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PRIMENESS AND PRIMITIVITY CONDITIONS FOR
TWISTED GROUP C∗-ALGEBRAS

TRON ÅNEN OMLAND∗

Abstract
For a multiplier (2-cocycle) σ on a discrete group G we give conditions for which the twisted
group C∗-algebra associated with the pair (G, σ) is prime or primitive. We also discuss how these
conditions behave on direct products and free products of groups.

Introduction

In this paper, G will always denote a discrete group with identity e. The full
group C∗-algebra associated with G, C∗(G) is simple only if G is trivial, but
other aspects of its ideal structure are of interest. Recall that a C∗-algebra
is called primitive if it has a faithful irreducible representation and prime if
nonzero ideals have nonzero intersection. Primeness of a C∗-algebra is in
general a weaker property than primitivity. However, according to a result of
Dixmier [9], the two notions coincide for separable C∗-algebras.

Furthermore, recall what the icc property means forG – that every nontrivial
conjugacy class is infinite, and its importance comes to light in the following
theorem.

Theorem A. The following are equivalent:

(i) G has the icc property.

(ii) The group von Neumann algebra W ∗(G) is a factor.

(iii) The reduced group C∗-algebra C∗
r (G) is prime.

The equivalence (i) ⇔ (ii) is a well known result of Murray and von Neu-
mann [19], while (i) ⇔ (iii) is proved by Murphy [18]. Murphy also shows
that the icc property is a necessary condition for primeness of C∗(G). There-
fore, for the class of discrete groups, primeness and, in the countable case,
primitivity, may be regarded as C∗-algebraic analogs of factors. The theorem
gives as a corollary that if G is countable and amenable, then primitivity of
C∗(G) is equivalent with the icc property of G. Moreover, since amenability
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of G implies injectivity of W ∗(G), this is also equivalent to W ∗(G) being the
hyperfinite II1 factor if G is nontrivial, according to Connes [8].

In the present paper, Theorem A will be adapted to a twisted setting where
pairs (G, σ) consisting of a group G and a multiplier σ on G are considered.
We will show that the reduced twisted group C∗-algebra C∗

r (G, σ ) is prime
if and only if every nontrivial σ -regular conjugacy class of G is infinite, and
say that the pair (G, σ) satisfies condition K if it possesses this property.
It was first introduced by Kleppner [13], who proves that this property is
equivalent to the fact that the twisted group von Neumann algebraW ∗(G, σ) is
a factor. The main part of our proof is to show that (G, σ) satisfies condition K
if and only if C∗

r (G, σ ) has trivial center, and this argument is, of course,
inspired by the mentioned works of Kleppner and Murphy. As a corollary,
we get that primeness of the full twisted group C∗-algebra C∗(G, σ) implies
condition K on (G, σ). The converse is not true in general, but at least holds
if G is amenable, as the full and reduced twisted group C∗-algebras then are
isomorphic. Thus, if G is countable and amenable, condition K on (G, σ) is
equivalent to primitivity of C∗(G, σ) by applying Dixmier’s result. This fact
is also explained by Packer [22] with a different approach. On the other hand,
no examples of nonprimitive, but prime twisted groupC∗-algebras are known,
so it is not clear whether we need the countability assumption on G.

In the last two sections we will investigate primeness and primitivity of the
twisted group C∗-algebras of (G, σ) when G = G1 × G2 and when G =
G1 ∗G2. The free product case turns out to be easier to handle in general, since
the corresponding C∗-algebra always decomposes into a free product of the
two components. For direct products, however, the multiplier σ onG can have
a ‘cross-term’ which makes a C∗-algebra decomposition into tensor products
impossible.

A significant part of this work, especially Section 2, was accomplished
when I was a student at University of Oslo, and is also included in my master’s
thesis. I am indebted to Erik Bédos for his advice, both on the thesis and on
the completion of this paper.

I would also like to thank the referee for several useful comments and
suggestions.

