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SOME SHARP ESTIMATES FOR THE HAAR SYSTEM
AND OTHER BASES IN L1(0, 1)

ADAM OSȨKOWSKI∗

Abstract
Let h = (hk)k≥0 denote the Haar system of functions on [0, 1]. It is well known that h forms an
unconditional basis of Lp(0, 1) if and only if 1 < p < ∞, and the purpose of this paper is to
study a substitute for this property in the case p = 1. Precisely, for any λ > 0 we identify the best
constant β = βh(λ) ∈ [0, 1] such that the following holds. If n is an arbitrary nonnegative integer
and a0, a1, a2, . . ., an are real numbers such that ‖∑n

k=0 akhk‖1 ≤ 1, then∣∣∣∣
{
x ∈ [0, 1] :

∣∣∣∣
n∑

k=0

εkakhk(x)

∣∣∣∣ ≥ λ

}∣∣∣∣ ≤ β,

for any sequence ε0, ε1, ε2, . . . , εn of signs. A related bound for an arbitrary basis of L1(0, 1) is
also established. The proof rests on the construction of the Bellman function corresponding to the
problem.

1. Introduction

Our motivation comes from a very natural question about h = (hn)n≥0, the
Haar system on [0, 1]. Recall that this collection of functions is given by (we
identify a set with its indicator function):

h0 = [0, 1),

h2 = [0, 1/4) − [1/4, 1/2),

h4 = [0, 1/8) − [1/8, 1/4),

h6 = [1/2, 5/8) − [5/8, 3/4),

h1 = [0, 1/2) − [1/2, 1),

h3 = [1/2, 3/4) − [3/4, 1),

h5 = [1/4, 3/8) − [3/8, 1/2),

h7 = [3/4, 7/8) − [7/8, 1)

and so on. A classical result of Schauder [12] states that the Haar system forms
a basis of Lp = Lp(0, 1), 1 ≤ p < ∞ (throughout, the underlying measure
will be the Lebesgue measure). That is, for every f ∈ Lp there is a unique
sequence a = (an)n≥0 of real numbers satisfying ‖f − ∑n

k=0 akhk‖p → 0.
Let βp(h) be the unconditional constant of h, i.e. the least β ∈ [1, ∞] with the
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property that if n is a nonnegative integer and a0, a1, . . . , an are real numbers
such that ‖ ∑n

k=0 akhk‖p ≤ 1, then

(1.1)

∥∥∥∥
n∑

k=0

εkakhk

∥∥∥∥
p

≤ β

for all choices of signs εk ∈ {−1, 1}. Using Paley’s inequality [10], Mar-
cinkiewicz [3] proved that βp(h) < ∞ if and only if 1 < p < ∞. This fact
and its various extensions turned out to be very useful in the study of singular
integrals, stochastic integrals, the structure of Banach spaces and in several
other areas of mathematics. It follows from the results of Olevskiı̌ [8], [9] that
the Haar system is extremal in the following sense: if e is another basis of Lp,
then

(1.2) βp(h) ≤ βp(e), 1 < p < ∞.

Lindenstrauss and Pełczyński [2] gave a different proof of this fact, using
Liapunoff’s theorem on the range of a vector measure. The precise value of
βp(h) was determined by Burkholder: we have

βp(h) = p∗ − 1, 1 < p < ∞,

where p∗ = max{p, p/(p −1)}. The original proof of this formula, presented
in [1], is quite complicated and technically involved (for the clarification and
much more, see the recent paper of Vasyunin and Volberg [14]). The idea rests
on the so-called Bellman function method, a powerful tool which has its roots
at the optimal control theory. Namely, Burkholder studies the following more
general problem: for any 1 < p < ∞, F, G ∈ R and M ≥ |F |, set

(1.3) B(F, G, M) = sup

{∥∥∥∥G +
n∑

k=1

εkakhk

∥∥∥∥
p

}
,

where the supremum is taken over all n, all a1, a2, . . . , an ∈ R and ε1, ε2, . . . ,

εn ∈ {−1, 1} such that
∥∥F + ∑n

k=1 akhk

∥∥
p

≤ M . The function B turns
out to satisfy a certain second-order partial differential equation, which was
successfully solved by Burkholder. Coming back to the original problem, it
can be proved that

βp(h) = sup
M≥1

B(1, 1, M)

M
= p∗ − 1.

We will be interested in finding an appropriate substitute for the above con-
siderations in the limit case p = 1. We need to find the right replacement for the
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p-th norm appearing in (1.1) and (1.3), and this will be accomplished by the use
of a distribution function. To be more precise, suppose that F, G are given real
numbers and let M ≥ |F |. We will determine the least constant B(F, G, M)

with the property that if n is a nonnegative integer and a1, a2, . . . , an are real
numbers such that

∥∥F + ∑n
k=1 akhk

∥∥
1 ≤ M , then∣∣∣∣

{
x ∈ [0, 1] :

∣∣∣∣G +
n∑

k=1

εkakhk(x)

∣∣∣∣ ≥ 1

}∣∣∣∣ ≤ B(F, G, M).

