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STRONG n-GENERATORS AND THE RANK OF SOME
NOETHERIAN ONE-DIMENSIONAL

INTEGRAL DOMAINS

KERSTIN PETTERSSON

1. Introduction

Throughout this paper any ring is a commutative Noetherian ring with
identity. If A is a ring, I and J are ideals of A such that I � J, and S is a
multiplicative set of A then let ��I�, ��I=J�, and ��Sÿ1I� respectively be the
minimal number of generators of I , I=J, and Sÿ1I respectively as an A, A=J,
or Sÿ1A-module respectively.

Definition. Let A be a ring and n a positive integer. An ideal I of A is n-
generated if ��I� � n, and if ��I� � n for each ideal I of A then I.S. Cohen
[6] says that A is of finite rank n. S.T. Chapman and N.H. Vaughan [5] call a
non-zero element a in A a strong n-generator if a can be chosen as the first of
n generators of each ideal in which it is contained, and if moreover a is
contained in some ideal I such that ��I� � n then we introduce the concept
proper strong n-generator for a. An ideal I of A is strongly n-generated if I is
n-generated and ��I=�a�� < n for each non-zero element a of I .

Notation. If A is an integral domain then let A be the integral closure of
A, and if A is of finite rank then let ���A� � maxf��I� : I is an ideal of Ag.
Let R be a one-dimensional integral domain, let F be the field of fractions of
R, and let C be the conductor of R in R, i.e. C � �R : R�R. If I is a non-zero
ideal of R then Ass�I� is the set of maximal ideals that contain I .

We have that R is an integrally closed one-dimensional domain, and hence
R is a Dedekind domain. It is well-known that a Dedekind domain is
strongly two-generated, and we also know that Ass�I� is finite for each non-
zero ideal I of R since R is Noetherian.
Let C be non-zero which is the same as R being a fractional ideal of R,

and hence R is a finitely generated R-module. By I.S. Cohen [6], Theorem 10
and Corollary 3, R is of finite rank, and if ���RM� � nÿ 1 for each maximal
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ideal M of R then ���R� � n for some integer n. By H. Bass [4],
Proposition 1.4, ���R� � max�2; k� if ���RM� � k for each maximal ideal M
of R. A specification of these results is that if R is not integrally closed then
���R� � ��C� � ��CM� � ���RM� for some M 2Ass�C� (Theorem 15). In
Proposition 3 is proved that an ideal I of R is strongly ��I�-generated if and
only if ��I� � 2, and ��I=I2� � 1. Let M 2Ass�C�. Then there is a unique
biggest M-primary ideal I such that ��I� � ���RM� (Proposition 16), and
hence if M is such that ���RM� � ���R� then ��I� � ���R�. In [12], Theorem
21 we have already proved that the set of strong ���R�-generators of R is
R nSi2S�IiMi� where fMigi2S is the set of maximal ideals of R such that
���RMi� � ���R�, and Ii is the unique biggest Mi-primary ideal of R such
that ��Ii� � ���R�. Let P be the set of proper strong ���R�-generators of R.
If ���R� � 2, and fMigi2T is the set of maximal ideals of R such that
Mi =2 Ass�C�, and MiR 6� rR for any r 2 R then P � SM2Ass�C��M nM2�Si2T
Mi (Theorem 11). If ���R� > 2 then the set fMigi2S of maximal ideals of R
such that ���RMi� � ���R� is finite and contained in Ass�C�. If
S � f1; . . . ; kg then P � Sk

