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REGULARITY OF TENSOR PRODUCTS
OF k-ALGEBRAS

S. BOUCHIBA and S. KABBAJ∗

Abstract
This paper tackles a problem on the possible transfer of regularity to tensor products of algebras
over a field k. The main result establishes necessary and sufficient conditions for a Noetherian
tensor product of two extension fields of k to inherit regularity in various settings of separability.
Thereby, we provide some applications as well as several original examples to illustrate or delimit
the scope of the established results.

1. Introduction

All algebras considered are commutative with identity elements and, unless
otherwise specified, are assumed to be non-trivial. All ring homomorphisms
are unital. Throughout, k stands for a field. A Noetherian local ring (R, �)

is regular if its Krull and embedding dimensions coincide; i.e., dim(R) =
embdim(R), where embdim(R) denotes the dimension of �/�2 as an R/�-
vector space. Regular local rings were first introduced by Krull, and then be-
came prominent once Zariski showed that, geometrically, a regular local ring
corresponds to a smooth point on an algebraic variety. Later, Serre found a ho-
mological characterization for a local ring R to be regular; that is, R has finite
global dimension. Finite global dimension is preserved under localization, so
that localizations of regular local rings at prime ideals are again regular. Geo-
metrically, this corresponds to the intuition that if a surface contains a smooth
curve, then the surface is smooth near the curve. Consequently, the definition
of regularity got globalized as follows: A Noetherian ring R is regular if its
localizations with respect to all prime ideals are regular. Using homological
techniques, Auslander and Buchsbaum proved in 1950’s that every regular
local ring is a UFD.

A Noetherian local ring (R, �) is a complete intersection if the completion
R̂ of R with respect to the �-adic topology is the quotient ring of a regular local
ring modulo an ideal generated by a regular sequence. The ring R is Gorenstein
if its injective dimension (as an R-module) is finite; and R is Cohen-Macaulay
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if grade and height coincide for every ideal of R. These notions are globalized
by carrying over to localizations with respect to the prime ideals. We have the
following diagram of implications:

Regular ring
⇓

(Locally) Complete Intersection ring
⇓

Gorenstein ring
⇓

Cohen-Macaulay ring
⇓

Noetherian ring

In this paper we will tackle a problem, originally initiated by Grothendieck
[10], on the possible transfer of regularity to tensor products of k-algebras.
Recently, it has been proved that a Noetherian tensor product of k-algebras
A ⊗k B inherits from A and B the notions of locally complete intersection
ring, Gorenstein ring, and Cohen-Macaulay ring [4], [11], [17], [19], [20]. In
particular, K⊗k L is a locally complete intersection ring, for any two extension
fields K and L of k such that K ⊗k L is Noetherian [20, Proposition 5]. Notice
at this point that tensor products of rings subject to the above concepts were
recently used to broaden or delimit the context of validity of some homological
conjectures; see for instance [12], [14].

As to regularity, the problem remains elusively open. Indeed, contrary to
the above notions, a Noetherian tensor product of two extension fields of k is
not regular in general. In 1965, Grothendieck proved that K ⊗k L is a regular
ring provided K or L is a finitely generated separable extension field of k

[10, Lemma 6.7.4.1]. In 1969, Watanabe, Ishikawa, Tachibana, and Otsuka,
showed that under a suitable condition tensor products of regular rings are
complete intersections [23, Theorem 2, p. 417]. In 2003, Tousi and Yassemi
proved that a Noetherian tensor product of two k-algebras A and B is regular
if and only if so are A and B in the special case where k is perfect; i.e., every
(algebraic) extension of k is separable [20], [11].

