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A LIFTING CHARACTERIZATION OF
RFD C*-ALGEBRAS

DON HADWIN∗

Abstract
We prove a conjecture of Terry Loring that characterizes separable RFD C*-algebras in terms
of a lifting property. In addition we introduce and study generalizations of RFD algebras. If k is
an infinite cardinal, we say a C*-algebra is residually less than k dimensional, if the family of
representations on Hilbert spaces of dimension less than k separates the points of the algebra. We
give characterizations of this property and prove that this class is closed under free products in the
nonunital category. For free products in the unital category, the results depend on the cardinal k.

1. Introduction

A C*-algebra A is residually finite dimensional (RFD) if the collection of
all finite-dimensional representations of A separates the points of A ; equi-
valently, if there is a direct sum of finite-dimensional representations of A

with zero kernel. It is clear that every commutative C*-algebra is RFD. Man-
Duen Choi [4] showed that free group C*-algebras are RFD. Ruy Exel and
Terry Loring [6] proved that the free product of two RFD algebras is RFD.
Terry Loring [12] proved that projective C*-algebras are RFD. The class of
RFD C*-algebras plays an important role in the theory of C*-algebras, e.g.,
[1], [2], [3], [4], [5], [6], [7], [12], [10].

Suppose {e1, e2, . . .} is an orthonormal basis for a Hilbert space H , and,
for each integer n ≥ 1, let Pn be the projection onto sp({e1, . . . , en}), let
Mn = PnB(�2)Pn for n ≥ 1, and (see Lemma 1) let

B =
{
{Tn} ∈

∞∏
n=1

Mn : ∃T ∈ B(�2) with Tn → T (∗-SOT)

}
,

and let
J = {{Tn} ∈ B : Tn → 0 (∗-SOT)}.
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Then, (see Lemma 1), B is a unital C*-algebra, J is a closed ideal in B and

π({Tn}) = (∗-SOT)- lim
n→∞ Tn

defines a unital surjective ∗-homomorphism from B to B(H) whose kernel is
J . If A is a separable C*-algebra and every (or even one faithful) represent-
ation from A to B(H) lifts to a representation from A to B, then it is clear
that A must be RFD.

The idea of using this technique to prove an algebra is RFD first appeared in
[7] (see also [12]). It was conjectured by Terry Loring (private communication)
that every separable RFD C*-algebra has this lifting property. In this paper we
prove Loring’s conjecture (Theorem 11).

We also introduce a related notion. Suppose k is an infinite cardinal. We
say that a C*-algebra A is residually less than k-dimensional, conveniently
denoted by R<kD, if the class of representations of A on Hilbert spaces of
dimension less than k separates the points of A ; equivalently, if there is a direct
sum of such representations that has zero kernel. Note that when k = ℵ0, we
have R<kD is the same as RFD. We give characterizations of R<kD algebras
that show that the free product of an arbitrary collection of R<kD C*-algebras is
R<kD. We also give conditions that ensure that the free product (amalgamated
over C) of unital C*-algebras in the category of unital C*-algebras is R<kD;
this always happens when each of the algebras has a one-dimensional unital
representation.

The proofs of all of our results rely on a simple result (Lemma 1) and results
of the author [8], [9] on approximate unitary equivalence and approximate
summands of nonseparable representations of nonseparable C*-algebras.

Suppose k and m are infinite cardinals. We say that a C*-algebra A is m-
generated if it is generated by a set with cardinality at most m. For each cardinal
s, we let Hs be a Hilbert space whose dimension is s. If π : A → B(H) is
a ∗-homomorphism, we say that the dimension of π is dim π = dim H . We
define Rep≤k(A ) to be the set of all representations π : A → B(Hs) for some
s < k.

If A is a C*-algebra, then A + denotes the C*-algebra obtained by adding
a unit to A (which is different from the unit in A if A is unital).

