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FLOWS ON ROOTED TREES AND THE
MENOUS-NOVELLI-THIBON

IDEMPOTENTS

F. CHAPOTON∗

Abstract
Several generating series for flows on rooted trees are introduced, as elements in the group of
series associated with the Pre-Lie operad. By combinatorial arguments, one proves identities that
characterise these series. One then gives a complete description of the image of these series in the
group of series associated with the Dendriform operad. This allows to recover the Lie idempotents
in the descent algebras recently introduced by Menous, Novelli and Thibon. Moreover, one defines
new Lie idempotents and conjecture the existence of some others.

Introduction

Let us start by introducing the context of this work, that can be summarised
by the following diagram.

Sym −−−−−−−→ Dend −−−−→ FQSym

Sym ∩ Lie Dend∩Lie −−−−→ Lie

�?ϕ

PreLie

At the top left corner, Sym is the graded Hopf algebra of non-commutative
symmetric functions [12], which has a basis indexed by compositions of in-
tegers. At the top right corner, FQSym is the graded Hopf algebra of free
quasi-symmetric functions, also known as the Malvenuto-Reutenauer algebra
[18], which has a basis indexed by permutations. These two Hopf algebras can
be considered as non-commutative analogues of the classical Hopf algebra
of symmetric functions. They have been studied a lot, and have proved to be
useful in algebraic combinatorics, see for example [24], [8].
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At the middle of the top line, Dend is the free Dendriform algebra on
one generator. This is also a graded Hopf algebra, also known as the Loday-
Ronco Hopf algebra [17], and has a basis indexed by planar binary trees. The
horizontal morphisms of the first line are inclusions of Hopf algebras, and can
be described using appropriate equivalence relations on permutations, see for
instance [17].

On the second line, the subspace Lie of FQSym has two equivalent descrip-
tions. First, one can map FQSym into a space of rational moulds, as described
in [4]. Then Lie is the subspace of alternal elements, in the terminology of
the mould calculus of Ecalle [10], [9]. One can also identify FQSym with
the direct sum of all group rings of symmetric groups, and therefore to the
associative operad. Then Lie is the space of Lie elements, or the image of the
Lie operad in the associative operad.

On the left of second line is the intersection of the subspaces Sym and Lie
of FQSym. It is known to be exactly the subspace of primitive elements in the
Hopf algebra Sym, by results of [12].

The intersection at the middle of the second line is quite interesting. Starting
from the usual injective morphism from the Pre-Lie operad to the Dendriform
operad, one gets an injective morphism ϕ from the free Pre-Lie algebra on one
generator, denoted here by PreLie, to Dend. It was proved in [4] that its image
is contained in the intersection Dend∩Lie.

Computing the dimensions of the intersection Dend∩Lie in small degrees,
Ecalle remarked that they seem to be exactly the dimensions of PreLie. Based
only on this evidence, it is conjectured that ϕ is an isomorphism from PreLie to
Dend∩Lie. There is no known conceptual reason to expect this isomorphism,
and the coincidence of dimensions has been a surprise. If this isomorphism
holds, it would have interesting consequences for the theory of Lie idem-
potents, that can be used to provide more evidence for the conjecture. Let us
now describe this in more details.

Recall that a Lie idempotent is an element θ in the group ring Q[�n] of the
symmetric group, such that θ is idempotent, and such that the product by θ is
a projector onto the subspace of Lie elements. The set of Lie idempotents is
an affine subspace of the group ring Q[�n]. There are many known examples
of Lie idempotents, and most of them belong to a sub-algebra of Q[�n], the
Solomon descent algebra.

There is a natural way to identify Q[�n] with the graded component of de-
gree n of FQSym. By this isomorphism, Solomon descent algebra is identified
with the graded component of degree n of Sym. Moreover, the subspace of
primitive elements of Sym corresponds to the intersection of Solomon descent
algebras with the vector space spanned by Lie idempotents [12].

From all this, one can deduce that any Lie idempotent in the descent algebra
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gives an element in the intersection Sym∩Lie and therefore also in Dend∩Lie.
If ϕ is an isomorphism, this element will come from an element of PreLie.
Conversely, given an element of PreLie, if one can check that its image by
ϕ belongs to Sym, then it will belong to Sym ∩ Lie and will define, up to
multiplication by a scalar, a Lie idempotent in the descent algebra.

Given any specific Lie idempotent in the descent algebra, one can therefore
ask for a description of its conjectural pre-image by ϕ. Every Lie idempotent
for which one can find a pre-image gives further evidence for the conjecture
that ϕ is an isomorphism.

This pre-image has been obtained in [5] for a one parameter family of Lie
idempotents. The starting point of this article was to do the same for a specific
family of Lie idempotents, that has just been recently introduced. Let us now
present them briefly.

Inspired by previous works by Ecalle and Menous [19], [11] on the Alien
calculus, Menous, Novelli and Thibon have defined in [20] a sequence of Lie
idempotents Dn in the descent algebra of the symmetric group �n. The coeffi-
cients of Dn in the basis of ribbon Schur functions are given by homogeneous
polynomials in two variables a and b, more precisely products of powers of
a and b and Narayana polynomials in a and b. By homogeneity, one can
let a = 1 in the coefficients of Dn without losing any information. We will
therefore work with polynomials in b only.

By computing, for small n, the elements Dn in PreLie whose image by ϕ is
Dn, one observes that their coefficients are positive polynomials in b and seem
to factorise according to sub-trees, with factors being also positive polynomials
in b.

The present article provides a combinatorial description of the coefficients
of Dn and their factors, in terms of flows on rooted trees.

To achieve this, one works inside groups of operadic series, associated
with the Pre-Lie and Dendriform operads. All the idempotents Dn are gathered
into one series D in the group GDend associated with the Dendriform operad.
Their pre-images Dn by ϕ are similarly grouped in a series D in the group
GPreLie associated with the Pre-Lie operad. The general idea of the proof is
first to prove some functional equations for D and related Pre-Lie series using
the combinatorics of flows, and other functional equations for D and related
dendriform series, and then to show that the Pre-Lie functional equations are
mapped to the Dendriform functional equations by the inclusion of the Pre-Lie
operad in the Dendriform operad.

In the process of proving the necessary functional equations, one uses many
auxiliary series, and some of them have interesting properties. In particular,
one does not only recover the Lie idempotents Dn of [20], but also gets a new
family Fn of Lie idempotents, related to closed connected flows. Moreover,
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two other conjectural families Zn and Fn,t of Lie idempotents are proposed, for
which we have not been able to obtain a full proof. In the case of Fn,t , one is
missing a combinatorial proof of the existence of a Pre-Lie series Ft and so we
do not know if the dendriform series Ft is a Lie element or not. In the case of
Zn, one only has a conjectural description of the coefficients of the dendriform
series Z, and so we do not know if it belong to Sym.

The article is organised as follows.
Section 1 is a very brief reminder on the combinatorics of rooted trees and

their relation with the Pre-Lie operad and the group associated with this operad.
In Section 2, we introduce the combinatorial notion of flow on a rooted tree,

variants such as small, closed or connected flows, and give recursive descrip-
tion for the generating series of flows and connected flows on a rooted tree
using combinatorial decompositions. Closed flows on linear trees are related
to Dyck paths, and trees admitting a closed connected flow are character-
ised.

In Section 3, we deduce from the previous combinatorial results functional
equations satisfied by series in the Pre-Lie group, whose coefficients are gen-
erating series for flows and connected flows. We also remark that a quotient
series seems to be related to another variant of flows.

In Section 4, after recalling basic facts on planar binary trees, the dendriform
operad and the algebra Sym, we present some simple results about elementary
series in the Dendriform group.

In Section 5, starting from algebraic ordinary generating series related to
flows on linear trees, we introduce several auxiliary series in the algebra Sym
and show, by algebraic and combinatorial means, that they satisfy another set
of functional equations.

Section 6 is the heart of the article, where everything written before comes
together. We first transform the auxiliary series in Sym into auxiliary series in
the Dendriform group. We then build from these auxiliary series other series in
the Dendriform group and obtain functional equations for them. By compar-
ison with the functional equations for flows in the Pre-Lie case, one can then
recognise among the dendriform series the images by ϕ of the Pre-Lie series
for flows (Theorem 6.4). One then obtains an explicit description of the coef-
ficients of the dendriform series D, which allows to identify its homogeneous
components to the Lie idempotents of Menous-Novelli-Thibon (Corollary 6.5).
By a similar explicit description of the image of the series of connected flows,
one defines a new family Fn of Lie idempotents (Prop. 6.8). Finally, two other
conjectural families Zn and Fn,t of Lie idempotents are presented, the latter one
being a one parameter deformation of the family Fn.

We gather in an appendix A some technical tools that are necessary to turn
combinatorial bijections into equalities of series in groups associated with
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Figure 1. Linear tree Lnr4, corolla Crl3 and fork Frk3,4.

operads. The notions of rooted-operad and rooted-monoid that are introduced
here may be of independent interest.