Recall that regularity, though a topic of commutative Noetherian rings,
proved to be well approached via homological methods. In fact, a characteriz-
ation of regular homomorphisms R −→ S is given by the vanishing of the first
André-Quillen homology functor D1(S/R, −). In the case of a homomorphism
of fields k −→ K , the vanishing of D1(K/k, −) totally characterizes separ-
ability of K over k. So that, under separability and Noetherianity, K ⊗k A

inherits regularity via base change. Nevertheless, the case of tensor products
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of k-algebras involving purely inseparable extensions of k remains unexplored.
The main goal of this paper is to handle such a case. Actually, our main result
(Theorem 2.4) establishes necessary and sufficient conditions for a Noetherian
tensor product of two extension fields of k to inherit regularity; and hence gen-
eralizes Grothendieck’s aforementioned result. As a prelude to this, we revisit
the constructions of the form A ⊗k B where A or B is geometrically regular
(Lemma 2.1) and then offer a new direct proof (without use of André-Quillen
homology). We close with a discussion of the correlation between A⊗k B and
its fiber rings when subject to regularity. It turns out that, in case A (or B) is
assumed to be residually separable, A ⊗k B is regular if and only if so are A

and B (Theorem 2.11). This is a slight improvement of [20, Theorem 6(c)]. All
along the paper, several original examples are provided to illustrate or delimit
the scope of the established results.

2. Transfer of regularity to tensor products of k-algebras

A transcendence base B of an extension field K over k is called a separating
transcendence base if K is separable algebraic over k(B); and K is said to be
separable over k if every finitely generated intermediate field has a separating
transcendence base over k. Finally, recall that a Noetherian ring A containing
a field k is said to be geometrically regular over k if A⊗k F is a regular ring for
every finite extension F of k; and a homomorphism ϕ: A → B of Noetherian
rings is said to be regular if ϕ is flat and B ⊗A κA(p) is geometrically regular
over κA(p) for each p ∈ Spec(A), where κA(p) denotes the residue field of
Ap [16, §32, pp. 255–256].

In 1965, Grothendieck proved that if K and L are two extension fields of k

such that either K or L is finitely generated over k and if K is separable over k,
then K⊗k L is regular [10, Lemma 6.7.4.1]. More generally, if K is a separable
extension field of k and A is a regular finitely generated k-algebra, then K⊗k A

is regular; indeed, separability implies that k → K is regular. Then a base
change via the finite type homomorphism k → A yields that A → K ⊗k A

is regular since regularity of the fibers is preserved (as the residue fields of A

are finitely generated extensions of k). By [16, Theorem 32.2(i)], K ⊗k A is
regular.

Now, let us substitute the assumption “K ⊗k A is Noetherian” for “A is a
finitely generated k-algebra.” In this case, regularity is transferred to K ⊗k A

through base change of regular homomorphisms via André-Quillen homology
(which requires no finite type assumption). Indeed, by [13, (6.3)], Dn(K ⊗
A/A, −) ∼= Dn(K/k, −) for every n ∈ Z (since we are in the trivial case where
Tork

n(K, A) = 0 for every n ≥ 1). Then, by [13, Theorem 9.5], A → K ⊗ A

is regular if and only if k → K is regular. So that, under separability and
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Noetherianity, K ⊗k A is regular if and only if so is A. We were not able to
locate any explicit reference for this result. Next we record this fact in a slightly
more general form and also offer a new direct proof (without use of André-
Quillen homology) via the prime ideal structure (cf. [3, Proposition 4.14]).

Lemma 2.1. Let A and B be two k-algebras such that A is geometrically
regular. Then the following assertions are equivalent:

(i) A ⊗k B is regular;

(ii) B is regular and A ⊗k B is Noetherian.

Proof. The implication (i) ⇒ (ii) is straightforward by [20, Corollary 4].
Next, we prove (ii) ⇒ (i) via two steps.

Step 1. Suppose that B = K is an extension field of k such that A ⊗k K is
Noetherian. Let � denote the set of all finitely generated extension fields of k

contained in K and let

D := A ⊗k K = lim→
E∈�

D(E)

where D(E) := A ⊗k E for each E ∈ �. Fix a prime ideal P of D and let
PE := P ∩ D(E) for each E ∈ �.

Claim 1. If F ∈ � such that PED = PF D for each E ∈ � containing F ,
then P = PF D.

In fact, let F ∈ � such that PED = PF D for each E ∈ � containing F .
Let x ∈ P . Then there exists E′ ∈ � such that x ∈ D(E′), and thus x ∈ PE′D.
Whence, x ∈ PF(E′) = PF D, where F(E′) denotes the composite field of F

and E′ in K . It follows that P = PF D, proving the claim.