This gives very precise information on the “unconditional” behavior of the Haar
series in L1. We will also establish related sharp one-sided bounds (obtained
earlier by Nazarov et. al. [4] using a slightly different approach) and present
some interesting estimates for other types of bases of L1(0, 1), which can be
regarded as weak analogues of Olevskiı̌’s inequality (1.2).

A few words about the proof and the organization of the paper are in order.
Our approach rests on the Bellman function method, which is described in the
next section. Section 3 contains the study of the one-sided estimate and can
be regarded as the preparation for Section 4, where we determine the explicit
formula for the above function B. The final part part of the paper contains some
further results concerning weak unconditional constants for arbitrary bases of
L1(0, 1).

2. Bellman function method

We start with the description of the main tool used in the proofs of our results.
The technique is well-known and appears in numerous papers in the literature,
so we will be brief. For much more detailed exposition, examples and con-
nections we refer the interested reader to the papers [5], [6], [14], [13] and
[15].

Let V : R × R → R be a fixed function and put

D = {(F, G, M) ∈ R × R × [0, ∞) : |F | ≤ M}.
For any (F, G, M) ∈ D , introduce the class C (F, G, M) which consists of all
pairs (f, g) of functions on [0, 1], which are of the form

f = F +
n∑

k=1

akhk, g = G +
n∑

k=1

εkakhk

for some n, some a1, a2, . . . , an ∈ R and ε1, ε2, . . . , εn ∈ {−1, 1}, and such
that ‖f ‖1 ≤ M . We define the Bellman function B : D → R ∪ {∞} by

(2.1) B(F, G, M) = sup

{∫ 1

0
V (f (x), g(x)) dx : (f, g) ∈ C (F, G, M)

}
.
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Observe that the problem described in the previous section can be rewritten in
the above form, with V (x, y) = 1{|y|≥1}.

The fundamental property of the function B is described in the statement
below.

Theorem 2.1. The function B is the smallest function on D for which the
two following conditions hold:

(a) (Majorization) We have B(F, G, M) ≥ V (F, G) for all (F, G, M) ∈
D .

(b) (Diagonal concavity) For any (F−, G−, M−), (F+, G+, M+) ∈ D such
that |F+ − F−| = |G+ − G−|, we have

(2.2) B

(
F− + F+

2
,
G− + G+

2
,
M− + M+

2

)

≥ 1

2
B(F−, G−, M−) + 1

2
B(F+, G+, M+).

Proof. Let us start with showing that B satisfies (a) and (b). The first con-
dition follows immediately from the observation that the functions f ≡ F ,
g ≡ G belong to C (F, G, M). To prove the second property, pick (f−, g−) ∈
C (F−, G−, M−) and (f+, g+) ∈ C (F+, G+, M+) and splice them together
into one pair, given by

(f (x), g(x)) =
{

(f−(2x), g−(2x)) if x < 1/2,

(f+(2x − 1), g+(2x − 1)) if x ≥ 1/2.

From the structure of the Haar system, we see that there is a finite N such that

f = F− + F+
2

+
N∑

k=1

akhk, g = G− + G+
2

+
N∑

k=1

bkhk.

The assumption |F+ −F−| = |G+ −G−| implies that a1 = ±b1. Furthermore,
for any n ≥ 2 we have an = ±bn, since, by the structure of the Haar system,
an, bn are the corresponding coefficients of the functions f− and g−, or the
functions f+ and g+ (depending on whether the support of hn is contained in
the left or in the right half of [0, 1)). Finally, by the triangle inequality, we
have

‖f ‖1 ≤ 1

2
‖f−‖1 + 1

2
‖f+‖1 ≤ M− + M+

2
,



inequalities for the haar system 127

which gives (f, g) ∈ C ((F− + F+)/2, (G− + G+)/2, (M− + M+)/2). In
consequence,

B

(
F− + F+

2
,
G− + G+

2
,
M− + M+

2

)

≥
∫ 1

0
V (f (x), g(x)) dx

= 1

2

∫ 1

0
V (f−(x), g−(x)) dx + 1

2

∫ 1

0
V (f+(x), g+(x)) dx.

Since the pairs (f−, g−), (f+, g+) were arbitrary elements of C (F−, G−, M−)

and C (F+, G+, M+), respectively, the condition (b) follows.
Next, suppose that B : D → R is any function satisfying the properties

(a) and (b). Pick (F, G, M) ∈ D and a pair (f, g) ∈ C (F, G, M). There is a
nonnegative integer N and appropriate coefficients ak and εk such that

f = F +
N∑

k=1

akhk and g = G +
N∑

k=1

εkakhk.

For any n ≥ 0, let fn = F + ∑n
k=1 akhk , gn = G + ∑n

k=1 εkakhk and
Mn be, respectively, the projections of f , g and |f | on the space spanned by
h0, h1, . . . , hn. Note that |fn| ≤ Mn almost everywhere, which can be showed,
for example, by the use of a backward induction. The key step lies in proving
that for all n ≥ 0,

∫ 1

0
B(fn+1(x), gn+1(x), Mn+1(x)) dx ≤

∫ 1

0
B(fn(x), gn(x), Mn(x)) dx.

To do this, let I denote the support of hn+1. The functions B(fn, gn, Mn) and
B(fn+1, gn+1, Mn+1) coincide on [0, 1) \ I , so it suffices to show that

∫
I

B(fn+1(x), gn+1(x), Mn+1(x)) dx ≤
∫

I

B(fn(x), gn(x), Mn(x)) dx.