1. Rooted trees and the PreLie operad

1.1. Notations for rooted trees

A rooted tree is a finite connected and simply connected graph, together with a
distinguished vertex called the root. Rooted trees will be considered implicitly
as directed graphs by orienting every edge towards the root, and will be drawn
with their root at the bottom.

The valency vs of a vertex s in a rooted tree is the number of incoming
edges. The height of a vertex s in a rooted tree is defined as follows: the height
of the root is 0, and the height of the source of every edge is 1 more than the
height of its end.

A rooted tree T will sometimes be considered as a partially ordered set
whose Hasse diagram is given by the orientation towards the root, with the
root as the unique minimal element.

A leaf in a rooted tree T is a vertex of valency 0.
If T1, . . . , Tk are rooted trees, we will denote B+(T1, . . . , Tk) the rooted

tree obtained by grafting together T1, . . . , Tk on a new common root.
Rooted trees of maximal height at most 1 are called corollas. Rooted trees

of maximal valency at most 1 are called linear trees.
Let be the rooted tree with one vertex. Let Lnr� be the linear rooted tree

with � vertices. Let Crln be the corolla with n+ 1 vertices.
Let Frki,n−i be the fork with n vertices, with stem of size i, defined by

induction:
Frk1,� = Crl�

and
Frkk+1,� = B+(Frkk,�).

Examples of linear trees, corollas and forks are depicted in Figure 1.
The number of vertices of a rooted tree T will be denoted by #T .
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1.2. The group of rooted trees

For more details on the general construction of the group of series associated
GP with an operad P , the reader may consult the appendix A, [7] and [5,
App. A].

We will work in the group of series GPreLie associated with the Pre-Lie
operad. This group is contained in the free Pre-Lie algebra on one generator,
denoted here by PreLie.

The Pre-Lie operad has a basis indexed by labelled rooted trees [6]. It fol-
lows that the Pre-Lie algebra on one generator has a basis index by (unlabelled)
rooted trees.

For a series D in the group of rooted trees, we will use DT to denote the
coefficient of the rooted tree T in D , in the following sense:

(1) D =
∑
T

DT

aut(T )
T ,

where aut(T ) is the cardinality of the automorphism group of T .
The homogeneous component of D of degree n will be denoted by Dn.
We will use the following special notation for the sum of all corollas:

(2) Crls =
∑
n≥0

Crln
n!

.

Let Hk be the element

(3) Hk =
∑
T

k#T−1 T

autT

of the group GPreLie. Its coefficients are polynomials in the variable k.

Lemma 1.1. One has

(4) Hk ◦ H� = Hk+�,

where k and � are formal variables. In particular, when k is a positive integer,
Hk is the kth power of H1 for the group law of GPreLie. The inverse of Hk is
H−k .

Proof. It is enough to prove this identity for k and � positive integers, by
polynomiality.

Let K and L be finite sets of cardinality k and �. Elements of this sets are
considered as colours.

One applies Proposition 6.5 for the rooted-operad PreLie, withA the species
of rooted trees with edges coloured by elements of K, B the species of rooted
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trees with edges coloured by elements of L and C the species of rooted trees
with edges coloured by elements of K � L. The series sA, sB and sC are clearly
just Hk , H� and Hk+�.

The necessary bijection (hypothesis H�(A,B,C)) is obtained as follows.
Pick any rooted tree T with edges coloured by K�L. One considers the connec-
ted components in T with respect to the edges with colour in L. Each connected
component is a rooted tree. Collapsing every connected component to a point,
one obtains a rooted tree τ with edges coloured by K. To recover the original
rooted tree T , one has to know how to glue back the connected components
into τ . The different ways to do that are exactly counted by a structure constant
of the global composition map of the Pre-Lie operad.

2. Combinatorics of flows

2.1. Definition

Let T be a rooted tree. We will call a flow on T of size k the data of
• k distinct vertices of T (outputs),
• vertices of T (inputs), distinct from outputs, and that can be taken with

multiplicities,

that has to satisfy the condition that we will introduce next.
Given inputs and k outputs as above, one can define a rate in Z on every

edge of T as follows.
• If the vertex v is neither an input nor an output, the sum of incoming

rates in v is equal to the outgoing rate of v.
• If the vertex v is an input with multiplicity �, the outgoing rate of v is

the sum of incoming rates in v plus �.
• If the vertex v is an output, the outgoing rate of v is the sum of incoming

rates in v minus 1.

The main requirement is that all rates are in N.
Note that, by convention, the incoming rate in leaves is 0, but the outgoing

rate at the root (exit rate) can be an arbitrary positive integer.
If the exit rate is 0, the flow is closed.
This definition is illustrated in Figure 2, where outputs are depicted by (red)

squares and inputs by (green) circles with their multiplicity. The rates, between
0 and 3, are drawn with increasing width.

Lemma 2.1. A closed flow of size k can also be described as
• k distinct vertices of T (outputs),
• k vertices of T (inputs), distinct from outputs, and that can be taken with

multiplicities,
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Figure 2. Two flows of size 4, on the same rooted tree with
14 vertices. Only the left one is closed.

such that there exists k decreasing paths from one input to an output that make
a one-to-one matching of inputs with outputs.

Proof. Let us see why the data of a closed flow is equivalent to the existence
of k paths with the required properties.

Given k decreasing paths matching inputs with outputs, one can find the
rate of an edge by counting how many paths go through this edge. This rate
function on edges does satisfy all the desired properties, and defines a closed
flow.

Conversely, given a rate function on edges defining a closed flow, one can
find paths, by induction on the size k. Let us pick an output and choose an
increasing path of edges of strictly positive rate, until one reaches an input.
This defines a path from the reached input to the chosen output. Removing
this input and this output and subtracting 1 to the rate function for every edge
of this path, one find another admissible rate function with k decreased by 1.
Then by induction, one gets k paths with the expected matching property.

Let F(T ) be the set of flows on T and F(T , k, i) be the finite set of flows of
size k ∈ N with exit rate i ∈ N.

2.2. Properties of closed flows

Let us give some simple properties of the definition of closed flows.
For every rooted tree T , there is exactly one closed flow of size 0, which is

the empty flow, with no input vertex and no output vertex, where every edge
has rate 0.

For a rooted tree T , closed flows of size 1 are in bijection with pairs of
distinct comparable vertices of T . The number of closed flows of size 1 is
therefore the sum of the heights of the vertices of T .

Lemma 2.2. For a rooted tree T , the maximal size of a flow on T is the
number of non-leaf vertices of T . There always exist a closed flow having this
exact size.
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Proof. Indeed, any output must be a non-leaf vertex, because it has to be
smaller than an input vertex. Conversely, one can find a closed flow of this size
by putting an output on every non-leaf vertex and inputs on leaves as follows.
Going upwards in the tree, one can choose at each output where the incoming
flow should come from, until one reaches leaves.

2.3. Small flows

Let us say that a flow ψ ∈ F(T ) is small if the root is neither an output nor an
input.

If the flow is closed, it is equivalent to require that the rate of every edge
incoming in the root of T is 0.

Denote by Fs(T ) the set of small flows on T .

Lemma 2.3. If T = B+(T1, . . . , Tk), there is a bijection

(5) Fs(T ) �
k∏
i=1

F(Ti),

where the factors are given by restriction of the flow to sub-trees.

2.4. Inductive description of flows

Let ET ,t be the generating function of flows on T with respect to size and exit
rate:

(6) ET ,t =
∑
k,i≥0

∑
ψ∈F(T ,k,i)

bkt i ,

and let DT ,t be the similar generating function of small flows on T :

(7) DT ,t =
∑
k,i≥0

∑
ψ∈Fs (T ,k,i)

bkt i .

Recall that Lemma 2.2 says in particular that the size of a flow on T is
bounded by the number of non-leaf vertices of T . Therefore the generating
functions ET ,t and DT ,t are polynomials in b with coefficients that are formal
power series in t . We will see later that they are in fact polynomials in b with
coefficients that are rational functions in t .

For example, when T is the fork Frk2,2, one gets

ET ,t = 1+ 5b + 3b2 − t (9b + 8b2)+ t2(5b + 7b2)− t3(b + 2b2)

(1− t)4 .
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We will see now how to compute this by induction.
We will use the general convention that the value at t = 0 of a series denoted

by a symbol with index t will be denoted by the same symbol without index
t . For instance, let ET and DT be the value at t = 0 of ET ,t and DT ,t .

Lemma 2.4. One has DB+(T1,...,Tk),t =
∏k
i=1 ETi ,t .

Proof. This follows from the bijection of Lemma 2.3, and its simple be-
haviour with respect to size and exit rate.

We will now proceed to give an inductive description of the series ET ,t and
DT ,t .

Let T be a tree and v → u be an edge of T , with u closer to the root.
Let T �v w be the tree obtained by adding a new vertex w on top of v. Let
T �u w be the tree obtained by adding a new vertex w on top of u. Let S and
T1, . . . , Tk be the trees obtained from T by removing the edges incoming in
v. Here S is the bottom tree (containing the root of T ) and T1, . . . , Tk are the
top trees. This is illustrated in Figure 3.

w

v

u

w

v

u

v

u

Figure 3. From left to right: T �v w, T �u w and S under T1, . . . , Tk .

