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NORM OF THE BERGMAN PROJECTION

DAVID KALAJ and MARIJAN MARKOVIĆ

Abstract
This paper deals with the the norm of the weighted Bergman projection operatorPα : L∞(B) → B
where α > −1 and B is the Bloch space of the unit ball B of the Cn. We consider two Bloch
norms, the standard Bloch norm and invariant norm w.r.t. automorphisms of the unit ball. Our
work contains as a special case the main result of the recent paper [6].

1. Introduction and preliminaries

Introduce first the notation which will be used in this paper. We follow the
Rudin monograph [7]. Throughout the whole paper n ≥ 1 is an integer. Let
〈·, ·〉 stands for the inner product in the complex n-dimensional space Cn given
by

〈z, w〉 = z1w1 + · · · + znwn,

where z = (z1, . . . , zn) and w = (w1, . . . , wn) are coordinate representation
of z, w ∈ Cn in the standard base {e1, . . . , en} of Cn. The inner product induces
the Euclidean norm

|z| = 〈z, z〉1/2.

Denote by B the unit ball {z ∈ Cn : |z| < 1}; let S = ∂B be its boundary.
We let v be the volume measure in Cn, normalized so that v(B) = 1. We

will also consider a class of weighted volume measures on B. For α > −1 we
define a finite measure vα on B by

dvα(z) = cα(1 − |z|2)αdv(z),

where cα is a normalizing constant so that vα(B) = 1. Using polar coordinates,
one can easily calculate that

(1) cα =
(

n + α

n

)
.
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It is well known that the bi-holomorphic mappings of B onto itself have the
following form

ϕa(w) = a − 〈w,a〉
|a|2 a − (1 − |a|2)1/2

(
w − 〈w,a〉

|a|2 a
)

1 − 〈w, a〉 for a ∈ B,

up to unitary transformations; for a = 0, we set ϕa = − IdB . In the case
n = 1 this is simply the equality ϕa(w) = (a − w)/(1 − aw). Traditionally,
these mappings are also called bi-holomorphic automorphisms. By Aut(B) =
{U ◦ ϕa : a ∈ B, U ∈ U}, where U is the group of all unitary transformations
of the space Cn, is denoted the group of all bi-holomorphic automorphisms of
the unit ball. One often calls Aut(B) the group of Möbius transformations of
B.

Observe that ϕa(0) = a. Since ϕa is involutive, i.e., ϕa ◦ ϕa = IdB , we also
have ϕa(a) = 0.

The real Jacobian of ϕa is given by the expression

(JRϕa)(w) =
(

1 − |a|2
|1 − 〈w, a〉|2

)n+1

on B.

Two identities

(2) 1 − |ϕa(w)|2 = (1 − |a|2)(1 − |w|2)
|1 − 〈w, a〉|2

and

(3) (1 − 〈w, a〉)(1 − 〈ϕa(w), a〉) = 1 − |a|2

for a, w ∈ B, will also be useful.
By using (2) we obtain the next relation

dvα(ϕa(w)) = (1 − |ϕa(w)|2)α(JRϕa)(w)dv(w)

=
(

(1 − |w|2)(1 − |a|2)
|1 − 〈w, a〉|2

)α(
1 − |a|2

|1 − 〈w, a〉|2
)n+1

dv(w)

=
(

(1 − |a|2)
|1 − 〈w, a〉|2

)n+1+α

dvα(w).

For a holomorphic function f (z) = f (z1, . . . , zn) with ∇f (z) we denote
the complex gradient

∇f (z) =
(

∂f (z)

∂z1
, . . . ,

∂f (z)

∂zn

)
.
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The Bloch space B contains all functions f holomorphic in B for which the
semi-norm ‖f ‖β = sup

z∈B

(1 − |z|2) |∇f (z)|

is finite. One can obtain a true norm by adding |f (0)|, more precisely in the
following way ‖f ‖B = |f (0)| + ‖f ‖β, f ∈ B.

It is well known that B is a Banach space with the above norm. The standard
reference for Bloch space of the unit disc is [1]. For the high dimensions case
we refer to [8], [9], [11].