However, fn, gn and Mn are constant on I ; denote the corresponding three
values by x, y and z, respectively. Then the triple (fn+1, gn+1, Mn+1) equals
(x + an+1, y + εn+1an+1, z + bn+1) on the left half of I and (x − an+1, y −
εn+1an+1, z−bn+1) on the right half of this interval (here bn+1 is the appropriate
coefficient of |f |). Consequently, the above estimate can be transformed into



128 adam osȩkowski

the equivalent bound

1

2
B(x + an+1,y + εn+1an+1, z + bn+1)

+ 1

2
B(x − an+1, y − εn+1an+1, z − bn+1) ≤ B(x, y, z),

which follows immediately from (b). Thus, by (a),∫ 1

0
V (f (x), g(x))dx ≤

∫ 1

0
B(f (x), g(x), |f (x)|) dx

=
∫ 1

0
B(fN(x), gN(x), MN(x)) dx

≤
∫ 1

0
B(f0(x), g0(x), M0(x)) dx

= B(F, G, ‖f ‖1).

However, we have ‖f ‖1 ≤ M and the class C (F, G, M) grows when we
increase the third parameter. Therefore,∫ 1

0
V (f (x), g(x)) dx ≤ B(F, G, M)

and taking the supremum over all (f, g) yields the desired bound B ≤ B. This
proves the claim.

Before we proceed, let us make here several observations. Let us first take
a look at the diagonal concavity of B, i.e., the condition (b) above. Obviously,
it is equivalent to the following statement:

(b’) For any (F, G, M) ∈ D , any ε ∈ {−1, 1} and m ∈ R, the function

ξ : t �→ B(F + t, G + εt, M + mt)

is mid-point concave on the interval {t : (F + t, G+ εt, M +mt) ∈ D}.
In all the situations we are interested in, the function V is nonnegative and
hence bounded from below. Thus, by (a), the function B also has this property
and its mid-point concavity implies that it is merely concave.

A natural question is: given V , how to find the corresponding function B?
Let us now present some intuitive observations which may be helpful during
the search. We would also like to point out here that similar argumentation
appears, for example, in the analysis of optimal stopping problems [11]. See
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also [13] for more detailed discussion and examples. The “state space” D can
be split into two sets:

D1 = {(F, G, M) : B(F, G, M) = V (F, G)},
D2 = {(F, G, M) : B(F, G, M) > V (F, G)}

(in the theory of the optimal stopping, these are the so-called the stopping
and the continuation region, respectively). Since B is the least diagonally con-
cave majorant of V , it seems plausible to assume the following. For each
(F, G, M) ∈ D2 there is a direction along which B is locally linear (oth-
erwise, roughly speaking, it would be possible to make B smaller). More
precisely, for such (F, G, M), there are ε ∈ {−1, 1} and m ∈ R such that
t �→ B(F + t, G + εt, M + mt) is linear for t lying in some neighborhood
of 0. In other words, the whole set D2 can be “foliated” into line segments of
appropriate slope along which the function B is linear. If B is twice differenti-
able on D2, this yields the following second-order differential equation which
should be satisfied by B: for each (F, G, M) ∈ D2,

det

[
BFF + 2BFG + BGG BFM + BGM

BFM + BGM BMM

]
(F, G, M) = 0

or
det

[
BFF − 2BFG + BGG BFM − BGM

BFM − BGM BMM

]
(F, G, M) = 0.

Sometimes this system of differential equations can be explicitly solved: see
e.g. [1], [14], [13], and this brings the candidate for the Bellman function.
Then one proves rigorously that the function has all the desired properties.

Our approach will be slightly different and will not rest on solving the
above system of differential equations. We will guess the right formula for B
by indicating the appropriate foliation of the set D2.

3. One-sided bound

This section is devoted to the analysis of the function

Bo(F, G, M) = sup
{|{x ∈ [0, 1] : g(x) ≥ 1}| : (f, g) ∈ C (F, G, M)

}
.

We will use the technique described in the preceding section, with the choice
V (F, G) = 1{G≥1}. The calculations will be rather easy and we will gain some
information which will be needed in the study of the two-sided case. We would
like to stress here that the result is not new: it has already been established by
Nazarov, Reznikov, Vasyunin and Volberg in an unpublished paper [4], with
the use of similar methods.
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3.1. An explicit formula for Bo

Let B : D → R be given by

B(F, G, M) =
{

1 if G + M ≥ 1,

1 − (1−G−M)2

(1−G)2−F 2 if G + M < 1.

Theorem 3.1. We have Bo ≤ B.