Theorem 2.5. With the previous notations, one has the following equalities:

(8) ET�vw,t = ET�uw,t + b ES,t

k∏
i=1

ETi ,

and

(9) DT�vw,t = DT�uw,t + bDS,t

k∏
i=1

ETi .

Proof. Let us prove the first equation.
Let us consider a flow on the tree T �v w. Let α be the rate of w→ v and

β be the rate of v→ u. One can distinguish two cases.
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Either α = β+1, in which case v is an output, and all other edges incoming
in v have rate 0. This kind of flow can be described in a bijective way using
closed flows on the trees T1, . . . , Tk and one flow on the tree S. This gives the
rightmost term.

Otherwise α ≤ β. One can then define a flow on T �u w as follows. One
moves down the end of the edge w → v which becomes an edge w → u

and keep the rate α. The rate of the edge v → u is set to β − α and remains
positive. This clearly defines a bijection, and one gets the leftmost term.

Requiring in addition that the root is empty, the same proof gives the second
identity.

The simplest case of this induction is when v is a leaf in T , in which case
the rightmost term has just the factor associated with S.

This theorem can be used to compute ET ,t from smaller cases, by choosing
a leaf w of height at least 2. This is always possible, unless T is a corolla.

There is a nice commuting property to this induction. Indeed, one can use
it in several different ways to compute ET ,t , by choosing different leaves. This
happens first for trees with 5 vertices.

One has the following consequence:

Corollary 2.6. Let T be a rooted tree. Then one has

(10) EB+( ,T1,...,Tk),t =
1

1− t
(

EB+(T1,...,Tk),t + b
k∏
i=1

ETi

)
.

Proof. This follows from equation (9). Indeed, one has

DB+(B+( ,T1,...,Tk)),t = DB+( ,B+(T1,...,Tk)),t + bDB+( ),t

k∏
i=1

ETi .

One can then use Lemma 2.4.

Corollary 2.6 can be used to compute the coefficients ECrln,t for corollas,
by induction on n.

2.5. Properties of ET

Lemma 2.7. For every rooted tree T , the series ET ,t is a polynomial in b of
degree the number of non-leaf vertices of T , with coefficients that are rational
functions in t , with poles only at t = 1. The common denominator of ET ,t is
(1− t)#T .

Proof. The polynomial behaviour with respect to b follows from the upper
bound on the number of outputs, given by the number of non-leaf vertices, see
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Lemma 2.2. There always exists at least one flow with outputs at every non-leaf
vertex, for example by placing sufficiently many inputs in every leaf. Therefore
the degree of the polynomial is the number of non-leaf vertices.

Let us now show that the coefficients of this polynomial in b are rational
functions in t with poles only at t = 1 and of order at most the size of T . This
is true for the rooted tree , as E ,t = 1/(1− t). By Corollary 2.6, this is true
for all corollas, by induction. One can then use induction on the sum of heights
of the vertices and on the number of vertices. Let T be a tree which is not a
corolla, and let w be a leaf of maximal height in T . Take v to be the vertex
under w and u the vertex under v. Then one can apply Theorem 2.5 to prove
the induction step.

It remains to show that the order of the pole at 1 of ET ,t is exactly the size
of T . This follows from the obvious fact that the constant term with respect to
b is exactly 1/(1− t)#T .

The same kind of properties holds for DT ,t , thanks to Lemma 2.4 and the
obvious initial conditions DCrln,t = 1/(1− t)n.
2.6. Connected flows

Let us say that two vertices u, v of T are connected by the flowψ on T if every
edge of the unique path from u to v does have a strictly positive rate in ψ .

One can then define connected components with respect to the flow ψ ,
namely sets of vertices connected by the flow ψ . Each connected component
with respect to a flow is a rooted tree.

A flow is called connected if it has exactly one connected component.
Let Fc(T ) be the set of connected flows on T .

Lemma 2.8. If a rooted tree T admits a closed connected flow, its root has
valency at most 1.

Proof. The statement holds for the tree . One can assume that T has at
least one edge. By connectedness, every edge incident to the root contributes at
least 1 to the total rate entering the root. By closure, the root is then necessarily
an output, and it can only accept a rate of 1. Therefore there is exactly one
incident edge to the root.

2.7. Trees with a closed connected flow

We will now give a description of the rooted trees that admit a closed connec-
ted flow, using a function defined by Jean-Claude Arditti [1], [2] in relation to
rooted trees with Hamiltonian comparability graphs. One can note that these
references also use some kind of flows on rooted trees. To avoid possible confu-
sion, we will call this function the valour, which is not the original terminology.
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Let T be a rooted tree. The valour V(f ) of a leaf f is 1. The valour V(v)
of a vertex v is

(11) max

(
1,−1+

∑
s→v

V(s)

)
.

Lemma 2.9. The valour of the root of T is the minimal value of the exit rate
among all connected flows on T with non-zero exit rate.

Proof. By induction on the size of the tree T . This is true for the tree ,
which has minimal non-zero exit rate 1. Let T = B+(T1, . . . , Tk). Then the
minimal exit rate of a connected flow on T is the sum of the minimal non-zero
exit rates of T1, . . . , Tk , minus 1 corresponding to an output at the root of T .
If this is at least 1, this is the minimum non-zero exit rate. If this is zero, the
minimum non-zero exit rate is 1, and can be obtained by adding 1 to the rate
along the path from the root to any chosen leaf.

This proves that the minimal non-zero exit rate satisfies the same recursion
as the valour.

Proposition 2.10. A rooted tree B+(T ) admits a closed connected flow if
and only if the root of T has valour 1.

Proof. Using Lemma 2.8, the rooted treeB+(T ) admits a closed connected
flow if and only if the rooted tree T admits a connected flow with exit rate 1.
By the previous lemma, this is equivalent to say that the valour of the root of
T is 1.

2.8. Inductive description of connected flows

Let us introduce a generating function for connected flows:

(12) E c
T ,t =

∑
k,i≥0

∑
ψ∈Fc(T ,k,i)

bkt i .

By Lemma 2.8, a rooted tree (different from ) which admits a closed
connected flow can be written B+(T ). Let us denote by FT the generating
series of connected flows on T with exit rate 1.

We will now obtain an inductive description of the coefficients FT .
Let us consider the situation depicted in Figure 4, with the same notations

as for Theorem 2.5. The tree S is obtained from T by removing everything
above v. The tree S ′ is obtained as the sub-tree of T �v w with root v.
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Figure 4. From left to right: T �v w, T �u w and S under S ′.

Theorem 2.11. With the previous notations, one has the following equalit-
ies:

(13) FT�vw = FT�uw +FSFS ′ .

Proof. Let us consider a connected flow on T �v w with exit rate 1. Let
α ≥ 1 be the rate of the edgew→ v and β ≥ 1 be the rate of the edge v→ u.

If β ≥ α + 1, then one can define a connected flow on T �u w with exit
rate 1 as follows. One replaces the edge w→ v by an edge w→ u with rate
α, and assign the rate β−α ≥ 1 to the edge v→ u. This is clearly a bijection,
and gives the leftmost term.

Otherwise, one has β ≤ α. One can then define a connected flow on S ′
with exit rate 1 and a connected flow on S with exit rate 1, as follows. On the
bottom tree S, the vertex v becomes an input with exit rate β, and all rates are
unchanged. On the top tree S ′, the vertex v has the same content as the vertex
v of T �v w, either input or output. One assigns to the edge w→ v the rate
α−β + 1 ≥ 1. One can check that the exit rate of this connected flow on S ′ is
1. This construction is clearly a bijection, and one obtains the rightmost term.

For example, one can compute using this theorem that FFrk2,2 is 2b(1+b).
Corollary 2.12. For every rooted tree T with n vertices, the coefficient of

bk and the coefficient of bn−1−k in FT are equal.

Proof. This is certainly true for small corollas by inspection, and FCrln
vanishes if n ≥ 3. Then one can proceed by induction on the size and the total
height, using (13).

It appears that it may be possible to introduce a parameter t in the inductive
definition (13).

Conjecture 2.13. We keep the same notations as for Theorem 2.11. There
exists rational functions FT ,t , such that

(14) FT�vw,t = FT�uw,t + (1− t)FS,tFS ′,t ,
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and such that FLnr(n),t = ELnr(n),t for n ≥ 1 and

(15) FCrln = b(−t)n−2/(1− t)n−1 for n ≥ 2.

It is easy to prove that this defines uniquely the fractions FT ,t , if they exist.
For example, one gets that

FFrk2,2,t =
b

(1− t)2 +
b(1+ 2b)

1− t .

Looking at the first fractions FT ,t , one observes that they do not have
positive coefficients as formal power series in t and b, for example for the
rooted tree B+(Crl2, , ). Therefore they cannot be given a combinatorial
description similar to the one for FT in terms of connected flows with exit
rate 1.

2.9. Flows on linear trees and Dyck paths

Let us consider the case of the linear trees. We first show that closed flows on
linear trees are in bijection with very classical objects, namely Dyck paths.