1. Twisted group C∗-algebras

LetG be a group and H a nontrivial Hilbert space. The projective unitary group
PU(H ) is the quotient of the unitary group U(H ) by the scalar multiples of
the identity, that is,

PU(H ) = U(H )/T1H .
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A projective unitary representation G is a homomorphism G → PU(H ).
Every lift of a projective representation to a mapU : G → U(H )must satisfy

(1) U(a)U(b) = σ(a, b)U(ab)

for all a, b ∈ G and some function σ : G×G → T. From the associativity of
U and by requiring that U(e) = 1H , the identities

(2)
σ (a, b)σ (ab, c) = σ(a, bc)σ (b, c)

σ (a, e) = σ(e, a) = 1

must hold for all elements a, b, c ∈ G.

Definition. Any function σ : G × G → T satisfying (2) is called a
multiplier on G, and any map U : G → U(H ) satisfying (1) is called a
σ -projective unitary representation of G on H .

The lift of a homomorphism G → PU(H ) up to U is not unique, but any
other lift is of the form βU for some function β : G → T. Therefore, two
multipliers σ and τ are said to be similar if

τ(a, b) = β(a)β(b)β(ab)σ (a, b)

for all a, b ∈ G and some β : G → T. Note that we must have β(e) = 1
for this to be possible. We say that σ is trivial if it is similar to 1 and call σ
normalized if σ(a, a−1) = 1 for all a ∈ G.

Moreover, the set of similarity classes of multipliers on G is an abelian
group under pointwise multiplication. This group is the Schur multiplier ofG
and will henceforth be denoted by M(G). Also, we remark that multipliers are
often called 2-cocycles onG with values in T, and that the Schur multiplier of
G coincides with the second cohomology group H 2(G, T).

Let σ be a multiplier onG. We will briefly explain how the operator algebras
associated with the pair (G, σ) are constructed and refer to Zeller-Meier [25]
for further details. First, the Banach ∗-algebra �1(G, σ) is defined as the set
�1(G) together with twisted convolution and involution given by

(f ∗σ g)(a) =
∑
b∈G

f (b)σ (b, b−1a)g(b−1a)

f ∗(a) = σ(a, a−1)f (a−1)

for elements f, g in �1(G), and is equipped with the usual ‖·‖1-norm.

Definition. The full twisted group C∗-algebra C∗(G, σ) is the universal
enveloping algebra of �1(G, σ). Moreover, the canonical injection of G into
C∗(G, σ) will be denoted by i(G,σ) or just iG if no confusion arise.
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For a in G, let δa be the function on G defined by

δa(b) =
{

1 if b = a,

0 if b �= a.

Then the set {δa}a∈G is an orthonormal basis for �2(G) and generates �1(G, σ),
so that for all a inG, i(G,σ)(a) is the image of δa in C∗(G, σ). The left regular
σ -projective unitary representation λσ of G on B(�2(G)) is given by

(λσ (a)ξ)(b) = (δa ∗σ ξ)(b) = σ(a, a−1b)ξ(a−1b).

Note in particular that

λσ (a)δb = δa ∗σ δb = σ(a, b)δab

for all a, b ∈ G. Moreover, the integrated form of λσ on �1(G, σ) is defined
by

λσ (f ) =
∑
a∈G

f (a)λσ (a).

Definition. The reduced twisted group C∗-algebra and the twisted group
von Neumann algebra of (G, σ), C∗

r (G, σ ) and W ∗(G, σ) are, respectively,
the C∗-algebra and the von Neumann algebra generated by λσ (�1(G, σ)), or
equivalently by λσ (G).

If τ is similar with σ , then in all three cases, the operator algebras associated
with (G, τ) and (G, σ) are isomorphic.

Moreover, there is a natural one-to-one correspondence between the rep-
resentations of C∗(G, σ) and the σ -projective unitary representations of G.
In particular, λσ extends to a ∗-homomorphism of C∗(G, σ) onto C∗

r (G, σ ).
If G is amenable, then λσ is faithful. However, it is not known whether the
converse holds unless σ is trivial.

Following the work of Kleppner [13], an element a inG is called σ -regular
if σ(a, b) = σ(b, a) whenever b commutes with a, or equivalently if

U(a)U(b) = U(b)U(a)

for all b commuting with awheneverU is a σ -projective unitary representation
of G. If σ and τ are similar multipliers on G, it is easily seen that a in G is
σ -regular if and only if it is τ -regular. Furthermore, if a is σ -regular, then
cac−1 is σ -regular for all c in G, and thus the notion of σ -regularity makes
sense for conjugacy classes [13, Lemma 3]. The following theorem may now
be deduced from [13, Lemma 4].
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Theorem B. Let σ be a multiplier onG. Then the following are equivalent:

(i) Every nontrivial σ -regular conjugacy class of G is infinite.