Claim 2. There exists E ∈ � such that P = PED.

Assume, by way of contradiction, that PED � P for any E ∈ � (notice
that under this hypothesis K is necessarily infinitely generated over k; i.e.,
K /∈ �). Choose E1 ∈ �. By Claim 1, there exists E2 ∈ � containing E1

such that PE1D � PE2D. Iterating this process yields the following infinite
chain of ideals in D

PE1D � PE2D � · · · � PEn
D � · · · � P

where the Ej ∈ �. This leads to a contradiction since D is Noetherian. Hence
there exists E ∈ � such that P = PED, as desired.

Claim 3. PDP is generated by a DP -regular sequence.
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Indeed, by Claim 2, P = PED for some E ∈ �. Now, observe that

DP := (A ⊗k K)P ∼= (
D(E)PE

⊗E K
)
P

and
PDP

∼= (
PED(E)PE

⊗E K
)
DP

with PED(E)PE
being the maximal ideal of D(E)PE

. As E is finitely gener-
ated over k, D(E) is regular (recall that A is geometrically regular). Hence
D(E)PE

is a regular local ring. By [15, Theorem 169], PED(E)PE
is gener-

ated by a D(E)PE
-regular sequence x1, x2, . . . , xr . Further, it is easily seen

that x1 ⊗k 1, x2 ⊗E 1, . . . , xr ⊗E 1 is a D(E)PE
⊗E K-regular sequence of

PED(E)PE
⊗E K . As

(
PED(E)PE

⊗E K
)
DP

∼= PDP , we get, by [15, The-
orem 133], x1⊗E1

1 , x2⊗E1
1 , . . . , xn⊗E1

1 is a DP -regular sequence of PDP . Now,
since PED(E)PE

= (x1, x2, . . . , xn)D(E)PE
, we get

PDP =
(

x1 ⊗E 1

1
,
x2 ⊗E 1

1
, . . . ,

xn ⊗E 1

1

)
DP

establishing the claim.
It follows, by [15, Theorem 160], that DP is a regular local ring. Con-

sequently, D is a regular ring, as desired.
Step 2. Suppose that B is a regular k-algebra such that A⊗k B is Noetherian.

Let q ∈ Spec(B). First, as A ⊗k B is Noetherian, A ⊗k kB(q), being a local-
ization of a quotient of A ⊗k B, is Noetherian. Then, by Step 1, A ⊗k kB(q)

is regular for each q ∈ Spec(B). Now, [20, Corollary 2] yields that A ⊗k B is
regular, completing the proof of the theorem.

In particular, if K is a separable extension field of k and A is a k-algebra,
then K ⊗k A is regular if and only if A is regular and K ⊗k A is Noetherian.
Example 2.12 shows that this result is not true, in general, if one substitutes
pure inseparability for separability; and that, however, this latter condition is
not necessary.

Recall that if K and L are two extension fields of k such that one of them
is finitely generated, then K ⊗k L is Noetherian [23]. The converse is not true
in general; e.g.,

Q(x1, x2, . . .) ⊗ Q(
√

2,
√

3, . . .) ∼= Q(
√

2,
√

3, . . .)(x1, x2, . . .)

is a field, where x1, x2, . . . are infinitely many indeterminates over Q. However,
the converse holds in the case K = L [9, Corollary 3.6] or [21, Theorem 11].
These facts combined with Lemma 2.1 yield the following remark, where the
separability assumption is required only for regularity.
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Remark 2.2. Let K and L be two extension fields of k and assume that K is
separable over k. Then: K or L is finitely generated ⇒ K⊗kL is Noetherian ⇔
K ⊗k L is regular. The special case where K = L is handled by Corollary 2.6.