Recall that a Dyck path of length 2n is a plane lattice path from (0, 0) to
(n, n) using steps (0, 1) (up) and (1, 0) (right) and keeping above the diagonal
line y = x. A Dyck path of length at least 2 is called indecomposable if
it only touches the diagonal line at its extremities. Every Dyck path can by
uniquely written as the concatenation of indecomposable Dyck paths. Every
indecomposable Dyck path can be uniquely written (0, 1)D(1, 0) where D is
a Dyck path. A peak in a Dyck path is a factor (0, 1)(1, 0). We say that two
letters (0, 1) and (1, 0) appearing in this order in a Dyck path are matched if
the factor between them is a Dyck path.

1

1

Figure 5. Bijection between Dyck paths and closed flows on linear
trees. In this example, the flow has two connected components.

Proposition 2.14. There exists a bijection ρ between closed flows on Lnrn
and Dyck paths of length 2n through which

• connected components correspond to indecomposable factors,
• outputs correspond to matched pairs of steps that do not form a peak.
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Proof. The bijection is defined by induction on n. If n = 1, there is only
one closed flow on , which has no output, and only one Dyck path, which is
(0, 1)(1, 0).

Assume now that n is at least 2, and the bijection ρ is defined for smaller n.
Any closed flow can be written as a list of connected components, starting

from the component containing the root. Its image by ρ is defined as the
concatenation of the images by ρ of the connected components.

If there are at least 2 connected components, this defines ρ by induction.
If not, the closed flow is connected. Then the root is an output. One can

remove 1 to the rate of every edge and remove the root. This defines a closed
flow on the linear tree with one vertex less. Its image by ρ is taken to be
(0, 1)D(1, 0), where D is the image by ρ of the smaller flow, defined by
induction.

This decomposition is obviously mapped to the similar classical decom-
position of Dyck paths, using sub-Dyck paths and down-moving of indecom-
posable paths. The inverse bijection is immediate.

The statement on outputs follows easily by inspection of the bijection.

The bijection is illustrated in Figure 5.
Let can,t be the generating series ELnrn,t and let can be the polynomial ELnrn .
The first few values of can,t are

ca1,t = 1

1− t ,

ca2,t = 1+ b − tb
(1− t)2 ,

ca3,t = 1+ 3b + b2 − t (4b + 2b2)+ t2(b + b2)

(1− t)3

From the bijection above, it follows that can counts Dyck paths according
to the number of peaks. These polynomials are classical in combinatorics, and
known as the Narayana polynomials, see for example [13].

Let us introduce ordinary generating series

(16) E =
∑
n≥1

can xn and Et =
∑
n≥1

can,t xn,

and let Ec be the similar series for closed connected flows on linear trees.
The analogous series for small flows are just x(1 + E) and x(1 + Et),

because a small flow on Lnrn+1 can be described by a flow on Lnrn.
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From the combinatorial decomposition used in the bijection with Dyck
paths, one deduces that

(17) E = Ec/(1− Ec) and Ec = x(1+ bE).
By decomposing a flow according to whether the root is an output or not,

one obtains the equation

Et = x/(1− t)(1+ Et)+ bx/t (Et − E).
This is a special case of the global equation for flows (20), that we will prove
later.

2.10. Roots of flow polynomials

After inspection of some examples, one is tempted to ask the following ques-
tion.

Question 2.15. Are the roots of FT real and negative for every rooted tree
T ? Are the roots of ET real and negative for every rooted tree T ?

It is known that roots of Narayana polynomials are real and negative, see
for example [13]. Therefore the answer is positive for linear trees, and also for
corollas, as one can check easily.

3. Series of flows

3.1. Global equations for flows

Let us introduce now two series

(18) Et =
∑
T

ET ,t
T

aut(T )
and Dt =

∑
T

DT ,t

T

aut(T )
,

in the group GPreLie associated with the Pre-Lie operad.
Let E (resp. D ) be the value at t = 0 of Et (resp. Dt ).

Theorem 3.1. The following identity holds:

(19) Dt = Crls � ( , Et ).

Proof. This is essentially a restatement of Lemma 2.3, using the notation
defined in (2) and the results of the appendix A.

Namely, one applies Prop. A.4 of the appendix, with A the species of co-
rollas, B the species made only of the rooted tree on one vertex, C the species
of flows on rooted trees and D the species of small flows on rooted trees.
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Theorem 3.2. One has

(20) Et = 1

1− tDt + b
t
(Dt −D) .

Proof. Consider a rooted tree T = B+(T1, . . . , Tk) endowed with a flow.
Either the root is an input vertex with multiplicity � for some � ≥ 0. This

can be described using a small flow and the integer �. One obtains the left term
of the right-hand side.

The other possibility is that the root is an output vertex. Removing the
output, one gets a small flow with the condition that the exit rate is not zero.
This gives the right term of the right-hand side.

3.2. Global equations for connected flows

Let E c
t be the global series of connected flows:

(21) E c
t =

∑
T

E c
T ,t

T

aut(T )
,

and let E c be its value at t = 0.

Theorem 3.3. The series E c
t satisfies the following equation

(22) E c
t =

1

1− t Crls � ( , E c
t − E c)+ b

t

(
Crls � ( , E c

t − E c)− )
.

Proof. This is similar to the proof of Theorems 3.1 and 3.2. One has to
distinguish according to the status of the root.

If the root is an input (possibly empty), the restriction to every sub-tree is
an arbitrary connected flow with non-zero outgoing rate at the root. We obtain
the first term of the right-hand side.

If the root is an output, there must be at least one sub-tree, and the restriction
to every sub-tree is an arbitrary connected flow with non-zero outgoing rate at
the root. This gives the second term of the right-hand-side.

The series Et of flows can be recovered from the series E c
t of connected

flows.

Theorem 3.4. There holds

(23) Et =
(∑

T

T

aut(T )

)
� (E c

t , E c).
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Proof. This follows from Prop. A.4 applied to the following four species:
A is the species of rooted trees,B the species of connected flows,C the species
of closed connected flows and D the species of flows.

The necessary bijection (hypothesisH�(A,B,C,D)) is rather clear. Indeed,
given any flow, one can define connected flows on its connected components,
closed if not containing the root. One can also make a rooted tree τ with
vertices the connected components. To be able to recover the flow, one has to
know how to glue back components into the tree τ . This is given by a constant
of structure of the global composition of the Pre-Lie operad.

In words, this theorem says that the series Et of flows is obtained from the
series of all trees, by insertion of E c

t in the root and insertion of E c in all other
vertices.

When t = 0, this reduces to the factorisation of series

(24) E =
(∑

T

T

aut(T )

)
◦ E c,

in the group GPreLie, which means that a closed flow is made by gluing closed
connected flows along a rooted tree.

Because rooted trees that support closed connected flows have root-valency
at most 1 by Lemma 2.8, one can write

(25) E c = + b � F ,

for some series F . We will use this series later in § 6.3.

3.3. Quotient series E ◦D−1

A saturated flow is a closed connected flow where every non-leaf vertex is an
output.

Let E s
T be the generating series for saturated flows on T . Note that this is a

monomial in the variable b, of degree the number of non-leaf vertices of T .

Lemma 3.5. Let T be a rooted tree that admits a closed connected flow.
Then T admits a saturated flow.

Proof. Pick a closed connected flow on T . The proof is by induction on
the number of non-leaf vertices which are not outputs. If the chosen flow is
saturated, there is nothing to do. Otherwise, let v be a non-leaf vertex which
is not an output.

If v is not an input, one can put an output in v, choose a path from v to some
leaf w of the sub-tree at v, and add 1 to the rate on every edge of this path and
1 input on w.
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If v is an input, one can first move this input to a leaf, by choosing a path
from v to a leaf w of the sub-tree at v, and adding 1 to the rate on every edge
of this path. Then one gets back to the previous case.

Therefore rooted trees that admit closed connected flows are exactly the
same as rooted trees that admit saturated flows.

Let now Y be the quotient series E ◦D−1 in the group GPreLie. One observes
a surprising property.

Conjecture 3.6. The coefficient YT of a rooted tree T in Y is the monomial

(26) (−1)L(T )−1E s
T ,

where L(T ) is the number of leaves of T .

If this is true, then by Lemma 3.5, the support of Y is the same as the
support of E c, and one can write

(27) Y = + b � Z ,

for some series Z . We will consider this series again later in § 6.4.

4. Binary trees, dendriform operad and Sym

4.1. Notations for planar binary trees

A planar binary tree on n vertices is either the tree 1 = | with no inner vertex
or a pair of two planar binary trees. Planar binary trees will be drawn with their
root at the bottom and leaves at the top, aligned on a horizontal line. Examples
are depicted in Figure 6.

Figure 6. A planar binary tree with 6 inner vertices,
and its image by reversal.

There is a natural involution on the set of planar binary trees, given by left-right
reversal, as shown in Figure 6.

The canopy of a planar binary tree is a sequence of letters and of length
n − 1. There is a letter for each leaf but the leftmost and rightmost one. The
letter is is the leaf is the left son of its parent vertex, and is the leaf is the
right son of its parent vertex.

