1, and
u(Sy') = 1.

2) < 3) By [1], Proposition 1, u(1/1?) = u(S;'1).

2) = 4) is obvious.

4) = 1) By [12], Proposition 19, I is strongly two-generated.

LEMMA 4. Let M be a maximal ideal of R such that M ¢ Ass(C). Then there

is a unique maximal ideal N of R such that NN R = M. Moreover MR = N,
and Ry; = Ry is a discrete valuation ring (DVR).

ProOF. By [14], Ch. 5, §5, Lemma, Ry = Rys. By [2], Proposition 9.2, Ry,
is a DVR, and by [2], Proposition 3.11, MRy, = NRj; for some unique
maximal ideal N of R. Then N N R = M, and by [2], Proposition 1.14, MR is
N-primary. Since R is a Dedekind domain MR = N for some / € N. But
NRy = MRy, = MRy, = N'R,;, and hence / = 1.

COROLLARY 5. Let I be an ideal of R such that p(I) > 2. Then p(Iy) = p(I)
for some M €Ass(C).

Proor. The result follows from Proposition 1 and the previous lemma.

If R#R, u(I) =2, and I is not comaximal to C then we see in the fol-
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lowing example that x(S;'7) is not in general equal to u(I), and p(fy) can
be less than u(I) for each M € Ass(C) whence I is strongly u(7)-generated
by Proposition 3.

ExampLE. Let R=K[X*X*(1+X?)], let M;=(X%X3(1+X?),
M,=(1+X2,X3(1+X?), and let I=(X3(1+X?),(1+X??). Then
w(l) =2, C=X*1+X?)(1,X) (see Proposition 22), Ass(C) = {M;, M,},
and [ is Mj-primary. Hence Iy, = Ry,, and Sl_ll = Iy,. Since
(1+ X2 = (X3(1 + X%))?/X® we have u(ly,) = 1.

E.D. Davis and A.V. Geramita have proved in [7], Theorem 1 that
w(M) = u(Myy) if Ry is not regular, i.e. if Ry, is not a DVR.

LEMMA 6. Suppose R # R. If M € Ass(C) then u(M) = u(My) > 2, and M
is not strongly (M )-generated. Moreover 11.(R) = 2 if and only if p.(Ry) =2
Sfor each M € Ass(C).

ProOF. Suppose M € Ass(C). If M is principal then M), is principal, and
by [2], Proposition 9.2, Ry, is integrally closed. By [14], Ch. 5, §5, Lemma,
C ¢ M which is a contradiction. Thus u(M) > p(Mys) > 2. By Proposition 1,
w(M) = p(My), and by Proposition 3, M is not strongly p(M)-generated.
The last statement is true since 2 < g, (Ry) < p(R).

LEMMA 7. Let I be an ideal of R which is comaximal to C. Then I is a pro-
duct of maximal ideals.

Proor. By [2], Proposition 9.1, I = Hle q; where ¢; is M;-primary for
i=1,...,/,and M; # M; if i #j. By Lemma 4, Ry, is a DVR, and by [2],
Proposition 9.2, ¢;y, = M,;ﬁgi for some k;eN,i=1,...,I. By [2],
Propositions 3.11 and 4.8, ¢; = M/~ i=1,...,1

LeMMA 8. Let I be an ideal of R which is comaximal to C. Then I = IRN R.

PROOF. By Lemma 7, llﬁ NR- I, M,-’l"')ﬁ NR= &Hﬁzl(M,-ﬁ)k") NR.
By Lemma 4, IRNR=\_;(M;R)" N R C (,_;(M:Rp,)" N R) and by [2],
Proposition 3.11 and 4.8, IRN R C (\._, M¥ = I. Hence IRNR=1.

PROPOSITION 9. Let I be an ideal of R which is comaximal to C. Then I is
strongly two-generated.

Proof. If M € Ass(C) then Iy = Ry, and if M ¢ Ass(C) then by
Lemma 4, Ry, is a DVR. Hence /), is principal for each maximal ideal M of
R, and by [12], Proposition 19, I is strongly two-generated.

LEMMA 10. Let I be an ideal of R which is comaximal to C. Then I is prin-
cipal if and only if there is r € R such that IR = rR.
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PrOOF. =) Suppose [ is principal. Then I = (r) for some r € R. Hence
IR =rR.