For an arbitrary k-algebra A (not necessarily a domain), the transcendence
degree over k is given by (cf. [22, p. 392])

t.d.(A : k) := Sup{t.d.(A/p : k) | p ∈ Spec(A)}.
Further, if A and B are two k-algebras such that A ⊗k B is Noetherian, then
necessarily A and B are Noetherian rings and either t.d.(A : k) < ∞ or
t.d.(B : k) < ∞ (cf. [4, p. 69]). Also, for any two extension fields K and L of
k, [18, Theorem 3.1] asserts that

dim(K ⊗k L) = min{t.d.(K : k), t.d.(L : k)}.
These facts allow one to give illustrative examples of regular tensor products
(of fields) of arbitrary dimension.

Example 2.3. Let x1, x2, . . . be infinitely many indeterminates over k.
Then, for any positive integer n, k(x1, . . . , xn) ⊗ k(x1, x2, . . .) is an n-dimen-
sional regular ring.

Note that k(x1, . . . , xn) and k(x1, x2, . . .) are (non-algebraic) separable ex-
tensions of k by Mac Lane’s Criterion. For the algebraic separable case, see
Example 2.9.

Let K and L be two extension fields of k. Assume that K is purely insepar-
able over k and let L be an algebraic closure of L. Then there exists a unique
k-homomorphism u : K → L [5, Proposition 3, p. V.25], and the isomorphic
image u(K) is obviously purely inseparable over k. In this vein, we can always
view K and L as subfields of a common field L. Recall Mac Lane’s notion of
linear disjointness; namely, K and L are linearly disjoint over k if every subset
of K which is linearly independent over k is also linearly independent over L;
equivalently, if K ⊗k L is a domain.

In the sequel, given an extension field K of k, Ks and Ki will denote the
(not necessarily algebraic) separable closure and (algebraic) purely inseparable
closure of k in K , respectively. Notice that K is an extension field of the
composite field KsKi and the equality KsKi = K holds, for instance, when
K is separable, purely inseparable, or normal over k.

The next main result of this paper handles the tensor products of two ex-
tensions fields, which will be used to generate new and original examples of
regular tensor products of extension fields. It is worthwhile noting that this
result falls beyond the scope of André-Quillen homology (since purely insep-
arable field extensions are not geometrically regular).
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Theorem 2.4. Let K and L be two extension fields of k such that K ⊗k L is
Noetherian. Assume that K = KsKi and let Ki = k(S) for some generating
subset S of Ki . Then the following assertions are equivalent:

(i) K ⊗k L is regular;

(ii) Ki ⊗k L is a domain;

(iii) Ki ⊗k L is a field;

(iv) [k(S ′) : k] = [L(S ′) : L] for each finite subset S ′ of S;

(v) Ki ∩ L(S ′) = k(S ′) for each finite subset S ′ of S.

Proof. Let p := char(k). The theorem easily holds when p = 0 (in which
case k is perfect). Next, assume p ≥ 1. Since Ks is a separable extension of
k, Ks ⊗k Ki is reduced [24, Chap. III, §15, Theorem 39]. Further, since Ki is
algebraic over k, Ks ⊗k Ki is zero-dimensional [18, Theorem 3.1] and hence
a von Neumann regular ring [15, Ex. 22, p. 64]. By [21, Proposition 2(c)],
Ks ⊗k Ki has one unique minimal prime ideal. It follows that Ks ⊗k Ki is
local and therefore a field. Now, consider the surjective ring homomorphism
ϕ : Ks ⊗k Ki → Ks(Ki), given on generators of Ks ⊗k Ki by a ⊗ b �→ ab

(as Ks and Ki may be contained in a common field). So ϕ is an isomorphism;
that is, Ks ⊗k Ki

∼= KsKi = K . By Lemma 2.1, K ⊗k L ∼= Ks ⊗k (Ki ⊗k L)

is regular if and only if Ki ⊗k L is regular. Hence, for the rest of the proof, we
may suppose that K is a purely inseparable algebraic extension field of k (i.e.,
K = Ki) with char(k) = p �= 0. Same arguments as above yield K ⊗k L is a
zero-dimensional local ring and, therefore, (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Moreover,
the assumption “K ⊗k L is a domain” is equivalent to saying that “K and L are
linearly disjoint over k,” as mentioned above. So that we get (ii) ⇔ (iv) by [5,
Proposition 5(a), p.V.13] and (ii) ⇒ (v) by [5, p.V.13] and via the isomorphism
K ⊗k L ∼= K ⊗k(S ′) (k(S ′) ⊗k L) for each finite subset S ′ of S.