When 1 ≤ p < ∞, let Lp stands for the Lebesgue space of all measurable
functions in B which modulus with the exponent p is integrable in the unit ball;
for p = ∞ let it be the space of all essentially bounded measurable functions
in the unit ball. Denote by ‖ · ‖p the norm on Lp (for all 1 ≤ p ≤ ∞). For
α > −1 the Bergman projection operator Pα is defined by

Pαg(z) =
∫

B

Kα(z, w)g(w) dvα(w), g ∈ Lp,

where
Kα(z, w) = 1

(1 − 〈z, w〉)n+1+α
, z, w ∈ B

is the weighted Bergman kernel.
Bergman type projections are central operators when dealing with ques-

tions related to analytic function spaces. One wants to prove that Bergman
projections are bounded and the exact operator norm of the operator is of-
ten difficult to obtain. By the F. Forelli-W. Rudin theorem [3], the operator
Pα : Lp → Lp∩H(B) is bounded if and only if α > 1/p−1; here 1 ≤ p < ∞
and H(B) is the space of holomorphic functions in the unit ball. In the same
paper they obtain the norm of Pα for p = 1 and p = 2. M. Mateljević and
M. Pavlović [5] extended this result when 0 < p < 1. On the other hand, for
n = 1, the Bergman projection Pα : L∞ → B is bounded and onto; see [10].
For n > 1 the operator Pα : L∞ → B is surjective what can be seen from [11,
Theorem 3.4] in the Zhu book.

The β-norm and B-norm of the Bergman projection Pα : L∞ → B are

‖Pα‖β = sup
‖g‖∞≤1

‖Pαg‖β, ‖Pα‖B = sup
‖g‖∞≤1

‖Pαg‖B ,

respectively.
There are several equivalent ways to introduce the Bloch space in the unit

ball of Cn. The preceding one is natural and straightforward but the norm
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defined in that way is not invariant with respect to the group Aut(B). The
following Bloch norm has this property. For f ∈ H(B), we define the invariant
gradient |∇̃f (z)|, where

∇̃f (z) = ∇(f ◦ ϕz)(0),

and where ϕz is an automorphisms of the unit ball such that ϕz(0) = z. This
norm is invariant w.r.t. automorphisms of the unit ball. Namely,

|∇̃(f ◦ ϕ)| = |(∇̃f ) ◦ ϕ|
for all ϕ ∈ Aut(B). Then the Bloch space B contains all holomorphic functions
f in the ball B for which

‖f ‖β̃ := sup
z∈B

|∇̃f (z)| < ∞

(cf. [11, Theorem 3.4] or [8]).
For n = 1 we have

|∇̃f (z)| = (1 − |z|2)|∇f (z)|,
but for n > 1 this is no longer true. Notice that ‖ · ‖β̃ is also a semi-norm. One
can obtain a norm in the following way

‖f ‖B̃ = |f (0)| + ‖f ‖β̃ , f ∈ B.

The β̃-norm and B̃-norm of the Bergman projection is

‖Pα‖β̃ = sup
‖g‖≤1

‖Pαg‖β̃ , ‖Pα‖B̃ = sup
‖g‖≤1

‖Pαg‖B̃ .

From the proof of [11, Theorem 3.4] we find out that

‖Pαg‖β̃ ≤ C‖g‖∞,

where C is a positive constant. The later implies that Pα is a bounded operator
since

‖Pα‖B̃ ≤ 1 + ‖Pα‖β̃ .

Before stating the main results let us prove the following simple lemma.

Lemma 1.1. For every α > −1 we have

(4) ‖Pα‖B ≤ 1 + ‖Pα‖β
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and

(5) ‖Pα‖B̃ ≤ 1 + ‖Pα‖β̃ .

Proof. Since

|Pαg(0)| =
∣∣∣∣
∫

B

g(w) dvα(w)

∣∣∣∣ ≤ ‖g‖∞

it follows that

‖Pαg‖B = |Pαg(0)| + ‖Pαg‖β ≤ ‖g‖∞ + ‖Pα‖β‖g‖∞.

This implies (4). The relation (5) can be proved similarly.