We end this section with our key lemma. Suppose H is a Hilbert space and P

is a projection in B(H). We define MP = PB(H)P . Then MP is a unital C*-
algebra, but the unit is P , not 1. However, MP is a C*-subalgebra of B(H). A
unitary element of MP is an operator U ∈ B(H) such that UU ∗ = U ∗U = P ,
and is the direct sum of a unitary operator on P(H) with 0 on P(H)⊥. If
P �= 1, a unitary operator in MP is never unitary in B(H).

We use the symbol ∗-SOT to denote the ∗-strong operator topology.
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Lemma 1. Suppose {Pα} is a net of projections in B(H) such that Pα → 1
(∗-SOT) and let

B =
{
{Tα} ∈

∏
α

MPα
: ∃T ∈ B(H), Tα → T (∗-SOT)

}
,

and
J = {{Tα} ∈ B : Tα → 0 (∗-SOT)},

and define π : B → B(H) by

π({Tα}) = (∗-SOT)- lim
α

Tα.

Then

(1) B is a unital C*-algebra,

(2) J is a closed two-sided ideal in B,

(3) If T ∈ B(H), then {PαTPα} ∈ B and π({PαTPα}) = T ,

(4) π is a unital surjective ∗-homomorphism

(5) If U ∈ B(H) is unitary, then there is a unitary {Uα} ∈ B such that

π({Uα}) = U.

Proof. Statements (1)–(4) are easily proved. To prove (5), note that if
U ∈ B(H) is unitary, then there is an A = A∗ ∈ B(H) such that U = eiA.
Using (3), we can easily choose Aα = A∗

α for each α so that π({Aα}) = A.
Thus, if Uα = eiAα (in MPα

), then {Uα} is unitary in B and π({Uα}) = U .

Here is a simple application that gives the flavor of our results.

Corollary 2. Every free group is RFD.

Proof. Suppose F is a free group and A = C ∗(F) = C∗({Ug : g ∈ F}).
Choose a Hilbert space H and a faithful representation ρ : A → B(H).
Choose a net {Pα} of finite-rank projections such that Pα → 1 (∗-SOT). Ap-
plying Lemma 1 we have, for each g ∈ F, we can find a unitary element
{Ug,α} in B so that π({Ug,α}) = Ug . For each α, we have a unitary group
representation σα : F → MPα

defined by

σα(g) = Ug,α.

By the definition of C∗(F), there is a ∗-homomorphism τα : A → Mα such
that τα(Ug) = Ug,α . It follows that τ : A → B defined by τ(Ug) = {Ug,a} is
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a ∗-homomorphism such that π ◦ τ = ρ. Hence the direct sum of the τα’s is
faithful, which shows that A is RFD.

The following corollary is from [3, Exercise 7.1.4].

Corollary 3. Every C*-algebra is a ∗-homomorphic image of an RFD
C*-algebra.

Proof. Suppose A is a C*-algebra. We can assume that A ⊆ B(H) for
some Hilbert space H . Choose a net {Pα} of finite-rank projections converging
∗-strongly to 1, and let B, J and π be as in Lemma 1. Then B, and thus
π−1(A ), is RFD and π(π−1(A )) = A .

2. R<kD Algebras

We now prove our main results on R<kD C*-algebras. The following two
lemmas contain the key tools.

Lemma 4. Suppose ℵ0 ≤ k ≤ m, and A is R<kD and m-generated. Then

(1) We can write Hm = ∑⊕
λ∈	 Xλ with Card 	 = m, and such that, for

every λ ∈ 	, dim Xλ < k and there is a unital representation πλ :
A + → B(Xλ) such that the representation π : A + → B(Hm) defined
by π = ∑⊕

πλ is faithful. Moreover, this can be done so that, for each
λ0 ∈ 	, we have Card({λ ∈ 	 : πλ ≈ πλ0}) = m.

(2) It is possible to choose the decomposition in (1) so that, for each cardinal
s < k, there is a λ ∈ 	 such that dim Xλ = s.