(v) ⇒ (iii) Let x ∈ S and let pm = [k(x) : k] with m an integer ≥ 0. Then
a := xpm ∈ k. We wish to show that k(x) ⊗k L is a field. We may assume
x /∈ k. By (v), xpr �∈ K ∩ L = k for each positive integer r < m. Therefore,
x ∈ L \ L, where L denotes an algebraic closure of L, forcing (Xpm − a)

(= (Xpr −xpr

)p
m−r

for each positive integer r < m) to be irreducible in L[X].
It follows that

k(x) ⊗k L ∼= k[X]/(Xpm − a) ⊗k L ∼= L[X]/(Xpm − a) ∼= L[x] = L(x)

where X denotes an indeterminate over L. So k(x) ⊗k L is a field. Next, let
x1, . . . , xn ∈ S. We have

k(x1, . . . , xn) ⊗k L ∼= k(x1, . . . , xn) ⊗k(x1,...,xn−1) (k(x1, . . . , xn−1) ⊗k L).
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By induction on n, k(x1, . . . , xn−1) ⊗k L ∼= L(x1, . . . , xn−1) is a field and, by
(v), we get

k(x1, . . . , xn) ∩ L(x1, . . . , xn−1) ⊆ K ∩ L(x1, . . . , xn−1) = k(x1, . . . , xn−1)

so that
k(x1, . . . , xn) ∩ L(x1, . . . , xn−1) = k(x1, . . . , xn−1).

Hence, the first step yields

k(x1, . . . , xn) ⊗k L ∼= k(x1, . . . , xn−1)(xn) ⊗k(x1,...,xn−1) L(x1, . . . , xn−1)

is a field. Let � denote the set of all finite subset S ′ of S and observe that

K ⊗k L = lim→
S ′∈�

k(S ′) ⊗k L.

Thus, k(S ′)⊗k L is a field, for each S ′ ∈ �, and so is their direct limit K ⊗k L,
establishing (iii) and completing the proof of the theorem.

One can use Theorem 2.4(v) to build new examples of regular tensor
products of fields, as illustrated by the next example.

Example 2.5. Let p be a prime element of Z and let y1, y2, . . . , ym, x1,

x2, . . . , xn, . . . be indeterminates over Z/pZ. Let

k := (Z/pZ)(y
p

1 , y
p2

2 , . . . , ypm

m , x
p

1 , x
p2

2 , . . . , xpn

n , . . .),

K := k(x1, x2, . . . , xn, . . .),

L := k(y1, y2, . . . , ym).

Then K ⊗k L is a regular ring.
Indeed, notice that K and L are purely inseparable extension fields of k

with [L : k] < ∞. Also, we have

K = (Z/pZ)(y
p

1 , y
p2

2 , . . . , ypm

m , x1, x2, . . . , xn, . . .),

L = (Z/pZ)(y1, y2, . . . , ym, x
p

1 , x
p2

2 , . . . , xpn

n , . . .).

Next, let xi1 , xi2 , . . . , xir be a finite subset of {x1, x2, . . . , xn, . . .}. Then

K ∩ L(xi1 , xi2 , . . . , xir )

= (Z/pZ)(xi1 , xi2 , . . . , xir , x
p

1 , x
p2

2 , . . . , xpn

n , . . . , y
p

1 , y
p2

2 , . . . , ypm

m )

= k(xi1 , xi2 , . . . , xir ).

Hence, by Theorem 2.4(v), K ⊗k L is regular, as desired.
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As a consequence of Theorem 2.4(v), under the Noetherianity assumption,
separability rises as a necessary (and sufficient) condition for regularity in the
special case where K = L as shown in the next corollary. It also refines [6,
Exercice 28, Chap. 8, p. 98] and links regularity of K ⊗k K to the projectivity
of K as a K ⊗k K-module when K is a finitely generated extension field of k

[8, Theorem 7.10].