In this paper we find the exact norm of Pα w.r.t. β-Bloch (semi-)norm.
It is the content of our Theorem 1.2 which generalizes the result from the
recent paper [6] in two directions. We also estimate the β̃-Bloch (semi-)norm
in Theorem 1.3.

For simplicity in computation which follows, it is convenient to introduce

θ = n + 1 + α.

Let
Cα = �(θ + 1)

�2((θ + 1)/2)
,

where � is Euler’s Gamma function. In this paper we prove the following two
theorems and present their proofs in the following two sections.

Theorem 1.2. For the β-(semi-)norm of the Bergman projection Pα we
have ‖Pα‖β = Cα.

In order to formulate the next theorem, assume that n > 1 and define the
following function on the real line:

(6) �(t) = θ

∫
B

|(1 − w1) cos t + w2 sin t |
|w1 − 1|θ dvα(w).

Theorem 1.3. For α > −1 we have

(7) �(π/2) = π

2
�(0) = π

2
Cα.

For the β̃-(semi-)norm of the Bergman projection Pα we have

(8) ‖Pα‖β̃ = C̃α := max
0≤t≤π/2

�(t)
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and

(9)
π

2
Cα ≤ ‖Pα‖β̃ ≤

√
π2 + 4

2
Cα.

Remark 1.4. For α = 0 we put P = P0 and we have

‖P ‖β = (n + 1)!

�2
(
1 + n

2

) .

Moreover, for n = 1 we obtain

‖P ‖β = 8

π
,

which presents the main result in [6]. As an immediate corollary of The-
orem 1.2, Theorem 1.3 and Lemma 1.1 we have the following norm estimates
of the Bergman projection

Cα ≤ ‖Pα‖B ≤ 1 + Cα

and
π

2
Cα ≤ ‖Pα‖B̃ ≤ 1 +

√
π2 + 4

2
Cα.

Conjecture 1.5. In connection with Theorem 1.3, we conjecture that

C̃α = π

2
Cα.

The next corollary is an immediate consequence of the boundedness of Pα .

Corollary 1.6. If f is holomorphic in B and if �f ∈ L∞, then f ∈ B.
Moreover, there exist C such that

‖f ‖β, ‖f ‖β̃ ≤ C‖�f ‖∞.

Proof. Note that for g ∈ H∞(B),

Pαg = g, Pαg = g(0).

Assume that f is holomorphic and moreover that f (0) = 0. Let u = �f and
fr(z) = f (rz) for 0 < r < 1. We have

fr = Pαfr = Pα(fr + fr) = 2Pαur



norm of the bergman projection 149

and follows

‖fr‖β = ‖2Pαur‖β = 2‖Pαur‖β ≤ 2Cα‖ur‖∞.

Letting r → 1 and α → −1, we obtain

‖f ‖β ≤ 2C−1‖�f ‖∞,

where
C−1 = lim

α→−1
Cα = n!�−2

(
n + 1

2

)
.

Thus if f is holomorphic in B and if �f ∈ L∞, then f ∈ B. If we remove
the assumption f (0) = 0, we obtain

‖f ‖β = ‖f − f (0)‖β ≤ 2C−1‖�(f − f (0))‖∞ ≤ C‖�f ‖∞,

where we set C = 4C−1.

2. Proof of Theorem 1.2

What we have to find is

‖Pα‖β = sup
{
(1 − |z|2) |∇z(Pαg)(z)| : |z| < 1, ‖g‖∞ ≤ 1

}
.

A straightforward calculation yields

(10) ∇zKα(z, w) = θw

(1 − 〈z, w〉)θ+1
, z, w ∈ B,

and this implies the formula

∇z(Pαg)(z) =
∫

B

∇zKα(z, w)g(w) dvα(w), z ∈ B.