<) Assume there is r € R such that IR = rR. By Proposition 9, I = (s, 1)
for some s,7€ R, and (s,f)R=rR. Hence s=ur and = vr for some
u,v € R. Since rR € MR for any M € Ass(C) we have that r is comaximal to
C, and by Lemma 2, u,v€ R, and thus (u,v) is comaximal to C. By
Lemma 8, (u,v) = (u,y)RN R = R, and thus [ is principal.

THEOREM 11. Let R be a one-dimensional domain with non-zero conductor C
in the integral closure R of R. Let p.(R) =2, and let {M,},.g be the maximal
ideals of R such that M; ¢ Ass(C), and M;R # rR for any r € R and i € S.
Then the set of proper strong two-generators of R is UMeASSw) (M \ M?) Uies M.

ProOOF. Let I be an ideal of R such that u(/) = 2. If I is not comaximal to
C then I C M for some M € Ass(C), R# R and u(M) = pu(My) =2 by
Lemma 6. If 7 is comaximal to C then 7 is a product of maximal ideals by
Lemma 7, and hence there is a non-principal maximal ideal M which con-
tains / and is comaximal to C. By Lemma 10, M € {M,},.s. By [12],
Theorem 21 the set of proper strong two-generators of R is

Unreassio) (M \ M?) Uics M.

DEFINITION. Let (4, M) be a one-dimensional local Noetherian domain,
let 7 be an ideal of A, and let ¢(B) be the length of a finitely generated A4-
module B. Then C. Gottlieb [9] calls I a maximally generated ideal if
w(I) =min{l(A4/(a)) : a € M} or equivalently M1 = al for some a € M, and
then pu(I) = p.(A). An element a of M is superficial if there exists a positive
integer ¢ such that (M’ :a) N M¢ = M'~! for any sufficiently large integer /
cf. [14], p. 285.

REMARK 12. If (4, M) is a one-dimensional local Noetherian domain then
A is Cohen-Macaulay. Suppose a is a superficial element of M. By definition
a'M'nM¢= M-, and thus aM'~! = a(a='M' N M) = M' naM°. Since a
is M-primary, M C aM® for some positive integers c¢,i, and hence
aM* = M**! for each integer k which is large enough. Then M* is a maxi-
mally generated ideal, and min{¢(4/(b)): b€ M} = {(A/(a)) = u(M*) =
w«(A). By [10], Theorems 14.13 and 17.11, e(4) = e(M,A) =e((a),A) =
{(4/(a)) = u(M*) where e(A4) is the multiplicity of A. If 4 has infinite re-
sidue field then 4 has a superficial element by [14], p. 287.

LEmMMA 13. Let (A, M) be a one-dimensional local domain with a superficial
element s. Let A be the integral closure of A, and let C be the non-zero con-
ductor of A in A. Then C is a maximally generated ideal of A.

ProOF. By Remark 12, sM* = M*! for some k&N, and hence
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SAMA) = sM¥A4 = M*'4 = (MA)**". Because of unique factorization of
an ideal in 4 as a product of prime ideals we have s4 = M A. Since C is an
ideal of A we have MC = MCA = sCA = sC, and C is maximally generated
by definition.

NortATiON. If M is a maximal ideal of R then let Ry (u) = Rlulyz,)-

REMARK 14. Since Ry, (u) is CM and has infinite residue field, Ry, (u) has a
superficial element and a maximally generated ideal by Remark 12. If I is an
ideal of R then M(IRM(u)) = fRM(m(IRM(u)/IMRM(u)) = ERM(IM/]MMM) =
w(ly), and since any ideal of Ry (u) is an extended ideal of Ry,
pe(Ryr (1)) = p.(Rpr). By [10], Theorem 12.4, Ry,[u] is integrally closed, and
hence Rj;(u) is also. The integral closure of Ry/[u] in F[u] is Ry[u] by [2],
Ch. 5, Exercise 9, and thus Ry[u] = Ry/[u], and by [2], Proposition 5.12,
Rar () = (Rlu) \ MR[u))™ Ry ],

THEOREM 15. Let R be a one-dimensional domain with non-zero conductor C
in the integral closure R of R, and let R# R. Then u.(R) = u(C)=
w(Cur) = p(Ryr) for some M € Ass(C). If moreover R is a principal ideal
domain (PID) then p.(R) = p(R) where R is considered as a fractional ideal of
R