Corollary 2.6. Let K be an extension field of k. The following assertions
are equivalent:

(i) K ⊗k K is regular;

(ii) K ⊗k K is Noetherian and K is separable over k;

(iii) K is a finitely generated separable extension field of k;

(iv) K ⊗k L is regular for each extension field L of k;

(v) K is a finitely generated extension field of k and a projective K ⊗k K-
module.

Proof. (i) ⇒ (ii) Assume that K ⊗k K is regular. Then K ⊗k K is Noeth-
erian, so that K is finitely generated over k. We claim that K⊗EK is regular for
any extension field E of k contained in K . In effect, let E be a field extension
of k contained in K . Then

K ⊗k K ∼= K ⊗E (E ⊗k K)

∼= K ⊗E (K ⊗k E)

∼= (K ⊗E K) ⊗k E (cf. [1, Ex. 2.15, p. 27]).

It follows, by [16, Theorem 23.7] and by localization, that K ⊗E K is regular,
establishing the claim. Now, let B be a finite transcendence basis of K over
k and let E be the algebraic separable closure of k(B) in K . Then, via the
above claim, K ⊗E K is regular and K is purely inseparable over E. By
Theorem 2.4(v), K = E. It follows that K is separable over k, as desired.

(ii) ⇒ (iii) is handled by [9, Corollary 3.6] or [21, Theorem 11] as mentioned
above, (iii) ⇒ (iv) follows from [10, Lemma 6.7.4.1], (iv) ⇒ (i) is trivial, and
(iii) ⇔ (v) is a particular case of [8, Theorem 7.10], completing the proof of
the corollary.

One can use Theorem 2.4(v) or Corollary 2.6 to build (zero-dimensional
Noetherian local) tensor products of fields that are locally complete intersection
but not regular, as shown below.

Example 2.7. Let k � K ⊆ L be extension fields such that K is purely
inseparable over k and K⊗kL is Noetherian. Then K⊗kL is a locally complete



14 s. bouchiba and s. kabbaj

intersection ring [20, Proposition 5(a)] which is not regular by Theorem 2.4(v)
(or Corollary 2.6). For instance, for any prime p, one may simply take

k := (Z/pZ)(xp) and K = L := (Z/pZ)(x)

where x is an indeterminate over Z/pZ.

The next result handles the (algebraic) separable case featuring a slight
generalization of [21, Proposition 8]. Recall, for convenience, that if K is a
separable extension of k, then K ⊗k L is always reduced for any extension
field L of k [24, Chap. III, §15, Theorem 39].

Corollary 2.8. Let K and L be two extension fields of k such that K⊗kL is
Noetherian. Assume that K is algebraic over k. Then the following assertions
are equivalent:

(i) K ⊗k L is (von Neumann) regular;

(ii) K ⊗k L is reduced;

(iii) K ⊗k L is a finite product of fields.

If, in addition, K is separable and L is Galois over k such that K, L are
contained in an algebraic closure of k, then the above are equivalent to:

(iv) n := [K ∩ L : k] < ∞.

Moreover, K ⊗k L is isomorphic to the product of n copies of the field K(L).

Proof. By [18, Theorem 3.1], dim(K ⊗k L) = 0. Recall at this point that
a zero-dimensional Noetherian ring is regular if and only if it is von Neumann
regular. So a combination of [15, Theorem 164], [15, Ex. 22, p. 64], and [21,
Lemma 0] yields (i) ⇔ (ii) ⇔ (iii). The last two statements are handled by [21,
Proposition 8].

Next, we give an illustrative example for this corollary.

Example 2.9. Let (pj )j≥1 denote the sequence of all prime numbers. Let

X := {
i, e

2iπ
3

} ∪ {√
pj | j odd

}
and Y := {i} ∪ {√

pj | j even
}
.

Clearly, Q(X) (resp., Q(Y )) is an infinite algebraic separable non-normal (resp.,
Galois) extension field of Q and hence by Corollary 2.8

Q(X) ⊗ Q(Y ) ∼= Q
(
i, e

2iπ
3 ,

√
2,

√
3, . . .