For example, the canopy of the planar binary tree at the left of Figure 6 is
.
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We will also use the following variants: the full canopy is obtained from
the canopy by adding at the beginning and at the end, the left-completed
canopy by adding at the beginning, and the right-completed canopy by
adding at the end.

4.2. The Dendriform operad

The Dendriform operad, introduced by Loday, is a non-symmetric operad with
a basis indexed by planar binary trees. The free dendriform algebra is just the
direct sum of all components of the Dendriform operad. We refer the reader to
[16] for more information on the dendriform algebras.

On the free dendriform algebra Dend, there are two dendriform products
≺ and �, that satisfy the 3 dendriform axioms. In particular, their sum defines
an associative product

(28) x ∗ y = x � y + x ≺ y,
which is the product used in the Hopf algebra structure of Dend.

We will use the following notation:

(29) x ∨y z = x � y ≺ z.
By one of the dendriform axioms, no parentheses are needed in this expression.
When y is the planar binary tree , the operation x ∨ z can be described as
the gluing of x and z on a common vertex.

From the dendriform axioms, one can deduce the following relations :

(30) (x ∨ y) ≺ z = x ∨ (y ∗ z) and x � (y ∨ z) = (x ∗ y) ∨ z.

One can extend (in a unique way) the notation x ∨y z to the cases where x
or z are the unit tree 1, with the same properties.

Let ϕ be the operad morphism from the PreLie operad to the Dend operad
defined by its value on the labelled generator:

(31) ϕ(x � y) = y � x − x ≺ y.
Therefore, the map ϕ sends to − . One can show that the morphism ϕ

is injective by using that it factorises through the Brace operad.
From now on, the expression “dendriform image” will mean the image by

ϕ.
We will work in the group GDend associated with the dendriform operad.

This is an open subset in the free dendriform algebra on one generator Dend.
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Lemma 4.1. Let T be a labelled rooted tree, with i the label of the root. The
dendriform image of T is a linear combination of labelled planar binary trees
whose root is labelled by i.

Proof. One has to show that ϕ is a morphism of rooted-operads, in the
language of the appendix A. This is clear on the generators by (), hence one
can apply Lemma A.1.

Lemma 4.2. Let x, y, z, t in Dend. Then

(32) (x ∨ y) � (z, t) = (x ◦ t) ∨z (y ◦ t).

Proof. This is an easy consequence of the definition (29) of ∨ and of the
general definition of the operations � and ◦ in Appendix A.

Lemma 4.3. Let x, y, z, t, u in Dend. Let v = (y ∨z t). Then

x ∨v u = (x ∗ y) ∨z (t ∗ u).

Proof. This is a simple computation in the dendriform operad, starting
from the definition (29).

The suspension � is defined by

(33) �

(∑
n≥1

an

)
=

∑
n≥1

(−1)n−1an,

where an is homogeneous of degree n.
We will also use the bar involution, which is the composition of suspension

and reversal, that are two commuting involutions.

4.3. The subalgebra Sym of Dend

Let Sym be the algebra of non-commutative symmetric functions. This is the
free associative algebra generated by one generator in every positive degree.
We will use the basis of ribbon Schur functions, indexed by compositions of
n in degree n. For more information, the reader may consult [12], [24], [8].

Compositions of nwill be identified with strings of n−1 symbols and ,
by the convention that a symbol means “cut here” and a symbols means
“do not cut here”. For example,

(34) 1|4|1|2←→ .

The product in the basis of ribbon Schur functions is given by the rule

(35) ε ∗ δ = ε δ + ε δ.
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The inclusion from Sym to Dend is defined on the basis of Schur function
by sending a sequence of elements of { , } to the sum of all planar binary
having this sequence as canopy. This is a morphism of algebras.

One will need the following lemma.

Lemma 4.4. Let θ be a Lie idempotent in the descent algebra of �n, seen
as an element of Sym. Then the coefficient of the ribbon Schur function with
index n−1 in θ is 1/n.

Proof. By [23, Prop. 2.4], the coefficient of Id in the expansion of any Lie
idempotent in the usual basis of the symmetric group ring Q[�n] is 1/n. By
the inclusion of Sym in FQSym, a ribbon Schur function is mapped to the
sum of all permutations with a fixed descent set, depending on its index. For
the ribbon Schur function with index n−1, the image is just the permutation
Id. For a Lie idempotent in the descent algebra, the coefficient of the ribbon
Schur function with index n−1 is therefore 1/n.

4.4. Known series in the dendriform group

Let us recall some elements of GDend and their properties.
Let R be the positive sum of all right combs, characterised by

(36) R = + ≺ R = + + + · · · ,
and L be the alternating sum of all left combs, characterised by

(37) L = − − L � = − + − + · · · .
The bar involution maps R to −L.

Lemma 4.5. The following inversion relation holds:

(38) (1+ L) ∗ (1+ R) = 1.

Proof. Both 1+ L and 1+ R belong to the subalgebra Sym. Indeed L and
R are the same as ∑

k≥0

(−1)k+1 k and
∑
k≥0

k.

With the product rule A ∗B = A B +A B of Sym, this identity is easily
proved there. Another proof can be found in [5, Prop. 5.1].

Proposition 4.6. The dendriform image of

(39) Crls =
∑
n≥0

Crln
n!

is (1+ R) ∨ (1+ L).
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Proof. This was proved in [22].

We will now recall and extend some results of [5]. Beware that this article
uses slightly different notations.

Recall from § 1.1 that Lnr� is the linear rooted tree with � vertices.

Lemma 4.7. The dendriform image of
∑

T
T

aut(T ) is given by

(40) (1−�L) ∗ ϕ
(∑
�≥1

Lnr�

)
∗ (1−�R).

Proof. This follows from [5, Prop. 5.6] (at q = ∞) and [5, Prop. 6.4]. One
also uses Lemma 4.5.

Lemma 4.8. One has

(41) (1−�L) ∗ ϕ
(∑
�≥1

Lnr�

)
=

∑
n≥1

nLn,

where Ln is the left comb with n vertices.

Proof. This is essentially [5, Prop. 5.3].

Lemma 4.9. There holds

(42)

(∑
n≥1

nLn

)
∗ (1−�R) = (1−�L) ∨ (1−�R).

Proof. This is a simple computation in the dendriform algebra, or even in
the sub-algebra Sym, with easy cancellations.

Proposition 4.10. The dendriform image of

(43) H1 =
∑
T

T

aut(T )
is (1−�L) ∨ (1−�R).

Proof. This follows from the Lemmas 4.7, 4.8 and 4.9.

Lemma 4.11. In GDend, the inverse of (1−�L)∨(1−�R) is (1+L)∨(1+R).

Proof. By Lemma 1.1, the inverse of H1 is H−1, which is the suspension
of H1.

The result then follows from Proposition 4.10, by functoriality of the group
construction.
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Lemma 4.12. One has

(44) �R ◦ ((1+ L) ∨ (1+ R)) = −L.

Proof. By equation (37), it is enough to prove that

�R ◦ ((1+ L) ∨ (1+ R)) = − (�R ◦ ((1+ L) ∨ (1+ R))) � .

By composition with the inverse of (1+ L) ∨ (1+ R) given by Lemma 4.11,
and then suspension, this is equivalent to

R = (1+ L) ∨ (1+ R)+ R � ((1+ L) ∨ (1+ R)) .

By Lemma 4.5 and (30), this is equivalent to R = 1 ∨ (1 + R), which is just
the equation (36).

5. Series in Sym

Let Pt and Nt be series in variables , defined by

(45) Pt =
∑
k≥1

cak,t k and Nt =
∑
k≥1

(−1)k cak,t k,

where cak,t are the fractions defined in § 2.9, and let P (resp. N) be Pt=0 (resp.
Nt=0).

These series can be considered as ordinary generating series for flows on
linear trees, see § 2.9.

Lemma 5.1. One has

(46) Pt = 1

1− t (∅ + Pt ) + b
t
(Pt − P)

and

(47) Nt = −1

1− t (∅ + Nt )− b
t

(Nt − N).

Proof. This follows from the fact that the coefficients cak,t count flows on
linear rooted trees. One has to decompose according to whether the root is an
output or not, as already done in the proof of Theorem 2.5.

One will also need connected variants of P and N, defined by

(48) Pc = (∅ + bP) and Nc = − (∅ + bN).
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By (17), these series are generating series for connected closed flows on
linear trees. Let us now consider the similar series Pct for arbitrary connected
flows on linear trees.

Every flow on a linear tree can be decomposed as a list of connected com-
ponents, all but one are closed. One therefore has

(49) Pt = Pct + PtPc.

A connected flow on a linear tree is either closed, or one can remove one
layer of rate on every edge, and obtain any linear flow. This implies that

(50) Pct = Pc + tPt .
Proposition 5.2. The series Pc and Nc satisfy

(51) (1− t)Pt = Pc + PcPt and (1− t)Nt = Nc + NtNc.

Proof. It is enough to consider the case of P, by symmetry under the
exchange of and − . The equation follows directly from (49) and (50).