ProoF. Let M € Ass(C). By [14], Ch. 5, §5, Lemma, Cj, is the conductor
of Ry in Ry;. Obviously CRy/[u] is contained in the conductor of Ry[u] in
Ry[u]. If b ¢ CRy[u] then there is a € Ry such that ab ¢ Ry[u]. Hence
CRy[u] is the conductor of Ry[u] in Ry[u], and by [14], Ch. 5, §5, Lemma,
the conductor of Ry,(u) in Ry (u) is CRy(u). By Remark 14 there is a su-
perficial element s in Ry (u), and by Lemma 13, CRy(u) is a maximally
generated ideal of Ry (u). By Remark 14, u(C) > pu(Cuy) = n(CRy(u)) =
1 (Rar(u)) = s (Ryr). Let I be an ideal of R such that u(f) = p.(R) > 2. By
Corollary 5, u(I) = u(lyy) for some M’ € Ass(C), and hence u.(R) =
wi(Ryp) for some M’ €Ass(C). If u.(R) =2 then u.(Ry)=2 for any
M’ €Ass(C) by Lemma 6. Let M be such that u.(Rp) = pu«(R). Then
w(C) = pu(Crr) = ps(Rar) = p(R). If R is a PID then C = cR for some
¢ € R, and hence u(C) = u(R ) if R is considered as a fractional ideal of R.

PROPOSITION 16. Let R # R and M € Ass(C). Then there is a unique biggest
M-primary ideal I of R such that u(I) = p.(Rar).

ProoOF. Let p,(R) > 2, and let Ij; and Jj, be maximal among ideals of Ry,
such that u(ly) = p(Jay) = pw(Rpr). By Remark 14, pu(IRy(u)) =
w(JRy(u)) = pe(Rpr(u)), and IRy (u) and JRy,(u) are maximally generated
ideals of Rys(u). By [9], Lemma 4, u(IRp(u) + JRy (1)) = pe (Rar(u)), and by
Remark 14, u(ly + Jpr) = ps(Ryr) whence Iy = Jyy, and Iy, is the unique
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biggest ideal of Ry, such that u(ly;) = p.(Rar). Let I be the ideal of R such
that /7 =1y NR. Then [ is M-primary, and S;ll = 1Iy. By Lemma 6,
w(I) > p(Iy) = ps(Rpr) > 2, and by Proposition 1, u(I) = p(ly) = ps(Rar)-
Let ¢ be an M-primary ideal of R such that u(q) = p.(Rar). If p(Ry) =2
then pu(My) =2 by Lemma 6, and ¢ C M =1. If p.(Ry)>2 then
w(qu) = pu(g) by Proposition 1, and hence ¢qu C Iy, whence g CI. If
w«(R) = 2 then pu(M) = p.(Ry) by Lemma 6.

REMARK 17. Let R # Rand M € Ass(C). If (Rys, m) is local, and Ry /m ~
R/ My, then let I be the biggest maximally generated ideal of Ry, (u), s a
superficial element of Ry (u), and J a fractional ideal of Rjs(u) which fulfils
My (u) = (s) +sJ and such that J C Ry (u). Then by [3], Corollary 4,
I=(..((C:Npryw PRy -+ Dry@w> and I'=1NR is the biggest M-
primary ideal of R such that u(I') = p.(Ry). If there is a superficial element
in Ry, and (Ry;,m) is as above then the biggest maximally generated ideal
of Ry, can be determined by [3], Corollary 4.

THEOREM 18. Let R be a one-dimensional domain with non-zero conductor C
in the integral closure R of R. Let j1.(R) > 2, let {M,}f;l be the set of maximal
ideals of R such that p.(Ry,) = p«(R). Then there is a unique biggest M;-pri-
mary ideal I; of R such that p(I;) = p.(R), i=1,....k {M}", C Ass(C),
and the set of proper strong u.(R)-generators of R is Uf;l (I; \ M;).

PrROOF. Since p.(R) >2 we have R # R. By Theorem 15, R has finite
rank. By Lemma 4, M; € Ass(C), i =1,...,k. By Proposition 16 there is a
unique biggest M;-primary ideal I; of R such that u(l;) = p.(Ru,) = p(R),
i=1,...,k. Let I be an ideal of R such that u(I) = u.(R). By Corollary 5,
w(Iy,) = pe(R), and Iy, N R is M;-primary for some i€ {1,...,k}. Since
[12], Theorem 21, the set of proper strong u.(R)-generators is
Ui (1 \ M),

4. Integral domains contained in K[X]

Let K be a field, and let R be a subring of K[X] which strictly contains K.
Then K[X] is integral over R, and hence R is a one-dimensional domain. By
the next proposition R has non-zero conductor in its integral closure.

NortATION. Let v: K(X) —Z be the valuation of K(X) with K[X]y, as
the valuation ring.