Proof. By Theorem 2.1, it suffices to verify that the function B satisfies
the conditions (a) and (b’). The majorization

B(F, G, M) ≥ 1{G≥1}

is straightforward. Indeed, the estimate is obvious for G + M ≥ 1, while for
remaining (F, G, M), we observe that

(1 − G − M)2

(1 − G)2 − F 2
≤ (1 − G − M)2

(1 − G)2 − M2
= 1 − G − M

1 − G + M
≤ 1

and hence B(F, G, M) ≥ 0 = 1{G≥1}. To check the property (b’), fix (F, G,

M) ∈ D with G + M < 1, let ε ∈ {−1, 1} and m ∈ R. Define ξ = ξF,G,M,ε,m

by
ξ(t) = B(F + t, G + εt, M + mt).

for t such that (F + t, G + εt, M + mt) ∈ D . It is easy to check that this
function is of class C1, and we must prove that it is concave. Fix t belonging
to the domain of ξ and let F̃ = F + t , G̃ = G + εt and M̃ = M + mt . If
G̃ + M̃ > 1, then ξ ′′(t) = 0; if G̃ + M̃ < 1, then |F̃ | ≤ M̃ < 1 − G̃ and a
straightforward computation gives

ξ ′′(t) = − 2

(G̃ − 1)2 − F̃ 2

(
m + ε − (M̃ + G̃ − 1)(2G̃ε − 2ε − 2F̃ )

(G̃ − 1)2 − F̃ 2

)2

≤ 0.

This yields the desired concavity, since ξ is smooth.

Theorem 3.2. We have Bo ≥ B.

Proof. The function Bo is the least function on D which satisfies (a) and
(b’). Observe that Bo(F, G, M) = Bo(−F, G, M) for all F, G, M , since oth-
erwise the formula (F, G, M) �→ min{Bo(F, G, M), Bo(−F, G, M)} would
define a function satisfying (a) and (b’), but smaller than Bo. In consequence,
it suffices to prove the inequality Bo(F, G, M) ≥ B(F, G, M) for positive F

only. For the sake of clarity, we split the reasoning into several steps.
Step 1. If G ≥ 1, then Bo(F, G, M) ≥ V (F, G) = 1 = B(F, G, M).
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Step 2. Now suppose that G < 1, but F +G ≥ 1. Below, we will frequently
use the following argument: we will write the point (F, G, M) as a convex
combination of appropriate two points (at which we have already proved the
majorization), and then apply the diagonal concavity (2.2), thus obtaining the
desired lower bound for Bo(F, G, M). Here, for any p ∈ (0, 1), we have

Bo(F, G, M) ≥ p Bo(0, F + G, M − F)

+ (1 − p)Bo

(
F

1 − p
, G − p

1 − p
F, M + p

1 − p
F

)
≥ p Bo(0, F + G, M − F) ≥ p,

where the latter passage is due to Step 1 considered above. Since p was arbit-
rary, we obtain that Bo(F, G, M) ≥ 1 = B(F, G, M) provided F + G ≥ 1.

Step 3. Suppose that F + G < 1 and F = M . Then, by the diagonal
concavity, we may write

Bo(F, G, M) ≥ 2F

F − G + 1
Bo

(
F − G + 1

2
,
−F + G + 1

2
,
F − G + 1

2

)

+ 1 − F − G

F − G + 1
Bo(0, G − F, 0)

≥ 2F

F − G + 1
= B(F, G, M),

where in the last estimate we have used Step 2 and the fact that Bo is nonneg-
ative.

Step 4. Finally, let F + G < 1 and F < M . Fix p ∈ (0, 1) and put

F+ = F

1 − p
+ p

1 − p

1 − F − G

2
, M+ = M

1 − p
− p

1 − p

1 − F − G

2
.

We have

(3.1) M+ − F+ = M − F − p(1 − F − G)

1 − p
.

Therefore, if M + G ≥ 1, then the latter numerator is nonnegative for all p,
and the diagonal concavity of Bo gives

(3.2)

Bo(F, G, M) ≥ p Bo

(
F + G − 1

2
,
F + G + 1

2
,

1 − F − G

2

)
+ (1 − p)Bo(F+, G − (F+ − F), M+)

≥ p,
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in view of Step 2. Letting p → 1 gives Bo(F, G, M) ≥ 1 = B(F, G, M).
On the other hand, if M + G < 1, then the expression in (3.1) vanishes for
p = (M − F)/(1 − F − G) ∈ (0, 1) and hence, repeating the first inequality
from (3.2) and using Steps 2 and 3, we get

Bo(F, G, M) ≥ p + (1 − p)
2F+

F+ − (G − (F+ − F)) + 1

= M − F

1 − F − G
+ 1 − G − M

1 − F − G

M + F

1 + F − G

= B(F, G, M).

This completes the proof of the desired estimate.

3.2. On the search of the Bellman function

Here we sketch some steps which led us to the discovery of the function B

above. First, it is more convenient to work with

B(F, G, M) = sup
{|{x ∈ [0, 1] : g(x) ≥ 0}| : (f, g) ∈ C (F, G, M)

}
,

which is related to Bo via the identity Bo(F, G, M) = B(F, G − 1, M) for all
(F, G, M) ∈ D . Consequently, by Theorem 2.1, we see that B is diagonally
concave and satisfies the majorization

(3.3) B(F, G, M) ≥ 1{G≥0}.