(ii) W ∗(G, σ) is a factor.

Definition. We say that the pair (G, σ) satisfies condition K if (i) is
satisfied.

If G has the icc property, then (G, σ) always satisfies condition K. If G is
abelian, or more generally, if all the conjugacy classes of G are finite, then
(G, σ) satisfies condition K only if there are no nontrivial σ -regular elements
in G.

Example 1.1. For n ≥ 2, let Zn denote the cyclic group of order n. Then
M(Zn× Zn) ∼= Zn and its elements may be represented by multipliers σk given
by

σk((a1, a2), (b1, b2)) = e2πi k
n
a2b1

for 0 ≤ k ≤ n−1. An element a = (a1, a2) in Zn×Zn is σk-regular if and only
if both ka1 and ka2 belong to nZ. Therefore, (Zn×Zn, σk) satisfies condition K
if and only if k and n are relatively prime, in which case we have

C∗(Zn × Zn, σk) ∼= C∗
r (Zn × Zn, σk) = W ∗(Zn × Zn, σk) ∼= Mn(C).

Example 1.2. It is well known that M(Zn) ∼= T
1
2 n(n−1) and that the multi-

pliers are, up to similarity, determined by

σθ (a, b) = e2πi
∑

1≤i<j≤n ai tij bj

for θ = (t12, t13, . . . , tn−1,n) in [0, 1)
1
2 n(n−1). Note that the C∗-algebras associ-

ated with the pair (Zn, σθ ), C∗(Zn, σθ ) ∼= C∗
r (Z

n, σθ ), are the noncommutative
n-tori when θ is nonzero.

Furthermore, (Zn, σθ ) satisfies condition K if there are no nontrivial σθ -
regular elements in Zn, that is, if there for all a in Zn exists b in Zn such that

σθ (a, b)σθ (b, a) = e2πi
∑

1≤i<j≤n tij (aibj−biaj ) �= 1.

For n = 2 and 3 we can give a good description of this property. Indeed,
(Z2, σθ ) satisfies condition K if and only if θ is irrational, and (Z3, σθ ) satisfies
condition K if and only if

dim Qθ = 3 or 4,

where Qθ denotes the vector space over Q spanned by {1, t12, t13, t23}.
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For n ≥ 4, the situation is more complicated. In particular, condition K on
(Zn, σθ ) does not only depend on the dimension of Qθ . For example, if t12 = t34

is some irrational number in [0, 1) and tij = 0 elsewhere, then dim Qθ = 2, and
(Z4, σθ ) satisfies condition K. On the other hand, if t12 = t23 = t34 = 1 − t14

is some irrational number in [0, 1) and t13 = t24 = 0, then dim Qθ = 2, but it
can be easily checked that (1, 1, 1, 1) in Z4 is σθ -regular.

Example 1.3. For each natural number n ≥ 2 let G(n) be the group with
presentation

G(n) = 〈ui, vjk : [vjk, vlm] = [ui, vjk] = e, [uj , uk] = vjk〉
for 1 ≤ i ≤ n, 1 ≤ j < k ≤ n and 1 ≤ l < m ≤ n. The group G(n) is
sometimes called the free nilpotent group of class 2 and rank n.

In [20], we calculate the multipliers of G(n) and show that

M(G(n)) ∼= T
1
3 (n−1)n(n+1).

Note thatG(2) is isomorphic with the discrete Heisenberg group and this case
is already investigated by Packer [21].

To describe our result in the case of G(3), we first remark that G(3) is
isomorphic to the group with elements a = (a1, a2, a3, a4, a5, a6), where all
entries are integers, and with multiplication defined by

a ·b = (a1+b1, a2+b2, a3+b3, a4+b4+a1b2, a5+b5+a1b3, a6+b6+a2b3).