i�1�Ii n IiMi�, where Ii is the unique biggest Mi-
primary ideal of R such that ��Ii� � ���R�; i � 1; . . . ; k (Theorem 18). In
Section 4 we treat rings strictly between K and K �X � where K is a field. In
Proposition 19 we prove that any such ring has non-zero conductor in its
integral closure. If R is a ring such that K �Xk� � R � K �X � where k is a po-
sitive integer, and R 6� K �Xl � for any l > 1 then the field of fractions of R is
K�X� (Lemma 20), the integral closure of R is K �X �, and ���R� � k
(Proposition 21). For the special case R � K �Xk; aXl � with a in K �Xk� n K
and some k; l 2 N such that �k; l� � 1 we show that ���R� � k, and for each
maximal ideal M such that ���RM� � k, Mkÿ1 is the biggest M-primary ideal
I such that ��I� � k (Proposition 23). Let n1; . . . ; nl be positive integers such
that �n1; . . . ; nl� � 1, and let N be the least integer such that for any
i � 0; N � i belongs to the numerical semigroup generated by fn1; . . . ; nlg. If
the numerical semigroup ring K �Xn1 ; . . . ;Xnl � is contained in R, and R is
contained in K �X � then C � XNK �X �, and if M � XK �X � \ R then
���R� � min v�M� where v : K�X� ÿ! Z is the valuation of K�X� with
K �X ��X� as valuation ring (Proposition 24).

2. Preliminaries

Let A be a domain, let I be a non-zero ideal of A, and let SI � A nSi2S Mi

where fMigi2S is the set of maximal ideals of A which contain I .

Proposition 1. Let A be a one-dimensional domain, and let I be an ideal of
A such that ��I� > 2. Then ��IM� � ��Sÿ1I I� � ��I� for some M 2 Ass�I�.
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Proof. We have ��IM� � ��I� for each maximal ideal M of A. By [8],
Satz 1, ��I� � maxf��Ip� � dimA=p : p 2 Spec Ag � maxf��IM�; 2 : M 2
Ass�I�g � ��I� whence ��I� � ��Sÿ1I I� � ��IM� for some M 2Ass�I�.
Lemma 2. Let A be an integral domain with non-zero conductor C in the in-

tegral closure A of A. If s is comaximal to C, a 2 A, and sa 2 A then a 2 A.
Proof. We have sb � 1� r for some r 2 C, and some b 2 A. Then

asb � a� ra 2 A, and hence a 2 A.

3. One-dimensional integral domains

Let R be a one-dimensional integral domain with field of fractions F , and let
the conductor C of R in R be non-zero. If M is a maximal ideal of R then
RM � �R nM�ÿ1R by [2], Proposition 5.12.

Proposition 3. Let I be an ideal of R. Then the following are equivalent:
1) I is strongly ��I�-generated.
2) ��I� � 2, and ��Sÿ1I I� � 1.
3) ��I� � 2, and ��I=I2� � 1.
4) ��I� � 2, and ��IM� � 1 for each maximal ideal M of R.

Proof. 1) ) 2) Let I be an ideal of R which is strongly ��I�-generated.
By [1], Theorem 8, ��Sÿ1I I� < ��I�, and hence ��I� � 2 by Proposition 1, and
��Sÿ1I I� � 1.

2) , 3) By [1], Proposition 1, ��I=I2� � ��Sÿ1I I�.
2) ) 4) is obvious.

4) ) 1) By [12], Proposition 19, I is strongly two-generated.

Lemma 4. Let M be a maximal ideal of R such that M =2Ass�C�. Then there
is a unique maximal ideal N of R such that N \ R �M. Moreover MR � N,
and RM � RM is a discrete valuation ring (DVR).

Proof. By [14], Ch. 5, x5, Lemma, RM � RM . By [2], Proposition 9.2, RM

is a DVR, and by [2], Proposition 3.11, MRM � NRM for some unique
maximal ideal N of R. Then N \ R �M, and by [2], Proposition 1.14, MR is
N-primary. Since R is a Dedekind domain MR � Nl for some l 2 N. But
NRM �MRM �MRM � NlRM , and hence l � 1.

Corollary 5. Let I be an ideal of R such that ��I� > 2. Then ��IM� � ��I�
for some M 2Ass�C�.
Proof. The result follows from Proposition 1 and the previous lemma.