) × Q
(
i, e

2iπ
3 ,

√
2,

√
3, . . .

)
is a non-trivial zero-dimensional regular ring.

Next, we move to the general case, where we discuss the correlation between
A ⊗k B and its fiber rings when subject to regularity. Let A and B be two k-
algebras. By identifying A and B with their canonical images in A ⊗k B, one
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can view A ⊗k B as a free (hence faithfully flat) extension of A and B. This
very fact lies behind the known transfers of regularity between A ⊗k B and
its fiber rings over the prime ideals of A or B. The next result collects these
transfer results along with a slight generalization of [20, Theorem 6(c)]. We
also provide an example, via Theorem 2.4, for the non-reversibility in general
of the implications involved. For this purpose, we first make the following
definition.

Definition 2.10. A k-algebra R is said to be residually separable, if κR(P )

is separable over k for each P ∈ Spec(R), where κR(P ) denotes the residue
field of RP .

It is easily seen that a field k is perfect if and only if every k-algebra is
residually separable. More examples of residually separable k-algebras are
readily available through localizations of polynomial rings or pullback con-
structions [2], [7]. For instance, let x be an indeterminate over k and K ⊆ L

two separable extension fields of k. Let

R := L[x](x) and S := K + xL[x](x).

Note that the extensions

k ⊆ K ⊆ L ⊆ L(x) = qf(R) = qf(S)

are separable by Mac Lane’s Criterion and transitivity of separability. So that
R and S are residually separable k-algebras.

Theorem 2.11. Let A and B be two k-algebras such that A ⊗k B is No-
etherian. Consider the following assertions:

(i) A, B, and κA(P )⊗k κB(Q) are regular ∀ (P, Q) ∈ Spec(A)×Spec(B);

(ii) B and A ⊗k κB(Q) are regular ∀ Q ∈ Spec(B);

(iii) A and κA(P ) ⊗k B are regular ∀ P ∈ Spec(A);

(iv) A ⊗k B is regular;

(v) A and B are regular.

Then (i) ⇒ (ii) (resp., (iii)) ⇒ (iv) ⇒ (v). If A (or B) is residually separable,
then all assertions are equivalent.

Proof. The first statement is a combination of Corollary 2 and Corollary 4
as well as the proof of Theorem 6 in [20].

Next, suppose that A or B is residually separable. Then κA(P ) ⊗k κB(Q)

is always regular by Lemma 2.1 for any P ∈ Spec(A) and Q ∈ Spec(B); and,
hence, so are κA(P )⊗k B and A⊗k κB(Q). Moreover, recall that Noetherianity
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carries over to κA(P ) ⊗k κB(Q) via localization of the general fact that if I

and J are proper ideals of A and B, respectively, then

(A ⊗k B)/(I ⊗k B + A ⊗k J ) ∼= (A/I) ⊗k (B/J ).

Thus, the five assertions in the theorem collapse to: “A ⊗k B is regular if and
only if A and B are regular.”

The above implications are not reversible in general, as shown by the next
example. This example shows also that the separable assumption in Lemma 2.1
is sufficient but not necessary and it does not hold, in general, for purely
inseparable extensions.

Example 2.12. Let K be a purely inseparable extension field of k with
char(k) = p �= 0 and let u ∈ K with pe := [k(u) : k] for some e ≥ 2.
Then a := upe ∈ k. Let x be an indeterminate over k, r ∈ {1, · · · , e − 1}, and
A := k[x](xpe−r −a). Then:

(i) A is local regular with maximal ideal � := (xpe−r − a)A.

(ii) k(u) ⊗k A is regular.

(iii) k(u) ⊗k A/� is not regular.

Indeed, notice that (xpe−r − a) is a prime ideal of k[x] and, hence, � is the
maximal ideal of A, since A/� ∼= k[x]/(xpe−r − a) ∼= k(upr

). Moreover,
k(u)⊗k A ∼= S−1k(u)[x] is a regular ring, where S := k[x] \ (xpe−r − a). This
proves (i) and (ii). However, k(u) ⊗k (A/�) ∼= k(u) ⊗k k(upr

) is not regular,
by Theorem 2.4(v), since k �= k(u) ∩ k(upr

) = k(upr

), proving (iii).