Furthermore, directly from its definition, we see that B enjoys the homogeneity-
type property

(3.4) B(±αF, αG, αM) = B(F, G, M), α > 0.

This follows immediately from the observation that

|{x ∈ [0, 1] : g(x) ≥ 0}| = |{x ∈ [0, 1] : αg(x) ≥ 0}|

combined with the equivalence (f, g) ∈ C (F, G, M) if and only if (±αf, αg)

∈ C (αF, αG, αM). In particular, this gives that the function x �→ B(x, −x, x)

is constant on (0, ∞). On the other hand, this function is concave on R, in view
of the diagonal concavity of B. In consequence, we get

(3.5) B(1/2, −1/2, 1/2) ≥ B(0, 0, 0) = 1
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(the latter equality follows from (3.3) and the obvious bound B ≤ 1). The next
step in the analysis is to introduce the function

b(x, y) = B
(

x + 1

2
,
x − 1

2
, y

)
,

given on D = {(x, y) ∈ R2 : y ≥ | x+1
2 |}. Using (3.4), we see that for F = ±G,

b

(
F + G

F − G
,

M

F − G

)
= B(F, G, M) = B(−F, G, M)

= b

(
F − G

F + G
, − M

F + G

)
,

from which we infer that b satisfies

(3.6) b(x, y) = b

(
1

x
, −y

x

)
.

Furthermore, since B is diagonally concave, we have that b is a concave func-
tion, and the majorization (3.3) implies that b(x, y) ≥ 1{x≥1} ≥ 0. The condi-
tion (3.5) implies that b(0, 1/2) ≥ 1; hence, using the concavity of b along the
halflines starting from (0, 1/2) and contained in D, we infer that b(x, y) ≥ 1
(and hence b(x, y) = 1) provided y ≥ −x/2 + 1/2. Thus, all we need is to
identify the explicit formula for b on the set

� = {(x, y) ∈ D : y ≤ −x/2 + 1/2}.
It is easy to show that b(−1, 0) = B(0, −1, 0) = 0: indeed, C (0, −1, 0)

contains only the constant pair. The line segment which joins (−1, 0) and
(0, 1/2) is a part of the boundary of �, so it seems plausible to guess that b is
linear along this segment: b(2y − 1, y) = 2y for y ∈ [0, 1/2].

Next, we assume that b is of class C1 in the interior of �. By (3.6), we
may restrict our search to the triangle � ∩ {(x, y) : x ≥ −1}. Let us try to
identify the foliation F of b restricted to this set (i.e., split the triangle into
the union of maximal segments along which b is linear). We already know that
the segment with the endpoints (0, 1/2) and (−1, 1), as well as the boundary
segment with endpoints (−1, 0), (0, 1/2), belong to the foliation. Now pick
a segment I ∈ F which contains the point (−1, y) for a given y ∈ (0, 1). If
I intersects one of the two boundary segments (call it J ), at a point different
from (0, 1/2), then b must be linear in the triangle spanned by I and J (i.e.,
the convex hull of I ∪J ). In particular, this implies that b must be linear along
the segment which joins (−1, y) with (0, 1/2). Consequently, we see that the
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only foliation is possible, namely, the fan of segments from the vertex (0, 1/2).
This implies

b(−1, y) − 1 = −bx(−1, y) + by(−1, y)

(
y − 1

2

)
.

On the other hand, differentiating (3.6) with respect to x at the point (−1, y),
y ∈ (0, 1), yields

2bx(−1, y) = yby(−1, y).

If we combine the two latter identities, we obtain the following differential
equation. If ϕ(y) = b(−1, y), y ∈ [0, 1], we have

ϕ(y) − 1 = ϕ′(y) · y − 1

2
.

Therefore, ϕ(y) = K(y−1)2+1 for some parameter K . Moreover, we already
know that ϕ(0) = B(0, −1, 0) = 0; this yields K = −1 and hence

b(x, y) = (1 + x)b

(
0,

1

2

)
− xb

(
−1,

1 + x − 2y

2x

)
= 1 −

(
x−1

2 + y
)2

x

for (x, y) ∈ �, x ∈ [−1, 0]. By (3.6), the same formula is valid on the whole
�. This gives us the candidate

B(F, G, M) = B(F, G − 1, M) = b

(
F + G − 1

F − G + 1
,

M

F − G + 1

)

studied in the previous subsection.

4. Two-sided bound

We turn to the proof of the main result of this paper. We will provide the explicit
formula for the function

B(F, G, M) = sup
{|{x ∈ [0, 1] : |g(x)| ≥ 1}| : (f, g) ∈ C (F, G, M)

}
.