If R 6� R, ��I� � 2, and I is not comaximal to C then we see in the fol-
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lowing example that ��Sÿ1I I� is not in general equal to ��I�, and ��IM� can
be less than ��I� for each M 2 Ass�C� whence I is strongly ��I�-generated
by Proposition 3.

Example. Let R � K �X2;X3�1� X 2��, let M1 � �X 2;X 3�1� X 2��,
M2 � �1� X2;X3�1� X 2��, and let I � �X 3�1� X2�; �1� X 2�2�. Then
��I� � 2, C � X 2�1� X2��1;X� (see Proposition 22), Ass�C� � fM1;M2g,
and I is M2-primary. Hence IM1 � RM1 , and Sÿ1I I � IM2 . Since
�1� X2�2 � �X 3�1� X2��2=X6 we have ��IM2� � 1.

E.D. Davis and A.V. Geramita have proved in [7], Theorem 1 that
��M� � ��MM� if RM is not regular, i.e. if RM is not a DVR.

Lemma 6. Suppose R 6� R. If M 2 Ass�C� then ��M� � ��MM� � 2, and M
is not strongly ��M�-generated. Moreover ���R� � 2 if and only if ���RM� � 2
for each M 2 Ass�C�.
Proof. Suppose M 2 Ass�C�. If M is principal then MM is principal, and

by [2], Proposition 9.2, RM is integrally closed. By [14], Ch. 5, x5, Lemma,
C 6�M which is a contradiction. Thus ��M� � ��MM� � 2. By Proposition 1,
��M� � ��MM�, and by Proposition 3, M is not strongly ��M�-generated.
The last statement is true since 2 � ���RM� � ���R�.
Lemma 7. Let I be an ideal of R which is comaximal to C. Then I is a pro-

duct of maximal ideals.

Proof. By [2], Proposition 9.1, I �Ql
i�1 qi where qi is Mi-primary for

i � 1; . . . ; l, and Mi 6�Mj if i 6� j. By Lemma 4, RMi is a DVR, and by [2],
Proposition 9.2, qiMi

�Mi
ki
Mi

for some ki 2 N; i � 1; . . . ; l. By [2],
Propositions 3.11 and 4.8, qi �Mi

ki ; i � 1; . . . ; l.

Lemma 8. Let I be an ideal of R which is comaximal to C. Then I � IR \ R.
Proof. By Lemma 7, IR \ R � �Ql

i�1Mi
ki�R \ R � �Ql

i�1�MiR�ki� \ R.
By Lemma 4, IR \ R � Tl

i�1�MiR�ki \ R �
Tl

i�1��MiRMi�ki \ R� and by [2],
Proposition 3.11 and 4.8, IR \ R � Tl

i�1M
ki
i � I . Hence IR \ R � I .

Proposition 9. Let I be an ideal of R which is comaximal to C. Then I is
strongly two-generated.

Proof. If M 2 Ass�C� then IM � RM , and if M =2Ass�C� then by
Lemma 4, RM is a DVR. Hence IM is principal for each maximal ideal M of
R, and by [12], Proposition 19, I is strongly two-generated.

Lemma 10. Let I be an ideal of R which is comaximal to C. Then I is prin-
cipal if and only if there is r 2 R such that IR � rR.
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Proof. )� Suppose I is principal. Then I � �r� for some r 2 R. Hence
IR � rR.

(� Assume there is r 2 R such that IR � rR. By Proposition 9, I � �s; t�
for some s; t 2 R, and �s; t�R � rR. Hence s � ur and t � vr for some
u; v 2 R. Since rR 6�MR for any M 2 Ass�C� we have that r is comaximal to
C, and by Lemma 2, u; v 2 R, and thus �u; v� is comaximal to C. By
Lemma 8, �u; v� � �u; v�R \ R � R, and thus I is principal.