Let us now define three series involving both variables and .
The series T (independent of the variable t) is defined by

(52) T =
∑
k≥0

bk(PN)k.

The series Ut and Vt are then defined by

(53) Ut = (∅ + bN)TPt Vt = NtT(∅ + bP).

The first few terms of Ut and Vt are

Ut = ca1,t + ca2,t − b ca1,t + · · ·
Vt = − ca1,t + ca2,t − b ca1,t + · · ·

Let U (resp. V) be Ut=0 (resp. Vt=0).

Lemma 5.3. One has

(54) Ut = 1

1− t ((∅ + bN)T+ Ut ) + b
t
(Ut − U)

and

(55) Vt = −1

1− t (T(∅ + bP)+ Vt )− b
t

(Vt − V).
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Proof. This follows from Lemma 5.1 and the definition of Ut and Vt .

One will need an involution (called the bar involution) on the space of
non-commutative formal power series in two variables , . It is the unique
anti-morphism of algebra defined on generators by = − and = − .

Under the bar involution, Nt and Pt are exchanged, T is fixed and Ut and
Vt are exchanged.

6. Series in the dendriform group

Let Ut be the unique dendriform series whose right-completed canopy is given
by Ut :

(56) Ut = ca1,t + ca2,t − b ca1,t + · · ·
and let Vt be the unique dendriform series whose left-completed canopy is
given by Vt :

(57) Vt = − ca1,t + ca2,t − b ca1,t + · · · .
It follows from this definition that, under the bar involution on dendriform

series, one has Ut = −Vt .

Lemma 6.1. Let u, v be two formal variables. One has

(58) (1+ Vv) ∗ (1+ Uu) = 1+ (v − u)NvT Pu,

where NvT Pu has to be interpreted as the sum over planar binary trees with
the given full canopy.

Proof. This is in fact a computation inside series in and , by the
correspondence between a monomial in and and the sum of all planar
binary trees having this monomial as their full canopy.

Let us compute (1+ Vv) ∗ (1+ Uu)− 1. One finds

NvT(∅ + bP) + (∅ + bN)TPu + NvT(∅ + bP) (∅ + bN)TPu
+ NvT(∅ + bP) (∅ + bN)TPu.

Using the definition (48) of Nc and Pc, one gets

NvTPc − NcTPu + NvTPc(∅ + bN)TPu − NvT(∅ + bP)NcTPu.

Expanding the products, one obtains

NvTPc − NcTPu + NvTPcTPu + bNvTPcNTPu
− NvTNcTPu − bNvTPNcTPu.
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One can then use the fact that T = ∅ + bTPN = ∅ + bPNT to split the third
and fifth terms, getting

NvTPc − NcTPu + NvTPcPu + bNvTPcPNTPu + bNvTPcNTPu
− NvNcTPu − bNvTPNNcTPu − bNvTPNcTPu.

Now gathering terms by pairs and using four times the equation (51), one gets,
after some cancellations,

(1− u)NvTPu − (1− v)NvTPu,

which is the expected result.

6.1. Flows in the dendriform group

Let us now consider two series Dt and Et . Our aim will be to show that they
are the respective dendriform images of the series Dt and Et .

The series Dt is defined by

(59) Dt = (1+ Ut ) ∨ (1+ Vt ) = + ca1,t − ca1,t + · · ·
The series D is the value of Dt at t = 0.

The series Et is then defined by

(60) Et = 1

1− t Dt +
b

t
(Dt − D) = ca1,t + ca2,t − ca2,t + · · ·

The series E is the value of Et at t = 0.
From these definitions, it results that both Et and Dt are fixed under the bar

involution of Dend.

Proposition 6.2. One has the following relations

(61) Ut = R ◦ Et and Vt = L ◦ Et .

Proof. By symmetry under the bar involution, it is enough to prove the
first equation. By the characteristic property (36) of right combs, one just has
to show that

Ut = Et + Et ≺ Ut .

Let us compute the right hand side using (60). One finds

1

1− t Dt +
b

t
(Dt − D)+ 1

1− t Dt ≺ Ut + b
t
(Dt ≺ Ut − D ≺ Ut ).
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Using then (59), one gets

1

1− t (1+ Ut ) ∨ (1+ Vt )+ b
t
((1+ Ut ) ∨ (1+ Vt )− (1+ U) ∨ (1+ V))

+ 1

1− t ((1+ Ut ) ∨ (1+ Vt )) ≺ Ut + b
t
(((1+ Ut ) ∨ (1+ Vt ))

≺ Ut − ((1+ U) ∨ (1+ V)) ≺ Ut ),

which can be rewritten by (30) as

1

1− t (1+ Ut ) ∨ ((1+ Vt ) ∗ (1+ Ut ))+ b
t
((1+ Ut ) ∨ ((1+ Vt ) ∗ (1+ Ut ))

− (1+ U) ∨ ((1+ V) ∗ (1+ Ut )).

Using Lemma 6.1, one can replace (1+ Vt ) ∗ (1+ Ut ) by 1. One obtains

1

1− t (1+ Ut ) ∨ 1+ b
t
(1+ Ut ) ∨ 1− b

t
(1+ U) ∨ ((1+ V) ∗ (1+ Ut )).

Using Lemma 6.1 again, one finds

1

1− t (1+ Ut ) ∨ 1+ b
t
(1+ Ut ) ∨ 1− b

t
(1+ U) ∨ (1− t (NT Pt )).

Expanding that, one gets

(62)
1

1− t 1∨1+ 1

1− t Ut∨1+b
t

Ut∨1−b
t

U∨1+b1∨(NT Pt )+bU∨(NT Pt ).

We therefore have to show that this expression is simply Ut .
To prove that, let us decompose Ut according to the position of the root in

the trees. There are four ways to place the root in the full canopy:
• the tree is , the root can be put between and ,
• the full canopy ends by , the root can be put between them,
• the full canopy starts by , the root can be put between them,
• the root can be put after any followed by in the full canopy.

Using equation (54), let us describe the first two cases. One gets
• 1

1−t 1 ∨ 1 for the tree ,

• 1
1−tUt ∨ 1+ b

t
Ut ∨ 1− b

t
U ∨ 1 for the root between and .

Using equation (53), let us describe the last two cases. One gets
• b1 ∨ (NT Pt ) for the root between and ,
• bU ∨ (NT Pt ) for the root between and .
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Note that the last case is slightly more subtle, as the cut takes places inside the
T factor and one has to use the expression (52) for the series T.

It follows that (62) is exactly the expansion of Ut according to the possible
positions of the root in the canopy.

Corollary 6.3. One has

(63) Dt = ((1+ R) ◦ Et ) ∨ ((1+ L) ◦ Et ).

Proof. This follows from (59) and Proposition 6.2.

This is readily reformulated by Lemma 4.2 using the � operation as

(64) Dt = ((1+ R) ∨ (1+ L)) � ( , Et ).

Theorem 6.4. The dendriform images of Et and Dt are Et and Dt .

Proof. The series Et and Dt are characterised by the equations (20) and
(19). By Proposition 4.6 and results of Appendix A, the dendriform image of
(19) is exactly (64). The dendriform image of (20) is exactly (60). Therefore
Et and Dt satisfy equations that characterise the dendriform images of Et and
Dt , and the statement follows.

6.2. Explicit product formulas for coefficients

The equations (53) provide an explicit description of the coefficients of the
series Ut and Vt .

More precisely, the coefficient of a planar binary tree τ in the series Ut can
be found as follows. One considers the right-completed canopy of τ (includ-
ing the rightmost leaf but not the leftmost leaf). It admits a unique coarsest
decomposition into blocks of the shape k and � for k, � ≥ 1. Every block
of length � in this decomposition contributes a Narayana factor ca�, but the
rightmost block contributes instead a factor ca�,t . There is an additional factor
of b to the power the number of blocks and (−1) to the power the number
of .

For example, the coefficient of the leftmost planar binary tree of Figure 6,
whose right-completed canopy is , is

b2 ca1 ca2 ca1 ca2,t .

There is a similar description for Vt . One considers the left-completed can-
opy of τ (including the leftmost leaf but not the rightmost leaf) and decompose
it into maximal blocks of and . Every such block of length � contributes a
Narayana factor ca�, but the leftmost block contributes instead a factor ca�,t .
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There is an additional factor of b to the power the number of blocks and
(−1) to the power the number of .

One can also interpret the definition (59) as giving the explicit coefficients
of the series Dt .

More precisely, the coefficient of a planar binary tree τ in the series Dt can be
found as follows. Consider the canopy of τ , and cut it into two parts according
to the position of the root of tree. Decompose both parts into maximal blocks
of and . Every such block of length � contributes a Narayana factor ca�,
but the two blocks that are closest to the root contributes instead a factor ca�,t .
There is an additional factor of b to the power the number of blocks in the
left part plus the number of blocks in the right part, and (−1) to the power
the number of .

For example, the coefficient of the leftmost planar binary tree of Figure 6,
whose canopy is cut into and , is

b2 ca1 ca2,t ca1,t ca1 .