The assumption “A (or B) is residually separable” in Theorem 2.11 is not
necessary, as shown by the following example.

Example 2.13. Let k, K , and L be defined as in Example 2.5 and x, y two
indeterminates over k. Let

A := K[x](x) = K + �A with �A := xA

B := L[y](y) = L + �B with �B := yB

Then A and B are regular local k-algebras which are not residually separ-
able over k (since K and L are purely inseparable over k as seen in Ex-
ample 2.5). Moreover, A ⊗k B is Noetherian (in fact, regular via localization)
and (A/�A) ⊗k (B/�B) ∼= K ⊗k L is a regular ring. Consequently, A and B

satisfy all assertions of Theorem 2.11, as desired.

The next example illustrates the slight improvement (of [20, Theorem 6(c)])
featured in the last statement of Theorem 2.11. Namely, we provide original
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examples where k is an arbitrary field, A, B are regular k-algebras with A⊗k B

Noetherian and A is residually separable over k.

Example 2.14. Let k be an arbitrary field, K any separable extension field
of k, and x, y, t three indeterminates over k. Consider the K-algebra homo-
morphism

ϕ : K[x, y] → K[[t]]

defined by ϕ(x) = t and ϕ(y) = s := ∑
n≥1t

n!. Since s is known to be
transcendental over K(t), ϕ is injective. This induces the following embedding
of fields

ϕ : K(x, y) → K((t)).

It is easy to check that A := ϕ−1(K[[t]]) is a discrete rank-one valuation
overring of K[x, y] and that A = K +� with � = xA. Then, A is a residually
separable regular ring. Now, let B be any regular ring such that A ⊗k B is
Noetherian. For instance, one may choose B to be any finitely generated regular
k-algebra or any (purely inseparable) finitely generated extension field of k.
By Theorem 2.11, A ⊗k B is a regular ring.

It is worthwhile noticing that, in most examples, the non-regularity was
ensured by the negation of “Ki ∩ L = k.” One might wonder if this weak
property may generate the condition (v) of Theorem 2.4; namely, let K be
a finite dimensional purely inseparable extension field of k and let L be an
extension field of k. Do we have: K ∩ L = k ⇔ K ⊗k L regular? The answer
is negative as shown by the next example.

Example 2.15. Let x, y, z be three indeterminates over Z/2Z. Let

k := (Z/2Z)(x4, y4),

K := k(x2, y2) = (Z/2Z)(x2, y2),

L := k(x2(y2 + z), z) = (Z/2Z)(x4, x2(y2 + z), z).

Then K ∩ L = k and K ⊗k L is not a regular ring.
Indeed, clearly, K is a purely inseparable extension field of k. Further,

note that {1, x2} is a basis of K over k(y2) and, as (x2(y2 + z))2 ∈ k(z),
{1, x2(y2 + z)} is a basis of L over k(z). Let f ∈ K ∩ L. So there exist
g0, g1 ∈ k(y2) and f0, f1 ∈ k(z) such that{

f = g0 + g1x
2

= f0 + f1x
2(y2 + z).

As (x2)2 ∈ k(y2, z) and x2 �∈ k(y2, z) = (Z/2Z)(x4, y2, z), then {1, x2}
is, as well, a basis of k(x2, y2, z) over k(y2, z). It follows that f0 = g0 and
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f1(y
2+z) = g1. Hence, f0 ∈ k(z)∩k(y2) = k. Moreover, observe that {1, y2}

is a basis of k(y2, z) over k(z) and of k(y2) over k. Hence, as g1 = f1z+f1y
2

and g1 ∈ k(y2), we get f1z ∈ k, so that f1 = 0. Consequently, f ∈ k and
therefore K ∩ L = k, as claimed.

Now, L(x2) = k(x2, y2, z) = K(z). Hence K ∩ L(x2) = K �= k(x2).
Then, by Theorem 2.4(v), K ⊗k L is not regular, as desired.
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