Theorem 11. Let R be a one-dimensional domain with non-zero conductor C
in the integral closure R of R. Let ���R� � 2, and let fMigi2S be the maximal
ideals of R such that Mi =2 Ass�C�, and MiR 6� rR for any r 2 R and i 2 S.
Then the set of proper strong two-generators of R is

S
M2Ass�C��M nM2�Si2S Mi.

Proof. Let I be an ideal of R such that ��I� � 2. If I is not comaximal to
C then I �M for some M 2 Ass�C�, R 6� R and ��M� � ��MM� � 2 by
Lemma 6. If I is comaximal to C then I is a product of maximal ideals by
Lemma 7, and hence there is a non-principal maximal ideal M which con-
tains I and is comaximal to C. By Lemma 10, M 2 fMigi2S. By [12],
Theorem 21 the set of proper strong two-generators of R isS

M2Ass�C��M nM2�Si2S Mi.

Definition. Let �A;M� be a one-dimensional local Noetherian domain,
let I be an ideal of A, and let `�B� be the length of a finitely generated A-
module B. Then C. Gottlieb [9] calls I a maximally generated ideal if
��I� � minf`�A=�a�� : a 2Mg or equivalently MI � aI for some a 2M, and
then ��I� � ���A�. An element a of M is superficial if there exists a positive
integer c such that �Ml : a� \Mc �Mlÿ1 for any sufficiently large integer l
cf. [14], p. 285.

Remark 12. If �A;M� is a one-dimensional local Noetherian domain then
A is Cohen-Macaulay. Suppose a is a superficial element of M. By definition
aÿ1Ml \Mc �Mlÿ1, and thus aMlÿ1 � a�aÿ1Ml \Mc� �Ml \ aMc. Since a
is M-primary, Mc�i � aMc for some positive integers c; i, and hence
aMk �Mk�1 for each integer k which is large enough. Then Mk is a maxi-
mally generated ideal, and minf`�A=�b�� : b 2Mg � `�A=�a�� � ��Mk� �
���A�. By [10], Theorems 14.13 and 17.11, e�A� � e�M;A� � e��a�;A� �
`�A=�a�� � ��Mk� where e�A� is the multiplicity of A. If A has infinite re-
sidue field then A has a superficial element by [14], p. 287.

Lemma 13. Let �A;M� be a one-dimensional local domain with a superficial
element s. Let A be the integral closure of A, and let C be the non-zero con-
ductor of A in A. Then C is a maximally generated ideal of A.

Proof. By Remark 12, sMk �Mk�1 for some k 2 N, and hence
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sA�MA�k � sMkA �Mk�1A � �MA�k�1. Because of unique factorization of
an ideal in A as a product of prime ideals we have sA �MA. Since C is an
ideal of A we have MC �MCA � sCA � sC, and C is maximally generated
by definition.

Notation. If M is a maximal ideal of R then let RM�u� � R�u�M�u�.
Remark 14. Since RM�u� is CM and has infinite residue field, RM�u� has a

superficial element and a maximally generated ideal by Remark 12. If I is an
ideal of R then ��IRM�u�� � `RM�u��IRM�u�=IMRM�u�� � `RM �IM=IMMM� �
��IM�, and since any ideal of RM�u� is an extended ideal of RM ,
���RM�u�� � ���RM�. By [10], Theorem 12.4, RM �u� is integrally closed, and
hence RM�u� is also. The integral closure of RM �u� in F �u� is RM �u� by [2],
Ch. 5, Exercise 9, and thus RM �u� � RM �u�, and by [2], Proposition 5.12,
RM�u� � �R�u� nMR�u��ÿ1RM �u�.
Theorem 15. Let R be a one-dimensional domain with non-zero conductor C

in the integral closure R of R, and let R 6� R. Then ���R� � ��C� �
��CM� � ���RM� for some M 2 Ass�C�. If moreover R is a principal ideal
domain (PID) then ���R� � ��R� where R is considered as a fractional ideal of
R.