For a fixed z ∈ B and for ‖g‖∞ ≤ 1 we have the following estimates

|∇(Pαg)(z)| = sup
ζ∈S

|〈∇Pαg(z), ζ 〉|

= sup
ζ∈S

∣∣∣∣
∫

B

〈∇zKα(z, w)g(w), ζ 〉 dvα(w)

∣∣∣∣
≤ sup

ζ∈S

∫
B

|〈∇zKα(z, w)g(w), ζ 〉| dvα(w)
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= sup
ζ∈S

∫
B

∣∣∣∣
〈

θw

(1 − 〈z, w〉)θ+1
, ζ

〉∣∣∣∣|g(w)| dvα(w)

≤ sup
ζ∈S

∫
B

θ |〈w, ζ 〉|
|1 − 〈z, w〉|θ+1

dvα(w).

Denote

Fζ (z) = θ

∫
B

(1 − |z|2)|〈w, ζ 〉|
|1 − 〈z, w〉|θ+1

dvα(w).

The statement of the Theorem 1.2 will follow directly from the following two
equalities

‖Pα‖β = sup{Fζ (z) : z ∈ B, ζ ∈ S} = Cα,

which will be proved through the following lemmas.

Lemma 2.1. For every α > −1 we have

sup{Fζ (z) : z ∈ B, ζ ∈ S} ≤ Cα.

Lemma 2.2. For every α > −1 there exists a sequence of functions {gm ∈
L∞ : ‖gm‖∞ = 1} and a sequence of vectors {zm ∈ B} such that

lim(1 − |zm|2)|∇(Pαgm)(zm)| = Cα.

In order to give proofs of the previous lemmas we need [7, Proposi-
tion 1.4.10] and some its corollaries collected in the following proposition.

Proposition 2.3. a) For z ∈ B, c real, t > −1 define

Jc,t (z) =
∫

B

(1 − |w|2)t
|1 − 〈z, w〉|n+1+t+c

dv(w).

When c < 0, then Jc,t is bounded in B. Moreover,

(11) Jc,t (z) = �(n + 1)�(t + 1)

�(λ1)2

∞∑
k=0

�2(k + λ1)|z|2k

�(k + 1)�(n + 1 + t + k)
,

where λ1 = (n + 1 + t + c)/2.
b) Further we can write Jc,t in the closed form as

(12) Jc,t (z) = �(n + 1)�(t + 1)

�(n + 1 + t)
2F1(λ1, λ1, n + 1 + t, |z|2),
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where 2F1 is the Gauss hypergeometric function. In particular

(13) Jc,t (z/|z|) = �(n + 1)�(t + 1)�(−c)

�2((n + 1 + t − c)/2)
, z �= 0.

Proof. The first part of this proposition coincides with the first part of [7,
Proposition 1.4.10] together with its proof. In order to prove the part b) we
recall the classical definition of the Gauss hypergeometric function:

(14) F (a, b, c, z) = 1 +
∞∑

k=1

(a)k(b)k

(c)k

zk

k!
,

where (d)k = d(d + 1) . . . (d + k − 1) is the Pochhammer symbol. The
series converges at least for complex z ∈ U := {z : |z| < 1} ⊆ C and for
z ∈ T := {z : |z| = 1}, if c > a + b. For �(c) > �(b) > 0 we have the
following well-known formula

(15) F (a, b, c, z) = �(c)

�(b)�(c − b)

∫ 1

0

tb−1(1 − t)c−b−1

(1 − tz)a
dt.

In particular the Gauss theorem states that

(16) F (a, b, c, 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
, �(c) > �(a + b).

In order to derive (12) from (11), we use the formula �(x + 1) = x�(x) and
obtain

(17) �(k + λ1) = (λ1)k�(λ1)

and

(18) �(n + 1 + t + k) = (n + 1 + t)k�(n + 1 + t).

From (14), (17) and (18), by taking a = b = λ1 and c = n + 1 + t , we
derive (12). The formula (13) follows from (16) and observing that c > a+b =
n + 1 + t + c.

Also we need the Vitali theorem, and include its formulation (cf. [4, The-
orem 26.C]).

Theorem 2.4 (Vitali). Let X be a measure space with finite measure μ,

and let hm : X �→ C be a sequence of functions that is uniformly integrable,
i.e., such that for every ε > 0 there exists δ > 0, independent of k satisfying

(†) μ(E) < δ �⇒
∫

E

|hm| dμ < ε.
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Now: if lim hm(x) = h(x) a.e., then

(‡) lim
∫

X

hm dμ =
∫

X

h dμ.