This will be accomplished by the technique described in Section 2, with
V (F, G) = 1{|G|≥1}.
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4.1. An explicit formula for B

Introduce the following subsets of D :

D1 = {
(F ,G,M) : |F | + |G| ≥ 1

}
∪ {

(F ,G,M) : |F | + |G| < 1, M ≥ 1
2 (F 2 − G2 + 1)

}
,

D2 = {
(F ,G,M) : |F | + |G| < 1, M < F 2 − G2 + |G|},

D3 = {
(F ,G,M) : |F | + |G| < 1, F 2 − G2 + |G| ≤ M < 1

2 (F 2 − G2 + 1)
}
.

Note that if |F | + |G| < 1, then F 2 − G2 + |G| < 1
2 (F 2 − G2 + 1); thus the

subsets are pairwise disjoint. Let B : D → R be given by

(4.1) B(F, G, M) =

⎧⎪⎨
⎪⎩

1 on D1,

1 − (1−|G|−M)2

(1−|G|)2−F 2 on D2,

2M − F 2 + G2 on D3.

Theorem 4.1. We have B ≤ B.

Proof. As previously, we verify that the function B satisfies the conditions
(a) and (b’). The first of them is very easy: if |G| ≥ 1, then |F | + |G| ≥ 1
and B(F, G, M) = V (F, G); for |G| < 1 it is not difficult to see that B

takes nonnegative values only. To check (b’), fix (F, G, M) ∈ D , ε ∈ {−1, 1},
m ∈ R and consider the function

ξ(t) = B(F + t, G + εt, M + mt),

given on the interval {t : (F + t, G + εt, M + mt) ∈ D}. The domain of
this function can be split into a finite family (Ik) of intervals which have the
property that on each Ik , ξ coincides with ξ1, ξ2 or ξ3. Here ξ1(t) ≡ 1,

ξ2(t) = 1 − (1 − |G + εt | − M − mt)2

(1 − |G + εt |)2 − (F + t)2

and
ξ3(t) = 2M + 2mt − (F + t)2 + (G + εt)2.

It is not difficult to check that the function ξ is continuous and that ξ1 and
ξ3 are concave on R. Furthermore, if ξ = ξ2 on Ik , then by the definition of
D2 we infer that G + tε is bounded away from 0; this implies that ξ2|Ik

is
concave (see the one-sided case, this function has already appeared there, with
|G + tε| replaced by G + tε). This implies that ξ is concave on each of the
intervals Ik . Furthermore, B is C1-smooth on the boundary between D2 and
D3 (on the surface M = F 2 − G2 + |G|) and any point which belongs to
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∂D1 ∩ ∂D2, automatically lies in ∂D3. Therefore, to get the concavity of ξ on
the whole domain, it suffices to check only the jumps of its first derivative on
the boundary between D1 and D3 (formally, we need to look at the one-sided
derivatives of ξ at those t , for which (F + t, G + εt, M + mt) ∈ ∂D1 ∩ ∂D3).
However, the derivatives behave appropriately, since B equals 1 on D1 and
B < 1 on D3. This completes the proof.

Theorem 4.2. We have B ≥ B.

Proof. Arguing as in the setting of the one-sided estimate, it suffices to
show the desired bound for nonnegative F and G only. Of course, the function
B majorizes the Bellman function Bo corresponding to the one-sided estimate.
Consequently, the desired inequality holds for G+M ≥ 1 and for (F, G, M) ∈
D2 (if the second possibility occurs, we obtain equality or the trivial bound
B ≤ 1). Now suppose that G + M < 1 and M ≥ 1

2 (F 2 − G2 + 1), so that
B(F, G, M) = 1. Then M > F 2 − G2 + G (see the sentence below the
definitions of D1 − D3) and hence F < G: indeed, otherwise we would have
2M − F 2 + G2 = M + (M − F 2 + G2) < M + G < 1. Obviously, we have

B(F, G, M) ≥ B

(
F, G,

F 2 − G2 + 1

2

)

and we can express the point on the right as the following convex combination:(
F, G,

F 2 − G2 + 1

2

)

= 1 − F + G

2
· (F−, G−, M−) + 1 + F − G

2
· (F+, G+, M+),

where

F− = F − 1 + F − G

2
, G− = G + 1 + F − G

2
, M− = |F−| = −F−

and

F+ = F + 1 − F + G

2
, G+ = G − 1 − F + G

2
, M+ = F+.

Since |F+ − F−| = |G+ − G−|, (2.2) gives

B(F, G, M) ≥ 1 − F + G

2
B(F−, G−, M−) + 1 + F − G

2
B(F+, G+, M+).

But M− + |G−| = M+ + |G+| = 1, so B(F±, G±, M±) ≥ 1, by the above
reasoning. This yields the desired bound B(F, G, M) ≥ 1 = B(F, G, M).
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Finally, suppose that M + G < 1 and (F, G, M) ∈ D3, and consider the
maximal line segment of the form

I = {(F + s, G − s, M + s) : s ∈ (t−, t+)},
contained in D3. It is not difficult to derive that

t+ = F 2 − G2 + 1 − 2M

2(1 − F − G)
, t− = −M − (F 2 − G2 + G)

2(1 − F − G)
.