Proof. Let M 2 Ass�C�. By [14], Ch. 5, x5, Lemma, CM is the conductor
of RM in RM . Obviously CRM �u� is contained in the conductor of RM �u� in
RM �u�. If b =2 CRM �u� then there is a 2 RM such that ab =2 RM �u�. Hence
CRM �u� is the conductor of RM �u� in RM �u�, and by [14], Ch. 5, x5, Lemma,
the conductor of RM�u� in RM�u� is CRM�u�. By Remark 14 there is a su-
perficial element s in RM�u�, and by Lemma 13, CRM�u� is a maximally
generated ideal of RM�u�. By Remark 14, ��C� � ��CM� � ��CRM�u�� �
���RM�u�� � ���RM�. Let I be an ideal of R such that ��I� � ���R� > 2. By
Corollary 5, ��I� � ��IM0 � for some M0 2 Ass�C�, and hence ���R� �
���RM00 � for some M00 2Ass�C�. If ���R� � 2 then ���RM0 � � 2 for any
M0 2Ass�C� by Lemma 6. Let M be such that ���RM� � ���R�. Then
��C� � ��CM� � ���RM� � ���R�. If R is a PID then C � cR for some
c 2 R, and hence ��C� � ��R� if R is considered as a fractional ideal of R.

Proposition 16. Let R 6� R and M 2 Ass�C�. Then there is a unique biggest
M-primary ideal I of R such that ��I� � ���RM�.
Proof. Let ���R� > 2, and let IM and JM be maximal among ideals of RM

such that ��IM� � ��JM� � ���RM�. By Remark 14, ��IRM�u�� �
��JRM�u�� � ���RM�u��, and IRM�u� and JRM�u� are maximally generated
ideals of RM�u�. By [9], Lemma 4, ��IRM�u� � JRM�u�� � ���RM�u��, and by
Remark 14, ��IM � JM� � ���RM� whence IM � JM , and IM is the unique
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biggest ideal of RM such that ��IM� � ���RM�. Let I be the ideal of R such
that I � IM \ R. Then I is M-primary, and Sÿ1I I � IM . By Lemma 6,
��I� � ��IM� � ���RM� � 2, and by Proposition 1, ��I� � ��IM� � ���RM�.
Let q be an M-primary ideal of R such that ��q� � ���RM�. If ���RM� � 2
then ��MM� � 2 by Lemma 6, and q �M � I . If ���RM� > 2 then
��qM� � ��q� by Proposition 1, and hence qM � IM , whence q � I . If
���R� � 2 then ��M� � ���RM� by Lemma 6.

Remark 17. Let R 6� R and M 2 Ass�C�. If �RM ;m� is local, and RM=m '
RM=MM then let I be the biggest maximally generated ideal of RM�u�, s a
superficial element of RM�u�, and J a fractional ideal of RM�u� which fulfils
MM�u� � �s� � sJ and such that J � RM�u�. Then by [3], Corollary 4,
I � �. . . ��C : J�RM�u� : J�RM�u� . . . : J�RM�u�, and I 0 � I \ R is the biggest M-
primary ideal of R such that ��I 0� � ���RM�. If there is a superficial element
in RM , and �RM ;m� is as above then the biggest maximally generated ideal
of RM can be determined by [3], Corollary 4.

Theorem 18. Let R be a one-dimensional domain with non-zero conductor C
in the integral closure R of R. Let ���R� > 2, let fMigki�1 be the set of maximal
ideals of R such that ���RMi� � ���R�. Then there is a unique biggest Mi-pri-
mary ideal Ii of R such that ��Ii� � ���R�; i � 1; . . . ; k, fMigki�1 � Ass�C�,
and the set of proper strong ���R�-generators of R is

Sk
i�1�Ii n IiMi�.