In particular, if

sup
∫

X

|hm|p dμ < ∞ for some p > 1,

then (†) and (‡) hold.

Proof of Lemma 2.1. For fixed z ∈ B let us make the change of variables
w = ϕz(ω), ω ∈ B in the integral which represent Fζ (z). In previous section
we obtained the next relation for pull-back measure

dvα(ϕz(ω)) =
(
1 − |z|2)θ

|1 − 〈z, ω〉|2θ
dvα(ω).

By using this result and relation (3) in the forth equality, we find

θ−1Fζ (z) =
∫

B

(1 − |z|2)|〈w, ζ 〉|
|1 − 〈z, w〉|θ+1

dvα(w)

=
∫

B

(1 − |z|2)|〈ϕz(ω), ζ 〉|
|1 − 〈z, ϕz(ω)〉|θ+1

(1 − |z|2)θ
|1 − 〈z, ω〉|2θ

dvα(ω)

=
∫

B

(1 − |z|2)θ+1|〈ϕz(ω), ζ 〉|
|1 − 〈z, ϕz(ω)〉|θ+1|1 − 〈z, ω〉|2θ

dvα(ω)

=
∫

B

(|1 − 〈z, ω〉|θ+1|1 − 〈z, ϕz(ω)〉|)θ+1|〈ϕz(ω), ζ 〉|
|1 − 〈z, ϕz(ω)〉|θ+1|1 − 〈z, ω〉|2θ

dvα(ω)

=
∫

B

|〈ϕz(ω), ζ 〉|
|1 − 〈z, ω〉|θ−1

dvα(ω).

Therefore

(19) θ−1Fζ (z) =
∫

B

|〈ϕz(ω), ζ 〉|
|1 − 〈z, ω〉|θ−1

dvα(ω).

From the last representation of Fζ (z), since

|〈ϕz(ω), ζ 〉| ≤ 1, z ∈ B, ζ ∈ S,
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we infer
θ−1Fζ (z) =

∫
B

|〈ϕz(ω), ζ 〉|
|1 − 〈z, ω〉|θ−1

dvα(ω)

≤ cα

∫
B

(1 − |ω|2)α dv(ω)

|1 − 〈z, ω〉|θ−1
= cαJc,t (z),

where we set t = α, c = −1;

cα =
(

n + α

n

)
= �(n + 1 + α)

�(n + 1)�(α + 1)

as in (1). Then λ1 = (n + α)/2 (the parameter from Proposition 2.3).
For z ∈ B, z �= 0 we have

Jc,t (z) ≤ Jc,t (z/|z|) = �(n + 1)�(α + 1)

�2((n + 1 + α + 1)/2)
.

Thus

(20) θ−1Fζ (z) ≤ cα

�(n + 1)�(α + 1)

�2((n + 1 + α + 1)/2)
= θ−1Cα

what is the statement of this lemma.

Proof of Lemma 2.2. Take ζ = e1 and zm = m
m+1ζ . Define

gm(w) = w1

|w1|
|1 − 〈zm, w〉|θ+1

(1 − 〈w, zm〉)θ+1
, w ∈ B, w1 �= 0.

Then gm ∈ L∞ and ‖gm‖∞ = 1. Further from (19) and (10) we obtain

(1 − |zm|2)|∇(Pαgm)(zm)| ≥ (1 − |zm|2)|〈∇(Pαgm)(zm), ζ 〉|

= (1 − |zm|2)
∣∣∣∣
∫

B

〈∇zKα(z, w)gm(w), ζ 〉 dvα(w)

∣∣∣∣
= θ

∫
B

(1 − |zm|2)|w1|
|1 − 〈zm, w〉|θ+1

dvα(w)

= θ

∫
B

|〈ϕzm
(ω), ζ 〉|

|1 − 〈zm, ω〉|θ−1
dvα(ω) =: Gm.