Letting t = 0 in this description, one observes that the coefficient of a tree
in D depends only on its canopy. This is obvious for the factors associated
with blocks and for the sign. As for the power of b, it can be described as the
number of blocks in the canopy, excluding the last (rightmost) block.

It follows that D is in the descent algebra. Moreover, this description of Dn
is exactly the value at a = 1 of the description given in [20, Th. 10.1] and we
therefore recover this theorem. Let us give its statement here.

Corollary 6.5. The homogeneous components Dn are Lie idempotents and
satisfy

(65) Dn · Dn = n can−1 Dn,

in the symmetric group ring of �n.

To determine the precise constant of proportionality, one uses Lemma 4.4
and the fact that the coefficient of the ribbon Schur function n−1 is can−1.

One can now use (60) to give an explicit description of the coefficients of
the series Et .

As Dt and D have all but two of their factors in common, all these factors
are also in Et . The remaining factor is

(66)
1

1− t cak,t ca�,t +b
t
(cak,t ca�,t − cak ca�)

which is the fraction counting flows on the rooted trees B+(Lnrk,Lnr�).
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Therefore, the coefficient of a planar binary tree τ in the series Et can be
found as follows. Consider the canopy of τ , and cut it into two parts accord-
ing to the position of the root of tree. Decompose both parts into maximal
blocks of and , excluding the two central blocks. Every such block of
length � contributes a Narayana factor ca�. The two central blocks together
are of the shape k �. We associate with this the coefficient of the rooted tree
B+(Lnrk,Lnr�) in the series Et .

There is an additional factor of b to the power the number of blocks in
the left part plus the number of blocks in the right part, and (−1) to the
power the number of .

6.3. Connected flows in the dendriform group

Let us now introduce the dendriform image Ect of the series E c
t of connected

flows. As E c
t is related to Et by equation (23), one gets, by using Proposi-

tion 4.10 and results of Appendix A, that Ect is defined by

(67) Et = ((1−�L) ∨ (1−�R)) � (Ect , Ec).

Letting t = 0, one gets

(68) E = ((1−�L) ∨ (1−�R)) ◦ Ec.

Proposition 6.6. The series Ect admits the following expression

(69)
1

1− t +
(

t

1− t + b
)

1 ∨ NtTP

−
(

t

1− t + b
)

NTPt ∨ 1− t
(

t

1− t + b
)

NTPt ∨ NtTP.

Proof. Using Lemma 4.11, one can invert the relation (6.3) between E and
Ec as

(70) ((1+ L) ∨ (1+ R)) ◦ E = Ec.

On the other hand, using Lemma 4.2, Lemma 4.3 and Lemma 4.5, one can
invert the relation (67) between Et and Ect to obtain

Ect = (1−�R ◦ Ec) ∨Et (1−�L ◦ Ec).

But by (70) and Lemma 4.12, one deduces that

�R ◦ Ec = �R ◦ ((1+ L) ∨ (1+ R)) ◦ E = −L ◦ E,
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and by symmetry that

�L ◦ Ec = L ◦ ((1+ L) ∨ (1+ R)) ◦ E = −R ◦ E.

One therefore gets using Prop. 6.2 that

Ect = (1+ L ◦ E) ∨Et (1+ R ◦ E) = (1+ V) ∨Et (1+ U).

By the equation (60), one finds

1

1− t (1+ V) ∨Dt (1+ U)+ b
t
((1+ V) ∨Dt (1+ U)− (1+ V) ∨D (1+ U)).

Using then the definition (59) of Dt , one gets
(

1

1− t +
b

t

)
(1+ V) ∗ (1+ Ut ) ∨ (1+ Vt ) ∗ (1+ U)

− b
t
(1+ V) ∗ (1+ U) ∨ (1+ V) ∗ (1+ U).

By Lemma 6.1, one gets
(

1

1− t +
b

t

)
(1− tNTPt ) ∨ (1+ tNtTP)− b

t
1 ∨ 1.

This gives the expected result, after simplification.

Recall from (25) that one can write

(71) Ec = + bF/ − b \F,
where F is the dendriform image of the series F introduced in (25).

Corollary 6.7. The series Ec admits the following expression

(72) + b1 ∨ NTP − bNTP ∨ 1.

The series F is given by

(73) −NTP,

and belongs to the descent algebra.

One can use (73) to give an explicit description of the coefficients of F.
More precisely, let τ be a planar binary tree. Then consider the full canopy

of τ , and its coarsest decomposition into blocks of the shape k or � for
k, � ≥ 1. To each such block of size �, one associate a factor ca�.
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Then the coefficient of τ is the product of these factors, times a power of
b given by the number of blocks minus 1 and times (−1) to the power the
number of minus 1.

For example, the coefficient of the leftmost planar binary tree of Figure 6,
whose full canopy is , is

b ca2 ca2 ca1 ca2 .

Using Prop. 6.6, one can also give a description of the coefficients of the
series Ect of connected flows.

Let us consider a planar binary tree τ with at least 2 inner vertices. One
considers the full canopy of τ , and cut it into two parts by using the position
of the root. One distinguish three cases: the root can either be placed between

and at the left of the full canopy, or between and at the right of the
full canopy, or between and inside the full canopy. In each case, one can
translate the corresponding term in (69) into a description of the factors of the
coefficient of τ in Ect .

The series F provides new Lie idempotents.

Proposition 6.8. The homogeneous component Fn of the series F satisfies

(74) Fn · Fn = n can Fn,

in the symmetric group ring of �n.

The constant n can is determined by Lemma 4.4, using that the coefficient
of the ribbon Schur function n−1 (corresponding to the full canopy n) is
can.

Let us consider now the series Ft = −(1 − t)NtTPt , which gives back F
when t = 0.

Assuming that Conjecture 2.13 holds, one can introduce a global series Ft

and propose the following conjecture.

Conjecture 6.9. The series Ft is the dendriform image of the series Ft .

If this is true, then the series Ft provides new Lie idempotents.

Conjecture 6.10. The homogeneous component Fn,t of the series Ft satis-
fies

(75) Fn,t · Fn,t = n can,t Fn,t ,

in the symmetric group ring of �n.
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The constant n can,t in this conjecture is given by Lemma 4.4, using that
the coefficient of the ribbon Schur function n−1 (corresponding to the full
canopy n) is can,t .

Conjecture 6.10 has been checked up to �6 included.

6.4. Description of Z

Let Z be the dendriform image of Z , introduced in (27). We propose here a
conjectural description of the coefficients of Z.

For positive integers p and q, let us define polynomials

zp,q =
∑
k≥0

(
p

k

)(
q

k

)
bp+q+1−k.

If p = q, this polynomial is essentially a Narayana polynomial of type B.
Let now τ be a planar binary tree of size n. Consider the full canopy of τ

and decompose it into blocks of the shape p q with p, q ≥ 1. To each such
block p q , one associates a factor (−1)p−1zp−1,q−1.

The coefficient of τ in the series Z seems to be the product of these factors
associated with blocks, divided by b. The total degree with respect to b is n
minus the number of blocks.

If this description holds, the coefficient of τ would depend only on its
canopy. This would imply the following result.

Conjecture 6.11. The homogeneous component Zn of the series Z is in the
descent algebra and satisfies

(76) Zn · Zn = nbn−1Zn,

in the symmetric group ring of �n.

Note that one uses Lemma 4.4 to get this precise statement.

Question 6.12. Are the roots of the polynomials zp,q real?

It is known that the generalised Narayana numbers associated with finite
Coxeter groups have only real roots, see [21, § 5.2].

Remark 6.13. The polynomials zp,p+1 and zp,p, as well as the polynomials
F for forks seem to appear in the article [14], which deals with symmetric
functions. The relationship with the present work is not clear to us.
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Appendix A

We present here a general setting for the combinatorial use of some algebraic
structures related to operads with specific properties. The reader may like
to keep in mind that the Pre-Lie and dendriform operads are the motivating
examples.

Recall that a species is a functor from the category of finite sets and bijec-
tions to the category of finite sets. For more on the notion of species, the reader
may want to consult the book [3].

A.1. Rooted-operads

Let P be a species, such that ZP is endowed with an operad structure (in the
category of Z-modules).

We assume that P comes with a morphism of species to the species of
pointed sets. This means that to every P -structure T on a finite set I , one
associates an element of I . We will call this element the root of T .

We assume also that the composition ◦i is compatible with the root in the
following sense:

• if i is the root of S, the root of every term of S ◦i T is the root of T ,

• otherwise the root of every term of S ◦i T is the root of S.

We will call this structure a rooted-operad.
Examples of this situation are provided by the Pre-Lie operad, the Dendri-

form operad, the NAP operad [15] and the Perm operad. For the Pre-Lie and
NAP operad, the underlying species is the species of rooted trees, and one
takes the root of each tree. For the Dendriform operad, the underlying species
can be described as (rooted) planar binary trees with labels on internal vertices,
and one also takes the root of each tree. For Perm, the underlying species is
the species of pointed sets, and the root morphism is the identity.

Let P and P ′ be two rooted-operads. A morphism of rooted-operads θ from
P to P ′ is a morphism of operads from ZP to ZP ′ such that for every element
p of P , the root of every term of θ(p) is the root of p.