Proof. Since ���R� > 2 we have R 6� R. By Theorem 15, R has finite
rank. By Lemma 4, Mi 2 Ass�C�; i � 1; . . . ; k. By Proposition 16 there is a
unique biggest Mi-primary ideal Ii of R such that ��Ii� � ���RMi� � ���R�;
i � 1; . . . ; k. Let I be an ideal of R such that ��I� � ���R�. By Corollary 5,
��IMi� � ���R�, and IMi \ R is Mi-primary for some i 2 f1; . . . ; kg. Since
��IMi \ R� � ���IMi \ R�Mi

� � ��IMi� � ���R� we have Ii � IMi \ R � I . By
[12], Theorem 21, the set of proper strong ���R�-generators isSk

i�1�Ii n IiMi�.

4. Integral domains contained in K �X �
Let K be a field, and let R be a subring of K �X � which strictly contains K .
Then K �X � is integral over R, and hence R is a one-dimensional domain. By
the next proposition R has non-zero conductor in its integral closure.

Notation. Let v : K�X�ÿ!Z be the valuation of K�X� with K �X ��X� as
the valuation ring.

From Lemma 20 on, the special case when Xk 2 R for some positive in-
teger k is treated, and in Proposition 24, Xl 2 R for each sufficiently large
integer l, i.e. R contains the semigroup ring K �Xn1 ; . . . ;Xnt � for some positive
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integers n1; . . . ; nt such that �n1; . . . ; nt� � 1. In that case we show that
���R� � min v�M� where M � XK �X � \ R, and the conductor of R in K �X � is
equal to XNK �X � where N is the least integer such that XN�i 2 R; i � 0; 1; . . .

The notation of Section 3 are used throughout this section.

Proposition 19. Let K be a field, let R be a subring of K �X � which strictly
contains K, and let F be the field of fractions of R. Then the conductor C of R
in its integral closure R is non-zero, and R � F \ K �X �.
Proof. Since X is integral over R, R�X � � K �X � is a finitely generated R-

module, and hence K �X � is a Noetherian R-module. By [2], Proposition 7.8,
R is Noetherian. Since K�X � is integrally closed, and F � K�X� we have that
R � K �X �. Therefore R � F \ K �X � is a finitely generated R-module, and
hence C 6� 0.

Lemma 20. Let K be a field, and let k be a positive integer. If R is such that
K �Xk� � R � K �X �, and R 6� K �Xl � for any l > 1 then F � K�X�.
Proof. We have that K�X� contains F , and F strictly contains K�Xk�.

The minimum polynomial of X over K�Xk� is tk ÿ Xk. By [13], Theorem 3.2
the minimum polynomial m of X over F divides tk ÿ Xk in F . By [13],
Theorem 4.2 and Proposition 4.3 the degree of m is less than k. Let r be the
degree of m, and let G be a splitting field of m. Then the zeros of m in G are
g1X ; . . . ; grX for some non-zero g1; . . . ; gr 2 G, and hence the constant term
of m is �ÿ1�rQr

i�1 giX
r where

Qr
i�1 gi is non-zero. Then K�Xr� � F , and by

induction K�X� � F .

Proposition 21. Let K be any field, let k be a positive integer, and let R be a
ring such that K �Xk� � R � K �X �, X l =2 R if l < k, and R 6� K �Xl � for any
l > 1.
1) Then the integral closure of R is K�X �, and ���R� � ��K �X �� � k where

K �X � is considered as a fractional ideal of R.
2) If

Pkÿ1
i�1 aiX

i 2 R for some ai 2 K �Xk�; i � 1; . . . ; kÿ 1, and aj 2 K n f0g
for some j 2 f1; . . . ; kÿ 1g then ���R� < k.