For p = θ−1/2
θ−1 (note that p > 1), according to Proposition 2.3 (take c = −1/2

and t = α)

sup
∫

B

( |〈ϕzm
(ω), ζ 〉|

|1 − 〈zm, ω〉|θ−1

)p

dvα(ω) < ∞
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(notice also that |〈ϕzm
(ω), ζ 〉| ≤ 1). Therefore by the Vitali theorem

lim Gm = θ lim
∫

B

|〈ϕzm
(ω), ζ 〉|

|1 − 〈zm, ω〉|θ−1
dvα(ω)

= θ

∫
B

lim
|〈ϕzm

(ω), ζ 〉|
|1 − 〈zm, ω〉|θ−1

dvα(ω).

For fixed ω ∈ B we have

lim
|〈ϕzm

(ω), ζ 〉|
|1 − 〈zm, ω〉|θ−1

= |〈ζ, ζ 〉|
|1 − 〈ζ, ω〉|θ−1

= 1

|1 − 〈ζ, ω〉|θ−1
.

Therefore, by using again Proposition 2.3, we obtain

lim(1 − |zm|2)|∇(Pαg)(zm)| = θcαJ−1,α(e1)

= θ

(
n + α

n

)
�(n + 1)�(α + 1)

�2((n + 1 + α + 1)/2)

= �(θ + 1)

�2((θ + 1)/2)
= Cα,

what finishes the proof of this lemma.

3. Proof of Theorem 1.3

We have to find and estimate the following extremum

C̃α = ‖Pα‖β̃ = sup
{|∇̃z(Pαg)(z)| : |z| < 1, ‖g‖∞ ≤ 1

}
.

We first prove (8). It follows from the following two lemmas.

Lemma 3.1. For α > −1 and � defined in (6) we have

C̃α ≤ max
0≤t≤π/2

�(t).

Proof. Let f = Pαg. We begin as in the proof of [11, Theorem 3.4]. We
have

(f ◦ ϕa)(z) = (Pαg ◦ ϕa)(z) =
∫

B
Kα(ϕa(z), w)g(w) dvα(w)

=
∫

B
Kα(ϕa(z), ϕa(w))g(ϕa(w)) dvα(ϕa(w))
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Since
1 − 〈ϕa(z), ϕa(w)〉 = (1 − 〈a, a〉)(1 − 〈z, w〉)

(1 − 〈z, a〉)(1 − 〈a, w〉) ,

we have

f ◦ ϕa(z) = (1 − 〈z, a〉)θ
(1 − |a|2)θ

∫
B

(1 − 〈a, w〉)θ
(1 − 〈z, w〉)θ g ◦ ϕa(w) dvα(ϕa(w)).

Differentiating in z at 0 by using the product rule we have

∇̃f (a) = θ

∫
B

(w − a)(1 − 〈a, w〉)θ
(1 − |a|2)θ g ◦ ϕa(w) dvα(ϕa(w)),

where

dvα(ϕa(w)) =
(

(1 − |a|2)
|1 − 〈w, a〉|2

)θ

dvα(w).

Thus

(21) ∇̃f (a) = θ

∫
B

(w − a)(1 − 〈a, w〉)θ
|1 − 〈w, a〉|2θ

g ◦ ϕa(w) dvα(w),

and consequently for

(22) θ ′ =
(

n + α

n

)
θ,

|∇̃f (a)| = θ sup
ζ∈S

∣∣∣∣
∫

B

〈 (w − a)(1 − 〈a, w〉)θ
|1 − 〈w, a〉|2θ

g ◦ ϕa(w), ζ 〉 dvα(w)

∣∣∣∣
≤ θ ′ sup

ζ∈S

∫
B

∣∣∣∣
〈

(w − a)

|1 − 〈w, a〉|θ , ζ

〉∣∣∣∣|g ◦ ϕa(w)|(1 − |w|2)α dv(w)

≤ θ ′‖g‖∞ sup
ζ∈S

∫
B

|〈w − a, ζ 〉| (1 − |w|2)α
|1 − 〈w, a〉|θ dv(w).

Let
L(a) = sup

ζ∈S

∫
B

|〈w − a, ζ 〉| (1 − |w|2)α
|1 − 〈w, a〉|θ dv(w)

and define
L = sup

a∈B

L(a).