The endpoint of I , corresponding to s = t−, lies in ∂D2; the other endpoint
belongs to ∂D1. We have already verified the majorization on D1 ∪ D2, so

B(F, G, M) ≥ −t−
t+ − t−

B(F + t+, G − t+, M + t+)

+ t+
t+ − t−

B(F + t−, G − t−, M + t−)

≥ −t−
t+ − t−

(
2(M + t+) − (F + t+)2 + (G − t+)2

)
+ t+

t+ − t−

(
2(M + t−) − (F + t−)2 + (G − t−)2

)
= 2M − F 2 + G2.

This completes the proof.

4.2. On the search of the Bellman function

Again, we write down the definition of B:

B(F, G, M) = sup
{|{x ∈ [0, 1] : |g(x)| ≥ 1}| : (f, g) ∈ C (F, G, M)

}
.

In comparison to the one-sided case, the situation is more difficult since the
function B does not seem to have any homogeneity-type property. Nevertheless,
it majorizes the Bellman function corresponding to the one-sided estimate,
which gives

(4.2) B(F, G, M) ≥
{

1 if |G| + M ≥ 1,

1 − (1−|G|−M)2

(1−|G|)2−F 2 if |G| + M < 1.

This, in particular, yields

(4.3) B(F, G, M) = 1 provided |G| + M ≥ 1.



138 adam osȩkowski

Next, we proceed as follows. Fix a ∈ (0, 1) and consider the function

b(x, y) = B

(
x + a

2
,
x − a

2
, y

)
,

given on the set
{
(x, y) ∈ R2 : y ≥ ∣∣ x+a

2

∣∣}. This function is concave and, by
(4.3), we have b(x, y) = 1 for y ≥ 1− ∣∣ x−a

2

∣∣. Thus all we need is to determine
the formula for b on the parallelogram P = {

(x, y) :
∣∣ x+a

2

∣∣ ≤ y < 1− ∣∣ x−a
2

∣∣}
(see Figure 1).

1 � a
2

�1 �a

I

1a

1 � a
2

Figure 1. The parallelogram P

Directly from the concavity of b, we obtain that b(x, y) = 1 if (x, y) lies on
or above the dotted diagonal of P – precisely, the line segment with endpoints(−1, 1−a

2

)
and

(
1, 1+a

2

)
– due to the fact that b equals 1 when evaluated at the

sides of P lying above this segment. For (x, y) lying below the diagonal we
have, by (4.2),

b(x, y) ≥ ζ(x, y) = 1 −
(
1 − ∣∣ x−a

2

∣∣ − y
)2

(1 − a)(1 + x)
.

Let us search for the least concave majorant of ζ . Some experiments lead to
the following idea. Take an interval I with endpoints

(
1, 1+a

2

)
and

(
t, − t+a

2

)
,

where t ∈ (−1, −a] (see Figure 1). It is easy to check that ζ is not concave
along this interval and that the least concave majorant of ζ |I is given by

b0(x, y) =
{

ζ(x, y) if (x, y) ∈ I , y < a
2 − (

1
2 − a

)
x,

2y − ax if (x, y) ∈ I , y ≥ a
2 − (

1
2 − a

)
x.

Assuming b = b0 for all (x, y) below the diagonal, we obtain the candidate
for the Bellman function, given by (4.1).
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5. A weak unconditional constant for an arbitrary basis of L1(0, 1)

The estimates obtained in the previous sections can be used to obtain some
interesting bounds for an arbitrary basis of L1(0, 1). For any sequence e =
(e0, e1, e2, . . .) in L1(0, 1) and λ > 0 we define the weak unconditional con-
stant βe(λ) as the least number β with the following property. If n is a nonneg-
ative integer and a0, a1, . . . , an are real numbers such that

∥∥∑n
k=0 akek

∥∥
1 ≤ 1,

then

(5.1)

∣∣∣∣
{
x ∈ [0, 1] :

∣∣∣∣
n∑

k=0

εkakek(x)

∣∣∣∣ ≥ λ

}∣∣∣∣ ≤ β

for all choices of signs εk ∈ {−1, 1}. If we plug λak in the place of ak above,
k = 0, 1, . . . , n, we see that the results of Section 3 imply that

βh(λ) = min

{
2

λ
, 1

}

(see also [1]). The main theorem of this section gives a related estimate for a
different choice of a basis of L1, which should be compared to (1.2).

Theorem 5.1. If e is a basis of L1(0, 1), then βe(λ) ≥ βh(λ) for all λ > 0.

In the proof of this statement we will need the following auxiliary fact.
Roughly speaking, it says that any finite subsequence of Haar functions can
be approximated using pairwise disjoint blocks of elements of e.