Proof. Since A is R<kD, there is a direct sum of representations in
Rep≤k(A ) whose direct sum is faithful. Suppose D is a generating set for A

and Card(D) ≤ m. We can replace D by the ∗-algebra over Q + iQ generated
by D making the cardinality exceed m. For each a ∈ D we can choose a direct
sum of countably many summands from our faithful direct sum that preserves
the norm of a. Hence, by choosing ℵ0 Card(D) summands, we get a direct
sum that is isometric on D and thus isometric on A . Since ℵ0 Card(D) ≤ m.
we can replace this last direct sum with a direct sum of m copies of itself and
get a direct sum on a Hilbert space with dimension m. We can replace this
Hilbert space with Hm and get a decomposition as in (1). To get (2), note that,
since A + has a unital one-dimensional representation, we know that, for every
cardinal s < k, there is a representation of A + of dimension s. If we take one
such representation for each s < k and take a direct sum of m copies of all of
them, we get a representation that has has dimension at most m, so we add this
as a summand to the representation we constructed satisfying (1).

Lemma 5. Suppose A is a C*-algebra, k ≤ m are infinite cardinals and
D is a generating set for A . Suppose we can write Hm = ∑⊕

λ∈	 Xλ and
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π = ∑⊕
πλ as in part (1) of Lemma 4 so that Card({λ ∈ 	 : πλ ≈ πλ0}) = m

for each λ0 ∈ 	. If ρ : A + → B(Hm) is a unital representation, then, for
every ε > 0, every finite subset J ⊆ D and every finite subset E ⊆ Hm, there
is a finite subset F ⊆ 	, such that, for every finite set G with F ⊆ G ⊆ 	,
if QG is the orthogonal projection onto

∑⊕
λ∈G Xλ, then there is a unitary

U ∈ QGB(Hm)QG such that, for every a ∈ J and e ∈ E, we have

‖[ρ(a) − U ∗
Gπ(a)UG]e‖ =

∥∥∥∥
[
ρ(a) − U ∗

G

(∑
λ∈G

πλ

)
(a)UG

]
e

∥∥∥∥ < ε.

Proof. Let Rep(A , Hm) denote the set of all unital representations from
A into B(Hm) topologized by the topology of pointwise ∗-SOT convergence,
and let S denote the closure of the elements in Rep(A , Hm) that are unitarily
equivalent to π . We want to prove that ρ ∈ S . It follows that if a ∈ A

and a �= 0, then rank π(a) = m = rank(π ⊕ ρ)(a). Hence, by [8], π is
approximately unitarily equivalent to π ⊕ ρ. Hence there is a unitary X such
that X∗(π ⊕ ρ)X ∈ S . However, by [8] (and ideas in [9]), ρ is a point-
∗-SOT limit of representations unitarily equivalent to π ⊕ ρ. Indeed, if for
each finite subset α of Hm, Uα : Hm → Hm ⊕ Hm is a unitary operator
such that Uαx = 0 ⊕ x for each x ∈ α, we have {Uα} forms a net such
that {U ∗

α (π ⊕ ρ)(a)Uα} converges ∗-strongly to ρ(a) for every a ∈ A . Thus
Wα = X∗Uα is a unitary in B(Hm) for each α, and, for every a ∈ A ,

(∗-SOT) lim
α

W ∗
α [X∗(π ⊕ ρ)(a)X]Wα = ρ(a).

Hence, ρ ∈ S .
Thus there is a net {Vλ} of unitaries in B(Hm) such that {V ∗

λ π(·)Vλ} con-
verges pointwise ∗-strongly to ρ. However, the net {QF : F ⊆ 	, F is finite}
is a net of projections converging ∗-strongly to 1. Hence, by Lemma 1, each
Vλ is a ∗-SOT limit of unitaries in the union of QF B(Hm)QF (F ⊆ 	, F is
finite). The result now easily follows.

Theorem 6. Suppose ℵ0 ≤ k ≤ m, and A is m-generated with a generating
set G with Card G ≤ m. The following are equivalent.

(1) A is R<kD.