Then
L = sup

a∈B

sup
ζ∈S

∫
B

|Sζ,w(a)| dvα(w),
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where
Sζ,w(a) = 〈w − a, ζ 〉

(1 − 〈w, a〉)θ .

Observe that Sζ,w(a) is a subharmonic function in a. It follows that a → L(a)

is subharmonic and its maximum is achieved on the boundary of the unit ball.
Therefore there exist a0, ζ0 ∈ S such that

L =
∫

B

|〈w − a0, ζ0〉| (1 − |w|2)α
|1 − 〈w, a0〉|θ dv(w).

Let U be an unitary transformation of Cn onto itself such that Ua0 = e1 and
Uζ0 = cos te1 + sin te2 for some t ∈ [0, π ] (Here t = arg(a0, ζ0)). Take the
substitution w = Uω. Then we obtain

L =
∫

B

|〈Uω − Ue1, ζ0〉| (1 − |Uω|2)α
|1 − 〈Uω, a0〉|θ dv(Uω)

=
∫

B

|〈ω − e1, Uζ0〉| (1 − |ω|2)α
|1 − 〈ω, Ua0〉|θ dv(ω)

=
∫

B

|〈ω − e1, cos te1 + sin te2〉| (1 − |ω|2)α
|1 − 〈ω, e1〉|θ dv(ω)

=
∫

B

|(1 − w1) cos t + w2 sin t |
|w1 − 1|θ dvα(w).

Lemma 3.2. Let � be defined as in (6). Then

C̃α ≥ �(π/2).

Proof. Let ζ = e2, a = εme1, where εm = m
m+1 . Then

|〈∇̃f (a), ζ 〉| = θ ′
∣∣∣∣
∫

B

w2(1 − εmw1)
θ (1 − |w|2)α

|1 − εmw1|2θ
g ◦ ϕa(w) dv(w)

∣∣∣∣.
Define gm such that

w2(1 − εmw1)
θgk ◦ ϕa(w) = |w2(1 − εmw1)

θ |
and let fm = Pαgm. We obtain

|〈∇̃fm(a), ζ 〉| = θ ′
∫

B

|w2| (1 − |w|2)α
|1 − εmw1|θ dv(w).
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Thus
C̃α ≥ sup

m,ζ,a

|〈∇̃fm(a), ζ 〉| ≥ �(π/2).

In order to prove (7) and (9) we need the following lemma (which is an ex-
tension of a corresponding result of L. Bungart, G. Folland and Ch. Fefferman,
cf. [7, Proposition 1.4.9]).

Lemma 3.3. For a multi-index η = (η1, . . . , ηn) we have

(23)

∫
S

|ζ η| dσ(ζ ) = (n − 1)!
∏n

j=1 �
(
1 + ηj

2

)
�

(
n + |η|

2

)
and

(24)

∫
B

|zη| dvα(z) = �(θ)

�
(
θ + |η|

2

)
n∏

j=1

�

(
1 + ηj

2

)
;

here, wη = ∏n
j=1 w

ηj

j , |η| = ∑n
j=1 ηj ; σ is the area normalized measure on

S.

Proof. We have to adapt the proof of corresponding result in Rudin’s book,
where it is proved the same statement for η = 2χ , where χ is a multi-index.
We only sketch the proof.

Denote
I =

∫
Cn

|zη| exp(−|z|2) dV (z),

where dV is the ordinary Lebesgue measure on Cn. By Fubini’s theorem

I =
n∏

j=1

∫
C
|λ|ηj exp(−|λ|2) dV (λ).

One can easily derive

I = πn

n∏
j=1

�(1 + ηj/2).

On the other hand, by applying the polar coordinates transformation in I , we
obtain (ω2n is the volume measure of unit ball)

I = 2nω2n

∫ ∞

0
r |η|+2n−1 exp(−r2) dr

∫
S

|ζ η| dσ(ζ ).
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From the last two expression for I it follows the first result of this lemma.
Let us prove now (24). In

∫
B

f (x) dvα(x) = 2n

(
n + α

n

) ∫ 1

0
r2n−1(1 − r2)α dr

∫
S

f (rζ ) dσ (ζ ),

take f (z) = |z|η. Since

∫
S

f (rζ ) dσ (ζ ) = r |η| (n − 1)!
∏n

j=1 �
(
1 + ηj

2

)
�

(
n + |η|

2

)

and

2n

(
n + α

n

) ∫ 1

0
r2n+|η|−1(1 − r2)α dr = �(1 + α + n)�

(
n + |η|

2

)
�(n)�

(
1 + α + n + |η|

2

) ,

it follows the relation.