Lemma 5.2. Let e = (en)n≥0 be an arbitrary basis of L1(0, 1). Suppose
that (hk)

N
k=0 is a finite collection of Haar functions. Then for any δ > 0 there

is an increasing sequence (nk)
N+1
k=0 of integers, a sequence (bn)

nN+1−1
n=0 or real

numbers and two sequences (fn)
nN+1−1
n=0 , (rn)

nN+1−1
n=0 of real-valued functions on

(0, 1) such that the following holds:

(i) we have the decomposition

nk+1−1∑
n=nk

bnen = fk + rk, k = 0, 1, 2, . . . , N,

(ii) we have ‖rk‖1 ≤ δ for k = 0, 1, 2, . . . , N ,

(iii) there is a measure-preserving transformation T : [0, 1] → [0, 1] such
that fk(T x) = hk(x) for all x ∈ (0, 1) and k = 0, 1, 2, . . . , N .

This result can be obtained by a slight modification of the construction
presented in Olevskiı̌ [7]; see also Theorem 3 in [8] and references therein. We
omit the details.
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Proof of Theorem 5.1. Pick arbitrary λ, κ > 0 and γ ∈ (0, 1). There
is a nonnegative integer N , a sequence a0, a1, . . . , aN of real numbers and a
sequence ε0, ε1, . . . , εN of signs such that

(5.2)

∥∥∥∥
N∑

k=0

akhk

∥∥∥∥
1

≤ 1

and

(5.3)

∣∣∣∣
{
x ∈ [0, 1] :

∣∣∣∣
N∑

k=0

εkakhk(x)

∣∣∣∣ ≥ λ + 1 − γ

γ

}∣∣∣∣
≥ βh

(
λ + 1 − γ

γ

)
− κ.

Now we apply Lemma 5.2 to the finite family (hk)
N
k=0 of Haar functions and a

fixed δ > 0. As the result we obtain the corresponding sequence (nk)
N
k=0, the

coefficients (bn)n≥0 and the appropriate functions (fk)k≥0 and (rk)k≥0. Putting
ãk = γ ak for k = 0, 1, . . . , N , we obtain, by Lemma 5.2,

(5.4)

∥∥∥∥
N∑

k=0

ãk

nk+1−1∑
n=nk

bnen

∥∥∥∥
1

≤
∥∥∥∥

N∑
k=0

ãkfk

∥∥∥∥
1

+
∥∥∥∥

N∑
k=0

ãkrk

∥∥∥∥
1

≤
∥∥∥∥

N∑
k=0

ãkhk

∥∥∥∥
1

+ δ

N∑
k=0

|ak| = γ

∥∥∥∥
N∑

k=0

akhk

∥∥∥∥
1

+ δ

N∑
k=0

|ak| ≤ 1,

provided δ is sufficiently small (it suffices to take δ < (1 − γ )
(∑N

k=0 |ak|
)−1

:
see (5.2)). In consequence, we get

(5.5)

∣∣∣∣
{
x ∈ [0, 1] :

∣∣∣∣
N∑

k=0

εkãk

nk+1−1∑
n=nk

bnen(x)

∣∣∣∣ ≥ λ

}∣∣∣∣ ≥ I − II,

where

I =
∣∣∣∣
{
x ∈ [0, 1] :

∣∣∣∣
N∑

k=0

εkãkfk(x)

∣∣∣∣ ≥ λ + 1 − γ

}∣∣∣∣
=

∣∣∣∣
{
x ∈ [0, 1] :

∣∣∣∣
N∑

k=0

εkakhk(x)

∣∣∣∣ ≥ λ + 1 − γ

γ

}∣∣∣∣
≥ βh

(
λ + 1 − γ

γ

)
− κ,
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by virtue of (5.3), and

II =
∣∣∣∣
{
x ∈ [0, 1] :

∣∣∣∣
N∑

k=0

εkãkrk(x)

∣∣∣∣ ≥ 1 − γ

}∣∣∣∣ ≤ (1 − γ )−1

∥∥∥∥
N∑

k=0

εkãkrk

∥∥∥∥
1

≤ γ δ

1 − γ

N∑
k=0

|ak|,

by Chebyshev’s inequality. Thus, combining (5.4) and (5.5), we see that

βe(λ) ≥ βh

(
λ + 1 − γ

γ

)
− κ − γ δ

1 − γ

N∑
k=0

|ak|.

Therefore, letting δ → 0 and then γ → 1, κ → 0, we obtain βe(λ) ≥ βh(λ),
since the function βh is continuous. This completes the proof.

Remark 5.3. It is easy to see that when λ > 2, then there is a basis e for
which we have the strict inequality βe(λ) > βh(λ). In fact, it is not difficult to
construct a basis e for which βe ≡ 1. For example, let h be the Haar system.
Consider the basis e such that for any n ≥ 0,

e2n = h0 − 2−n−1
(
h0 + h1 + 2h2 + 4h4 + · · · + 2nh2n

)
is the indicator function of the set [2−n−1, 1), and ek = hk for remaining k.
Suppose that λ is a given positive number and let n be an integer satisfying
2n+3 ≥ λ. Then ‖ − 2n+2e2n + 2n+2e2n+1‖1 = 1 and for any x ∈ [2−n−1, 1)

we have the inequality 2n+2e2n (x) + 2n+2e2n+1(x) = 2n+3 ≥ λ. Letting n →
∞ yields βe(λ) = 1, directly from the definition of the weak unconditional
constant. Thus, the function βe is identically 1.
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