(2) There is a faithful unital ∗-homomorphism ρ : A + → B(Hm) such
that, for every ε > 0, every finite subset E ⊆ Hm and every finite subset
W ⊆ G , there is a projection P ∈ B(Hm) and a unital ∗-homomorphism
τ : A → MP = PB(Hm)P such that, for every e ∈ E and every a ∈ W

we have
‖[τ(a) − ρ(a)]e‖ < ε.



90 don hadwin

(3) There is a faithful unital representation ρ : A + → B(Hm) and a net
{Pα} of projections in B(Hm), each with rank less than k, such that
Pα → 1 (∗-SOT) and such that, for each α, there is a representation
πα : A → MPα

such that, for every a ∈ A , we have

πα(a) → ρ(a)(∗-SOT).

(4) For every unital representation ρ : A + → B(Hm) there is a net {Pα}
of projections in B(Hm), each with rank less than k, such that Pα → 1
(∗-SOT) and such that, for each α, there is a representation πα : A →
MPα

such that, for every a ∈ A , we have

πα(a) → ρ(a)(∗-SOT).

Proof. (2) ⇒ (1) Let A be the set of triples (ε, E, W) ordered by (≥, ⊆, ⊆).
If α = (ε, E, W) let τα : A → PαB(Hm)Pα guaranteed by (2). Since G = G∗
we have

(∗-SOT) lim
α

τα(a) = ρ(a)

for every a ∈ G . Since ρ and each τα is a ∗-homomorphism, the set of a ∈ A

for which (∗-SOT)limα τα(a) = ρ(a) is a unital C*-algebra and is thus A +.
Hence, for every a ∈ A +, we have

‖a‖ = ‖ρ(a)‖ ≤ sup{‖τα(a)‖ : α ∈ A}.
Therefore the direct sum of the τα’s is faithful and (1) is proved.

(3) ⇒ (2). This is obvious.
(4) ⇒ (3). It is clear that we need only show that there is a faithful unital

representation ρ : A + → B(Hm). Suppose τ : A + → B(M) is an irreducible
representation, and suppose D is a generating set with Card(D) ≤ m. Let A0

be the unital ∗-subalgebra of A + over the field Q + iQ of complex rational
numbers. Then A0 is norm dense in A and Card A0 = Card D ≤ m. Suppose
f ∈ M is a unit vector. Since τ is irreducible, τ(A0)f must be dense in M .
Suppose B is an orthonormal basis for M , and, for each e ∈ B let Ue be the
open ball centered at e with radius

√
2/2. Each Ue must intersect the dense set

τ(A0)f , and since the collection {Ue : e ∈ B} is disjoint, we conclude that

dim M = Card B ≤ Card τ(A0)f ≤ Card(A0) ≤ m.

We know that for every x ∈ A0 there is an irreducible representation τx :
A + → B(Mx) such that ‖τx(x)‖ = ‖x‖. Since dim

∑⊕
x∈A0

Mx ≤ m ·m = m,
there is a representation ρ : A + → B(Hm) that is unitarily equivalent to a
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direct sum of m copies of
∑⊕

x∈A0
τx . Hence ρ is isometric on the dense subset

A0, which implies ρ is faithful.
(1) ⇒ (3). Since A is R<kD, we can choose a decomposition Hm =∑⊕
λ∈	 Xλ and representation π = ∑⊕

λ∈	 πλ as in part (1) of Lemma 4. Now
(3) follows from Lemma 5.

We see that the class ofR<kD algebras is closed under arbitrary free products
in the nonunital category of C*-algebras.

Theorem 7. Suppose k is an infinite cardinal and {Aι : i ∈ I } is a family
of R<kD C*-algebras. Then the free product ∗ Ai is R<kD.