For every μ in T8, the element [σμ] in M(G(3)) may be represented by

σμ(a, b) = μ
b6a1+b3a4
13 μ

b5a2+b3(a4−a1a2)
22

· μb4a1+ 1
2 b2a1(a1−1)

11 μ
a2(b4+a1b2)+ 1

2 a1b2(b2−1)
21

· μb5a1+ 1
2 b3a1(a1−1)

12 μ
a3(b5+a1b3)+ 1

2 a1b3(b3−1)
32

· μb6a2+ 1
2 b3a2(a2−1)

23 μ
a3(b6+a2b3)+ 1

2 a2b3(b3−1)
33

where μij ∈ T.
The pair (G(3), σμ) satisfies condition K if and only if G(3) has no non-

trivial central σμ-regular elements, that is, if for all c = (0, 0, 0, c1, c2, c3) in
Z(G(3)) = Z3 there exists a in G(3) such that σμ(a, c)σμ(c, a) �= 1.

Set μ31 = μ13μ22. One can then show that this holds if and only if for each
nontrivial c in Z3 there is some i = 1, 2 or 3 such that∏

1≤j≤3

μ
cj
ij �= 1.
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2. Primeness and primitivity

Henceforth, we fix a group G and a multiplier σ on G. Consider the right
regular σ -projective unitary representation ρσ of G on B(�2(G)) defined by

(ρσ (a)ξ)(c) = (ξ ∗σ δ∗
a)(c) = σ(c, a)ξ(ca).

To simplify notation in what follows, we write just ρ and λ for ρσ and λσ . It
is straightforward to see that λ(a) commutes with ρ(b) for all a, b in G, that
is,W ∗(G, σ) is contained in ρ(G)′. In fact, it is well known thatW ∗(G, σ) =
ρ(G)′. Moreover,

(3) (λ(a)ρ(a)ξ)(c) = σ(a−1, c)σ (a−1ca, a−1)ξ(a−1ca)

for all a, c ∈ G and all ξ ∈ �2(G). In particular,

(4) λ(a)ρ(a)δe = ρ(a)λ(a)δe = δe

for all a ∈ G.

Remark 2.1. The vector δe is clearly cyclic forW ∗(G, σ). It is also separ-
ating. Indeed, if xδe = 0, then

xδa = xλ(a)δe = xρ(a)∗δe = ρ(a)∗xδe = 0

for all a ∈ G. Moreover, the state ϕ given by ϕ(x) = 〈xδe, δe〉 is a faithful trace
on W ∗(G, σ). Thus, W ∗(G, σ) is finite and is therefore a II1 factor whenever
G is infinite and (G, σ) satisfies condition K, according to Theorem B.

Lemma 2.2. Let T be an operator inW ∗(G, σ) and set fT = T δe. Then the
following are equivalent:

(i) T belongs to the center of W ∗(G, σ).
(ii) fT (aca−1) = σ(a, c)σ (aca−1, a)fT (c) for all a, c ∈ G.

Moreover, fT can be nonzero only on the finite conjugacy classes.

Proof. The operator T belongs to the center of W ∗(G, σ) if and only if
T = λ(a)T λ(a)∗ for all a ∈ G. Since, by Remark 2.1, δe is separating for
W ∗(G, σ), this is equivalent to fT = λ(a)T λ(a)∗δe for all a ∈ G. By (4) we
have

λ(a)T λ(a)∗δe = λ(a)T ρ(a)δe = λ(a)ρ(a)T δe = λ(a)ρ(a)fT

for all a ∈ G. Thus T belongs to the center if and only if fT = λ(a)ρ(a)fT
for all a ∈ G and the desired equivalence now follows from (3). If a function
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f satisfies (ii), then |f | is constant on conjugacy classes. Since fT belongs to
�2(G), it can be nonzero only on the finite conjugacy classes.

Remark 2.3. Lemma 2.2 is proved in [13, Theorem 1]. However, the proof
provided above is shorter. Lemma 2.4 below is proved in [13, Lemma 2] in the
case where C is a single point. Also, note that we do not restrict to normalized
multipliers as in [13].

Lemma 2.4. LetC be a conjugacy class ofG. Then following are equivalent:

(i) C is σ -regular.