The relation (7) and the left-hand inequality in (9) follows from the follow-
ing lemma (in view of (7)).

Lemma 3.4. Let �(t) be defined as in (6). Then �(0) = Cα and �(π/2) =
π
2 Cα .

Proof. The relation �(0) = Cα follows at once.
Prove the second relation. Observe first that for l �= k

∫
B

wl
1w

k
1|w2| dv(w) = 0.

By choosing η(k) = (2k, 1, 0, . . . , 0) we obtain

J =
∫

B

|w2|
|1 − w1|θ dvα(w) =

∫
B

|w2|
|(1 − w1)θ/2|2 dvα(w)

=
∞∑

k=0

(−θ/2

k

)2 ∫
B

|w1|2k|w2| dvα(w),

w = (w1, . . . , wn). From (24) we find that

∫
B

|w1|2k|w2| dvα(w) =
∫

B

|zη(k)| dvα(z) = �(θ)�
(

3
2

)
�(1 + k)

�
(
θ + |η|

2

) .
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Therefore

J = �
(

3
2

)
�(θ)

∞∑
k=0

(−θ/2

k

)2
k!

�
(
θ + k + 1

2

) = �
(

3
2

)
�(θ)

�
(
θ + 1

2

)
∞∑

k=0

((
θ
2

)
k

)2

(
θ + 1

2

)
k
k!

= �
(

3
2

)
�(θ)

�
(
θ + 1

2

) 2F1

(
θ

2
,
θ

2
; θ + 1

2
; 1

)
= π�(θ)

2�2
(

θ
2 + 1

2

) .

The last equality is derived with help of Gauss theorem, i.e., of the relation (16).
Hence

�(π/2) = θ

∫
B

|w2|
|1 − w1|n+1

dvα(w)

= πθ�(θ)

2�2
(

θ
2 + 1

2

) = π

2

�(θ + 1)

�2
(

θ
2 + 1

2

)
(

>
�(θ + 1)

�2
(

θ
2 + 1

2

) = ‖P ‖β

)
.

To finish the proof of Theorem 1.3 we need to prove the right inequality
in (9). It follows from this simple observation

C̃α ≤ | sin t |�(0) + | cos t |�(π/2) ≤
√

�(0)2 + �(π/2)2.

Remark 3.5. If g ∈ C(B) and f = Pα[g], then it follows from (21) and
Vitali’s theorem that there exist a mapping � : S → Cn such that for ζ ∈ S

lim
a→ζ

∇̃f (a) = g(ζ )�(ζ ).

But if g is a polynomial, then we know that lima→t ∇̃f = 0, implying that

�(ζ) =
∫

B

(w − ζ )(1 − 〈ζ, w〉)θ
|1 − 〈w, ζ 〉|2θ

dvα(w) = 0 for ζ ∈ S.

If by B0 we denote the little Bloch space, i.e. the space of holomorphic map-
pings f defined on the unit ball such that

lim|z|→1
|∇̃f (z)| = 0,

and consider the Bergman projection

Pα : C(B) → B,

then by the previous consideration we obtain

Pα(C(B)) ⊂ B0 ⊂ B.
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It follows that ‖Pα : C(B) → B0‖ ≤ C̃α

w.r.t. invariant β̃ Bloch semi-norm. Moreover, since the extremal sequence (see
the proof of Lemma 3.2) is consisted of continuous functions gk , we obtain
that ‖Pα : C(B) → B0‖ = C̃α.

The same can be repeated for the standard β Bloch semi-norm. We refer to [2,
Table 2] for the image under Bergman projection P of some spaces different
from L∞ and C(B) (for n = 1).
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