Proof. Choose an infinite cardinal m ≥ k +∑
i∈I Card(Ai ). Since ∗i∈I Ai

is generated by G = [⋃
i∈I Ai

]\{0} ⊆ ∗i∈I Ai , clearly ∗i∈I Ai is m-generated.
Choose a set 	 with Card(	) = m and let S be the set of cardinals less than
k. Write

Hm =
⊕∑

s∈S

∑
λ∈	

Xs,λ

where dim Xs,λ = s for every s ∈ S and λ ∈ 	. It follows that, for each i ∈ I ,
we can find a representation πi : Ai → B(Hm) such that

πi =
⊕∑

s∈S

∑
λ∈	

πi
s,λ

satisfying (1) and (2) of Lemma 4. Suppose ε > 0, E ⊆ Hm is finite and
W ⊆ G is finite. We can write W as a disjoint union of Wi1 , . . . , Win with
Wi = W ∩ Ai . Let ρi be the restriction of ρ to Ai . Applying Lemma 5 to Aij

and ρij and πij for 1 ≤ j ≤ n, we can find one finite subset G ⊆ S × 	 so
that if P is the projection on

∑⊕
(s,λ)∈G Xs,λ, then there are unitary operators

Ui1 , . . . , Uin ∈ MP = PB(Hm)P so that, for 1 ≤ j ≤ n, a ∈ Wj , e ∈ E, we
have ‖[ρij (a) − U ∗

ijπ
ij (a)Uij ]e‖ < ε.

Define τij : A +
ij

→ MP by

τij (a) = U ∗
ijπ

ij (a)Uij ,

and for i ∈ I \ {i1, . . . , in} define τi : Ai → MP by

τi(a) = Pπi(a)P .

Then, by the definition of free product, there is a representation τ : ∗i∈I A +
i →

MP such that τ |Ai = τi for every i ∈ I . It follows that, for every e ∈ E and
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every a ∈ W , ‖[ρ(a) − τ(a)]e‖ < ε.

It follows from part (2) of Theorem 6 that ∗i∈I Ai is R<kD.

Corollary 8. Suppose k is an infinite cardinal and {Aι : i ∈ I } is a
family of R<kD C*-algebras such that each Ai has a one-dimensional unital
representation. Then the unital free product ∗Ci∈I Ai is R<kD.

Proof. This follows from the fact that if τi : Ai → C is a unital ∗-
homomorphism for each i ∈ I , then ∗Ci∈I Ai is ∗-isomorphic to (∗i∈I ker τi)

+.

Without the condition on unital one-dimensional representations, the pre-
ceding corollary may fail. For example, ∗Cn∈N Mn(C) is not RFD (= R<ℵ0D),
even though each Mn(C) is RFD. The reason is that each unital representation
of the free product must be injective on each Mn(C) and must have infinite-
dimensional range.

However, there is something we can say about the general situation. If k is
a limit cardinal (i.e., k is the supremum of all the cardinals less than k), the
cofinality of k is the smallest cardinal s for which there is a set E of cardinals
less than k whose supremum is k. Clearly, the cofinality of k is at most k. If k is
not a limit cardinal, then there is a cardinal s such that k is the smallest cardinal
larger than s, and if E is a set of cardinals less than k, then sup(E) ≤ s < k.

Theorem 9. Suppose k is an infinite cardinal and {Aι : i ∈ I } is a family
of unital R<kD C*-algebras. Then

(1) If k is a limit cardinal and Card(I ) is less than the cofinality of k, then
the free product ∗Ci∈I Ai is R<kD.

(2) If k is not a limit cardinal, then the free product ∗Ci∈I Ai is R<kD.

Proof. (1). Choose m ≥ k + ∑
i∈I Card(Ai ), and choose a set 	 with

Card(	) = m. Using Lemma 4 we can, for each i ∈ I , find a faithful repres-
entation πi = ∑

λ∈	 πλ,i so that dim πi = m and, for every i ∈ I and λ ∈ 	,
we have dim πλ,i < k. Since Card(I ) is less than the cofinality of k, we have,
for each λ ∈ 	, a cardinal sλ < k such that supi∈I dim πλ,i ≤ sλ. If we replace
each πλ,i with a direct sum of sλ copies of itself, we get a new decomposition
which we will denote by the same names such that, for each i and each λ we
have dim πλ,i = sλ. Hence we may write direct sum decompositions of the πi’s
with respect to a common decomposition Hm = ∑

λ∈	 Xλ where dim Xλ = sλ

for every λ ∈ 	. The rest now follows as in the proof of Lemma 7.
(2). If k is not a limit cardinal, there is a largest cardinal s < k. Repeat the

proof of part (1) with sλ = s for every λ ∈ 	.