Proof. 1) By Proposition 19 and Lemma 20, K �X � is the integral closure
of R. As K �X � � �1;X ; . . . ;Xkÿ1�R we have that ��K �X �� � k. By Theorem
15, ���R� � ��K �X ��.
2) We have K �X � � �1;X ; . . . ;Xkÿ1�R, and by assumption Xj 2 �1;X ; . . . ;

Xjÿ1;Xj�1; . . . ;Xkÿ1�R. Hence ��K �X �� < k, and by 1) ���R� < k.

Proposition 22. Let R � K �Xk; aXl � for some positive integers k; l and
some a 2 K �Xk� n XkK �Xk� such that k > 1; �k; l� � 1 and Xl =2 R if l < k.
Then
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1) C � X �kÿ1��lÿ1�akÿ1K �X �, and
2) CM is a maximally generated ideal of RM for each M 2 Ass�C�.
Proof. 1) Let f � X �kÿ1��lÿ1�akÿ1. By Proposition 21, R � K�X �. We will

show that fK �X � � R. Since K �X � � �1;X ; . . . ;Xkÿ1�R it is enough to show
that fX i 2 R if i 2 f0; . . . ; kÿ 1g. Let i 2 f0; . . . ; kÿ 1g. As �k; l� � 1 there is
�; � 2 Z such that fXi � X �kÿ1��lÿ1��iakÿ1 � Xk��l�akÿ1. Since � � tk� j for
some j 2 f0; . . . ; kÿ 1g, and t 2 Z we have k� � l� � k�� � lt� � lj, and
therefore we can assume that 0 � � � kÿ 1. Then �kÿ 1��l ÿ 1� � i �
k� � l�, and �kÿ 1ÿ ��l � i � 1 � k� � k. Thus 1 � k� � k, and hence 0 � �
whence fX i 2 R, and fK �X � � R. If c 2 R is such that C � cK �X � then c di-
vides f in K �X �. We have i � kÿ 1 if and only if �kÿ 1ÿ ��l � k�, i.e. if and
only if � � 0 and � � kÿ 1. Hence akÿ1 divides c. If �kÿ 1��
�l ÿ 1� ÿ 1 � k� � l� then �kÿ 1ÿ ��l � k�� � 1� which is impossible.
Hence fXÿ1 =2 C, and thus c � f .
2) If M � XK �X � \ R then MM � �Xk;Xl�, and CM � X �kÿ1��lÿ1��

�1;X ; . . . ;Xminfk;lg�. Thus Xminfk;lgCM �MMCM . If M 2Ass�C�, and a 2M
then M � �b; aXl� for some b 2 K �Xk� such that b divides a in K �Xk�, and
CM � akÿ1�1;X ; . . . ;Xkÿ1�. Hence bCM �MMCM , and CM is maximally
generated for each M 2 Ass�C�.
Proposition 23. Let R � K �Xk; aXl � for some positive integers k; l and

some a 2 K �Xk� n XkK �Xk� such that k > 1; �k; l� � 1, and Xl =2 R if l < k. Let
Ass�C� � fMigti�1, and let M1 � XK �X � \ R.
1) Then ��CM1� � minfk; lg, and if a =2 K then ��CMi� � ���R� � k, for

i � 2; . . . ; t.
2) Let Ii be the unique biggest Mi-primary ideal of R such that

��Ii� � ���RMi�; i � 1; . . . ; t. Then Ii �M
��CMi �ÿ1
i , i � 1; . . . ; t.

Proof. 1) Suppose a =2 K , let i 2 f2; . . . ; tg and let S � R nMi, where
Mi � �b; aXl� for some b 2 K �Xk� such that b divides a in K �Xk�. By
Proposition 22, CMi � akÿ1�1;X ; . . . ;Xkÿ1�, and if ��CMi� < k then akÿ1Xj �
akÿ1

Pkÿ1
��1;� 6�j

r�
s�
X � for some j 2 f1; . . . ; kÿ 1g, r� 2 R and s� 2 S, such that

r� � 1 or b divides r�, � � 1; . . . ; j ÿ 1; j � 1; . . . ; kÿ 1. Let s � Qkÿ1
��1;�j s�.