From Lemma 20 on, the special case when X* € R for some positive in-
teger k is treated, and in Proposition 24, X! € R for each sufficiently large
integer /, i.e. R contains the semigroup ring K[X™ ..., X™] for some positive
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integers np,...,n, such that (nj,...,n;) =1. In that case we show that
1« (R) = minv(M) where M = XK[X] N R, and the conductor of R in K[X] is
equal to XV K[X] where N is the least integer such that X’ € R, i=0,1,...
The notation of Section 3 are used throughout this section.

PrROPOSITION 19. Let K be a field, let R be a subring of K[X]| which strictly
contains K, and let F be the field of fractions of R. Then the conductor C of R
in its integral closure R is non-zero, and R = F N K[X].

ProoF. Since X is integral over R, R[X] = K[X] is a finitely generated R-
module, and hence K[X] is a Noetherian R-module. By [2], Proposition 7.8,
R is Noetherian. Since K[X] is integrally closed, and F C K(X) we have that
R C K[X]. Therefore R=FNK[X] is a finitely generated R-module, and
hence C # 0.

LeEMMA 20. Let K be a field, and let k be a positive integer. If R is such that
K[X¥] C R C K[X], and R € K[X'] for any | > 1 then F = K(X).

ProOF. We have that K(X) contains F, and F strictly contains K(X*).
The minimum polynomial of X over K(X*) is £ — X*. By [13], Theorem 3.2
the minimum polynomial m of X over F divides * — X* in F. By [13],
Theorem 4.2 and Proposition 4.3 the degree of m is less than k. Let r be the
degree of m, and let G be a splitting field of m. Then the zeros of m in G are
g1X,...,g-X for some non-zero gy,...,g, € G, and hence the constant term
of mis (—1) 1., g/ X" where []'_, g; is non-zero. Then K(X") C F, and by
induction K(X) C F.

PROPOSITION 21. Let K be any field, let k be a positive integer, and let R be a
ring such that K[X*] C RC K[X], X' ¢ R if | <k, and R € K[X'] for any
[>1.

1) Then the integral closure of R is K[X], and pu.(R) = u(K[X]) < k where
K[X] is considered as a fractional ideal of R.

2) IF S aiX' € R for some a; € K[X¥), i=1,....k — 1, and a; € K \ {0}
for somej e {1,... k— 1} then u.(R) < k.

ProoF. 1) By Proposition 19 and Lemma 20, K[X] is the integral closure
of R. As K[X] = (1,X,...,X*))R we have that u(K[X]) < k. By Theorem
15, p.(R) = p(K[X]).

2) We have K[X] = (1, X,..., X* )R, and by assumption X’ € (1,X,...,
XU X XRY) R, Hence u(K[X]) < k, and by 1) u.(R) < k.

PROPOSITION 22. Let R = K[X*,aX'] for some positive integers k,| and
some a € K[X¥]\ X*K[X*] such that k > 1, (k,l) =1 and X' ¢ R if | <k.
Then
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1) C = xX*NU=Ng=1K[X], and
2) Cy is a maximally generated ideal of Ry for each M € Ass(C).

PrOOF. 1) Let f = X*=DU=1gk=1 By Proposition 21, R = K[X]. We will
show that fK[X] C R. Since K[X] = (I,X,...,Xk")R it is enough to show
that /X' € Rifi € {0,... ,k—1}. Leti € {0,... .k — 1} As (k,I) = 1 there is
p, v € Z such that fX' = xU-DU-D+igk=1 — Xk"””a . Since p = tk +j for
some j€{0,....,k—1}, and t€Z we have kv+Ilu=k(v+1It)+1j, and
therefore we can assume that 0 <pu<k—1. Then (k—1)(/—-1)+i=
kv+Ilu,and (k—1—p)l+i+1=kv+k Thus 1 <kv+k, and hence 0 < v
whence /X’ € R, and fK[X] C R. If ¢ € R is such that C = ¢K[X] then ¢ di-
vides f in K[X]. We have i = k — 1 if and only if (k — 1 — p)l = kv, i.e. if and
only if v=0 and p=k—1. Hence &' divides c¢. If (k—1)x
(I-1)—1=kv+Iu then (k—1—pu)l=k(r+1) which is impossible.
Hence fX~' ¢ C, and thus ¢ = f.

2) If M =XK[X]NR then My = (X*X"), and Cy = X*k-D0=-1.
(1, X,..., xindky Thus X™M&D Cy = My Cyp. If M €Ass(C), and a € M
then M = (b,aX") for some b € K[X*] such that b divides a in K[X*], and
Cy=d'(1,X,....,X*1). Hence hCy = MyCy, and Cy; is maximally
generated for each M € Ass(C).