Remark 10. We cannot remove the condition on Card(I ) in part (1) of
Theorem 9. Suppose k is a limit cardinal and I is a set of cardinals less than k
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whose cardinality equals the cofinality of k and such that sup(I ) = k. For each
infinite cardinal m, choose a set 	m with cardinality m, and let Sm denote the
universal unital C*-algebra generated by {vλ : λ ∈ 	m} with the conditions

(1) v∗
λvλ = 1 for every λ ∈ 	m,

(2) vλ1v
∗
λ1

vλ2v
∗
λ2

= 0 for λ1 �= λ2 in 	m.

Since Sm is m-generated, it follows that every irreducible representation of
Sm is at most m-dimensional (see the proof of (4) ⇒ (3) in Theorem 6). Hence
Sm is separated by m-dimensional representations. On the other hand, if π is a
unital representation of Sm, then {π(vλ;v∗

λ) : λ ∈ 	m} is an orthogonal family
of nonzero projections, which implies that the dimension of π is at least m.It
follows that each Ss is R<kD for s ∈ I . However, any unital representation π

of the free product ∗Cs∈I Ss must induce a unital representation of each Ss , so
its dimension is at least sup I = k. Hence ∗Cs∈I Ss is not R<kD.

3. Separable RFD Algebras

In this section we show that for a separable C*-algebra being RFD is equivalent
to a lifting property.

Suppose {e1, e2, . . .} is an orthonormal basis for a Hilbert space �2, and,
for each integer n ≥ 1, let Pn be the projection onto sp({e1, . . . , en}). Let
Mn = PnB(�2)Pn for n ≥ 1, and, following Lemma 1, let

B =
{
{Tn} ∈

∞∏
n=1

Mn : ∃T ∈ B(�2) with Tn → T (∗-SOT)

}
,

and let
J ={{Tn} ∈ B : Tn → 0 (∗-SOT)}.

Then, by Lemma 1, we have that B is a unital C*-algebra, J is a closed ideal
in B and

π({Tn}) = (∗-SOT)- lim
n→∞ Tn

defines a unital surjective ∗-homomorphism from B to B(H) whose kernel is
J . We can now give our characterization of RFD for separable C*-algebras.

Theorem 11. Suppose A is a separable C*-algebra. The following are
equivalent.

(1) A is RFD

(2) For every unital ∗-homomorphism ρ : A + → B(�2) there is a unital
∗-homomorphism τ : A + → B such that π ◦ τ = ρ.

Proof. The implication (2) ⇒ (1) is clear.
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(1) ⇒ (2). Suppose A = C ∗({a1, a2, . . .}) is RFD and ρ : A + → B(�2) is
a unital ∗-homomorphism. It follows from Theorem 6 that there is an increasing
sequence {nk} of positive integers and unital ∗-homomorphisms τk : A →
Mnk

such that ‖[τk(aj ) − ρ(aj )]ei‖ < 1/k

for 1 ≤ i, j ≤ k. It follows that τnk
(a) → ρ(a) (∗-SOT) for every a ∈ A +. If

nk < n < nk+1 we define τn : A + → Mn by

τn(a) =

⎛
⎜⎜⎝

τnk
(a)

β(a)
. . .

β(a)

⎞
⎟⎟⎠ ,

where β : A + → C is the unique ∗-homomorphism with ker β = A , relative
to the decomposition

Pn(�
2) = Pnk

(�2) ⊕ Ce1+nk
⊕ · · · ⊕ Ce−1+nk+1 .

It is easily seen that τn(a) → ρ(a) (∗-SOT) for every a ∈ A +. If we define
τ : A → B by

τ(a) = {τn(a)},
we see that π ◦ τ = ρ.
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