Lemma A.1. Let θ be a morphism of operads from ZP to ZP ′ given by
its value on elements of P that are generators of ZP . If, for every generator
p, the root of every term in θ(p) is the root of p, then θ is a morphism of
rooted-operads.

Proof. Let us prove by induction on the arity of p ∈ P that every term in
θ(p) has the same root as p. This is clearly true for the unit of ZP .

Let x be an element of P . If x is a generator, then the statement is true by
hypothesis.
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Otherwise, x can be written as a linear combination

x =
∑
α

λαpα ◦iα qα,

where pα and qα are elements of P of smaller arities. Because P is a rooted-
operad, every composition pα ◦iα qα is a linear composition of terms sharing
the same root. One can therefore remove in the sum above every α such that
pα ◦iα qα does not have the same root as x. Then one has

(77) θ(x) =
∑
α

λαθ(pα) ◦iα θ(qα),

and every term θ(pα) ◦iα θ(qα) has the same root as x. The induction step is
done.

This condition holds for the morphism ϕ from the Pre-Lie operad to the
Dendriform operad, which is therefore a morphism of rooted-operads.

A.2. Triple operation associated with rooted-operads

Let P be a rooted-operad, as defined in the previous section.
Let us associate with P the coinvariant space ZP�, which is the free module

over Z with basis indexed by isomorphism classes of P -structures on all finite
sets. One can also describe it as

(78) ZP� = ⊕m≥1ZP(m)�,

where P(m) is P({1, 2, . . . , m}). We will call [T ] the basis element associated
with the isomorphism class of the P -structure T .

On ZP�, there is a natural structure of monoid, whose associative product
is defined using the composition of the operad P , see for example [5, App. A].
Let us recall this construction and introduce a refinement of it, which uses the
existence of the root.

Let s = ∑
m sm, t =

∑
m tm be elements of ZP�, with sm, tm elements of

ZP(m)�. Choose any representatives xm, ym of sm, tm in ZP(m).
The monoid structure is given by

(79) s ◦ t =
∑
m≥1

∑
n1,...,nm≥1

〈xm((yn1 , . . . , ynm))〉,

where 〈 〉 is the quotient map to the coinvariant space, and (x, y1, . . . , yk) �→
x((y1, . . . , yk)) is the global composition map of the operad P , here using the
numbering of the parts to match inputs of x with the y’s.
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Let now s = ∑
m sm, t =

∑
m tm and u = ∑

m um be elements of ZP�,
with sm, tm, um elements of ZP(m)�. Choose representatives xm, ym and zm
of sm, tm, um in ZP(m), such that the root of xm is 1.

Let us introduce the following operation

(80) s � (t, u) =
∑
m≥1

∑
n1,...,nm≥1

〈xm((yn1 , zn2 , . . . , znm))〉.

This is well defined, because 〈xm((yn1 , zn2 , . . . , znm))〉 does not depend on the
chosen representatives, provided that the root of xm is 1.

Proposition A.2. The operation (s, t, u) �→ s � (t, u) satisfies

(81) (s � (t, u)) � (v,w) = s � (t � (v,w), u ◦ w),
and is linear with respect to s and to t . When t = u, it reduces to the monoid
structure:

(82) s � (t, t) = s ◦ t.
The unit e of the operad gives a unit [e], i.e. one has

(83) [e] � (t, u) = t and s � ([e], [e]) = s.

Proof. The linearity with respect to the parameters s and t , the special
case when t = u and the unit properties all follows by inspection from the
definition (80).

Concerning formula (81), one has to compute both sides by choosing rep-
resentatives with care. It is necessary to choose the representatives for s and
for t such that their root is 1. Then the result follows from the usual axioms
of operads, and from the conditions on roots imposed by the definition of
rooted-operads.

One could call this kind of structure a rooted-monoid. There is an obvious
notion of morphism of rooted-monoids.

Proposition A.3. The construction that maps a rooted-operad P to the
space ZP� endowed with the operation � is a functor from the category of
rooted-operads to the category of rooted-monoids.

Proof. By the definition of the morphisms of rooted operads, the image
of an element with root 1 is a sum of terms with root 1. The functoriality then
follows by inspection of the definition (80).
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A.3. Combinatorial use

Let us now present the combinatorial application of the operation � that is used
in the main part of the article.

Let P be a species, such that NP is endowed with an rooted-operad structure
(in the category of N-modules rather than Z-modules).

Examples of this situation are also provided by the Pre-Lie operad, the
Dendriform operad, the NAP operad and the Perm operad.

LetX be a species with a morphism of species to P . When anX-structure α
has image the P -structure S, we will say that α is over S. The set of these struc-
tures will be denoted byX/S . Its cardinality only depends on the isomorphism
class of S. Let sX be the generating series

sX =
∑
[S]

#X/S
[S]

aut S
,

where the sum runs over the set of isomorphism classes of P -structures, and
aut(S) is the cardinality of the automorphism group of any representative S of
[S]. This is an element of QP�.

Let I be a finite set. Let U be a P -structure on I . Let π be a partition of I .
Let S be a P -structure on the set of parts of π , and let (Te)e be P -structures
on the parts e of π . One will denote by fUS,(Te)e the coefficient of U in the
global composition S(((Te)e)) in the operad P . This is a positive integer by the
assumption that NP is an operad.

Let us consider now four speciesA, B,C andD, each one with a morphism
of species to P .

Suppose that (hypothesis H�(A,B,C,D)) for any finite set I , any r ∈ I
and any P -structure U on I with root r , there is a bijection between
• the set D/U of D-structures over U ,
• the set of tuples

(84) (π, S, (Te)e, α, (βe)e, λ),

where π is a partition of I with a part ε containing r , S is a P -structure
with root ε on the set of parts of π , (Te)e are P -structures on the parts
e of π such that the root of Tε is r , α ∈ A/S , βε ∈ B/Tε , βe ∈ C/Te for
e �= ε and λ ∈ {1, . . . , fUS,(Te)e}.

Proposition A.4. Under the hypothesis H�(A,B,C,D), one has

(85) sA � (sB, sC) = sD.

Proof. Let us fix an integer m ≥ 1 and an integer r ∈ {1, . . . , m}.
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From the hypothesisH�(A,B,C,D), one can obtain the following equality
∑

rt(U)=r
U∈P(m)

#D/UU =
∑
r∈ε∈π

π∈Part(m)

∑
S∈P(π)

∑
rt(Tε)=r
Te∈P(e)

#A/S#B/Tε
∏
e �=ε

#C/TeS(((Te)e)),

where Part(m) is the set of partitions of {1, . . . , m}.
Let us take the image of this equality by the projection to coinvariants.
The left hand side becomes

(86)
∑

[U ]∈P(m)�

(m− 1)!#D/U

autU
[U ].

The right hand side becomes

∑
k≥1

∑
r∈ε∈π

π∈Part(m,k)

∑
[Te]∈P(e)�
[S]∈P(π)�

(k − 1)!#A/S
aut S

(#ε − 1)!#B/Tε
aut Tε

∏
e �=ε

#e!#C/Te
aut Te

〈S(((Te)e))〉,

where Part(m, k) is the set of partitions of {1, . . . , m} into k parts.
By using the factor (k − 1)! to define an order on the parts of the partition,

such that the first part contains the root, one gets

∑
k≥1

∑
r∈π1

π1,...,πk

∑
[Ti ]∈P(πi )�
[S]∈P(k)�

#A/S
aut S

(#π1 − 1)!#B/T1

aut T1

k∏
j=2

#πj !#C/Tj
aut Tj

〈S(((Tj )j ))〉.

By using the multinomial formula for the number of ordered partitions of
m into k parts of size n1, . . . , nk , one gets
(87)

(m− 1)!
∑
k≥1

∑
n1+···+nk=m
n1,...,nk≥1

∑
[Ti ]∈P(ni )�
[S]∈P(k)�

#A/S
aut S

#B/T1

aut T1

k∏
j=2

#C/Tj
aut Tj

〈S((T1, (Tj )j≥2))〉.

From the equality between (86) and (87), one deduces the result, after
division by (m− 1)! and summation over m ≥ 1.

If B = C, the operation � reduces to the monoid product ◦, and the hy-
pothesis H�(A,B,B,D) can be formulated without using the root. One can
obtain in this way a simpler analog of Proposition A.4 valid for any operad on
a species P , which is stated below.

Let P be a species, such that NP is endowed with an operad structure.
Let us consider now three species A, B and C, each one with a morphism

of species to P .
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Suppose that (hypothesis H�(A,B,C)) for any finite set I and any P -
structure U on I , there is a bijection between

• the set C/U of C-structures over U ,

• the set of tuples

(88) (π, S, (Te)e, α, (βe)e, λ),

where π is a partition of I , S is a P -structure on the set of parts of π ,
(Te)e are P -structures on the parts e of π , α ∈ A/S , βe ∈ B/Te and
λ ∈ {1, . . . , fUS,(Te)e}.

Proposition 6.5. Under the hypothesis H�(A,B,C), one has

(89) sA ◦ sB = sc.
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