PROPOSITION 23. Let R = K[X*,aX'] for some positive integers k,| and
some a € K[X¥]\ X*K[X*] such that k > 1, (k,) =1, and X' ¢ Rifl < k. Let
Ass(C) = {M;};_,, and let M| = XK[X] N R.

1) Then p(Cy,) = min{k, 1}, and if a¢ K then p(Cy) = u.(R) =k, for
i=2,...,t

2) Let I; be the unique biggest M; (prlmary ideal of R such that
w(I) = pe(Rag,), i=1,...,t. Then I; = M€ i=1,...,1

PROOF. 1) Suppose a¢ K, let i€ {2,...,t} and let S= R\ M;, where
= (b,aX") for some b € K[X*] such that b divides a in K[X*]. By
Proposmon 22, Cy, =11, X, ..., X1, and if u(Cyy,) < k then &1 X7 =
A D g e X7 for some j € {L...,k— 1}, r, € R and s, € S, such that
r,=1 or b divides r,, v=1,....j—1,j+1,...,k—1. Let s:Hff;iVisy.
Then s(X/ -3, %) = S(ZWHél wX"), and b divides the right side but
not the left one which is impossible. Thus p(Cys,) = k, and by Proposition 21,
p(R) = k. Since M1y, = (X*, X'), and Cyy, = XEDU=0(1 x . xmindl})
we have 1(Cyy,) = min{k, /}.

2) We have that the embedding dimension emdim Ry, = ¢(M;,,,/ M,fu =2,
i=1,...,t, and by [3], Theorem 1, I;,, is the conductor of Ry, in its blowing
up ring at M;y.. By [11], Proposition 1.8, ;) = M,';f‘”"%ﬁ, and by [2],
Proposition 4.8, I; = M;¢®m)=1 j =1 ... t where e(Ryy,) is the multiplicity of
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Ryy,. By Proposition 22, Cyy, is maximally generated, and by definition and
Remark 12, e(Ry;,) = u(Cu,), i=1,...,t.

By Proposition 23 and Theorems 11 and 18 the set of proper strong . (R)-
generators of R is completely determined when R = K[X* aX’].

Let B be a primitive numerical semigroup generated by some positive in-
tegers ny,...,n. Then (ny,...,n;) =1, and there is a least integer g(B) such
that g(B) +i€ B for i=1,2,... The integer g(B) is called the Frobenius
number of B.

PROPOSITION 24. Let ny, ..., n, be positive integers such that (my,...,n;) =1,
and let K[X;B] = K[X™,...,X™]. Let R be a ring such that K[X;B] C R C
K[X] where B is maximal such that K[X;B] C R. Let N=g(B)+1, and
M = XK[X] N\ R. Then

1) € = XVK[X],

2) p(R) = minv(M), and if minv(M) = 1 then R = K[X].

PrOOF. 1) By Proposition 21, R = K[X]. As XVK[X] C C, and XV~ 1 ¢ R
we have C = XVK[X].

2) Let minv(M) =/, and let f be a polynomial in M such that v(f) = /.
Let m € N be minimal such that X”K[X] C (XV,..., X"*"HR If m > N
then let i € {0,...,/— 1} and j > 0 be such that N+l +i=m — 1. Hence
XN*ifi and XN (f/ — aX’") belong to (XN, ..., XN*'=1) for some a € K such
that f/ —aX' =0 or v(f/ —aX")>jl. Thus XN+ = xm1¢c (XN, ...,
XN+=1) which is a contradiction. Hence m = N, and u(C) <[. Since

Cu/MCy =X, X" X" Where X is the image of X in

Ry /MRy, and YN,YNH,...,YNH_I are linearly independent in the
Ryr/MRy-vector space we have u(C)=pu(Cy)=1[, By Theorem 15,
w«(R) =1. If minv(M) =1 then R is a PID, and hence integrally closed.

Thus R = K[X].

REMARK 25. By Proposition 24, C is primary for M = XK[X] N R, and by
Theorem 15, p.(Ry) = p(R). We have K[X],,/XK[X],, ~ Ry/My, and
K[X],, is local. By Remarks 12 and 17 the biggest M-primary ideal I such
that u(7) = p.(R) can be determined, and by Theorems 11 and 18 the set of
proper strong pu.(R)-generators in R is determined. If moreover K is infinite
then Rjs/ My, is infinite, and by Remark 12 there is a superficial element in
Ry
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