Then s�Xj ÿP�;r��1
X�

s�
� � s�P�;r� 6�1

r�
s�
X ��, and b divides the right side but

not the left one which is impossible. Thus ��CMi� � k, and by Proposition 21,
���R� � k. Since M1M1 � �Xk;Xl�, and CM1 � X �kÿ1��lÿ1��1;X ; . . . ;Xminfk;lg�
we have ��CM1� � minfk; lg.
2) We have that the embedding dimension emdim RMi � `�MiMi=Mi

2
Mi
� � 2;

i � 1; . . . ; t, and by [3], Theorem 1, IiMi
is the conductor of RMi in its blowing

up ring at MiMi . By [11], Proposition 1.8, IiMi �Mi
e�RMi �ÿ1
Mi

, and by [2],
Proposition 4.8, Ii �Mi

e�RMi �ÿ1; i � 1; . . . ; t where e�RMi� is the multiplicity of
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RMi . By Proposition 22, CMi is maximally generated, and by definition and
Remark 12, e�RMi� � ��CMi�; i � 1; . . . ; t.

By Proposition 23 and Theorems 11 and 18 the set of proper strong ���R�-
generators of R is completely determined when R � K �Xk; aXl �.
Let B be a primitive numerical semigroup generated by some positive in-

tegers n1; . . . ; nl . Then �n1; . . . ; nl� � 1, and there is a least integer g�B� such
that g�B� � i 2 B for i � 1; 2; . . . The integer g�B� is called the Frobenius
number of B.

Proposition 24. Let n1; . . . ; nt be positive integers such that �n1; . . . ; nt� � 1,
and let K �X ;B� � K �Xn1 ; . . . ;Xnt �. Let R be a ring such that K �X ;B� � R �
K �X � where B is maximal such that K �X ;B� � R. Let N � g�B� � 1, and
M � XK �X � \ R. Then
1) C � XNK �X �,
2) ���R� � min v�M�, and if min v�M� � 1 then R � K �X �.
Proof. 1) By Proposition 21, R � K �X �. As XNK �X � � C, and XNÿ1 =2 R

we have C � XNK �X �.
2) Let min v�M� � l, and let f be a polynomial in M such that v�f � � l.

Let m 2 N be minimal such that XmK �X � � �XN ; . . . ;XN�lÿ1�R. If m > N
then let i 2 f0; . . . ; l ÿ 1g and j � 0 be such that N � jl � i � mÿ 1. Hence
XN�if j and XN�i�f j ÿ aXjl� belong to �XN ; . . . ;XN�lÿ1� for some a 2 K such
that f j ÿ aXjl � 0 or v�f j ÿ aXjl� > jl. Thus XN�i�jl � Xmÿ1 2 �XN ; . . . ;

XN�lÿ1� which is a contradiction. Hence m � N, and ��C� � l. Since
CM=MCM � �XN

;XN�1
; . . . ;XN�lÿ1� where X is the image of X in

RM=MRM , and X
N
;X

N�1
; . . . ;X

N�lÿ1 are linearly independent in the
RM=MRM-vector space we have ��C� � ��CM� � l. By Theorem 15,
���R� � l. If min v�M� � 1 then R is a PID, and hence integrally closed.
Thus R � K�X �.
Remark 25. By Proposition 24, C is primary for M � XK �X � \ R, and by

Theorem 15, ���RM� � ���R�. We have K �X �M=XK�X �M ' RM=MM , and
K �X �M is local. By Remarks 12 and 17 the biggest M-primary ideal I such
that ��I� � ���R� can be determined, and by Theorems 11 and 18 the set of
proper strong ���R�-generators in R is determined. If moreover K is infinite
then RM=MM is infinite, and by Remark 12 there is a superficial element in
RM .
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