(ii) There is a function f : G → C satisfying:
1. f (c) �= 0 for all c ∈ C.
2. f (aca−1) = σ(a, c)σ (aca−1, a)f (c) for all c ∈ C and all a ∈ G.

Moreover, f can be chosen in �2(G) if and only if C is finite.

Proof. (ii) ⇒ (i): Suppose c belongs toC and thata commutes with c. Then
there is a function f : G → C satisfying 0 �= f (c) = σ(a, c)σ (c, a)f (c).
Hence σ(a, c) = σ(c, a), so c is σ -regular.

(i) ⇒ (ii): This clearly holds if C is trivial, so suppose C is nontrivial and
σ -regular and fix an element c in C. Define a function f : G → C by

f (x) =
{
σ(a, c)σ (aca−1, a) if x ∈ C, x = aca−1 for some a ∈ G
0 if x /∈ C

First we show that f is well-defined, so assume aca−1 = bcb−1, and note that

σ(a−1, aca−1)σ (ca−1, b) = σ(a−1, aca−1b)σ (aca−1, b)

= σ(a−1, bc)σ (bcb−1, b).

As c is σ -regular and commutes with a−1b, σ(a−1b, c) = σ(c, a−1b). Thus

σ(c, a−1)σ (ca−1, b) = σ(c, a−1b)σ (a−1, b)

= σ(a−1, b)σ (a−1b, c)

= σ(a−1, bc)σ (b, c).

Together, we get from these equations that

(5) σ (a−1, aca−1)σ (b, c) = σ(c, a−1)σ (bcb−1, b).

Finally, the two identities

σ(a−1, aca−1)σ (ca−1, a) = σ(a−1, ac)σ (aca−1, a)

σ (c, a−1)σ (ca−1, a) = σ(a−1, a) = σ(a−1, ac)σ (a, c)
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give that

(6) σ (a−1, aca−1)σ (a, c) = σ(c, a−1)σ (aca−1, a).

Combining (5) and (6) we get that

σ(a, c)σ (aca−1, a) = σ(b, c)σ (bcb−1, b).

Hence f is well-defined, so f (aca−1) = f (bcb−1).
It is easily seen that |f (x)| = 1 for all x in C. In fact, if f is any function

satisfying (ii), then |f | must be constant and nonzero on C, hence f belongs
to �2(G) if and only if C is finite.

In particular, f (c) = 1 in our case, so f satisfies part 2 of (ii) for the chosen
c in C. It remains to show that f satisfies part 2 of (ii) for all other x in C.
Suppose x is an element of C, that is, there exists b inG such that x = bcb−1.
Note first that

f (x) = f (bcb−1) = σ(b, c)σ (bcb−1, b) = σ(b, c)σ (x, b).

Next,

σ(axa−1, a)σ (ax, b)σ (ab, c) = σ(axa−1, ab)σ (a, b)σ (ab, c)

= σ(axa−1, ab)σ (a, bc)σ (b, c),

which, since xb = bc, gives that

σ(a, x)σ (x, b) = σ(a, xb)σ (ax, b) = σ(a, bc)σ (ax, b)

= σ(axa−1, a)σ (ab, c)σ (axa−1, ab)σ (b, c).

Hence

f (axa−1) = f (abcb−1a−1) = σ(ab, c)σ (abcb−1a−1, ab)

= σ(ab, c)σ (axa−1, ab) = σ(a, x)σ (axa−1, a)σ (b, c)σ (x, b)

= σ(a, x)σ (axa−1, a)f (x).

Before stating the main theorem, we recall two results which are part of
the folklore of operator algebras. The first can be shown as sketched in the
proof of [18, Proposition 2.3], while the second is a rather easy consequence
of Urysohn’s Lemma. Remark that together these two results imply that if A
is von Neumann algebra, then A is prime (as a C∗-algebra) if and only if it is
a factor.

Proposition 2.5. If A is a concrete unital C∗-algebra and its bicommutant
A′′ is a factor, then A is prime.
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Proposition 2.6. Every prime C∗-algebra has trivial center.

Theorem 2.7. The following conditions are equivalent:

(i) (G, σ) satisfies condition K.

(ii) W ∗(G, σ) is a factor.

(iii) C∗
r (G, σ ) is prime.

(iv) C∗
r (G, σ ) has trivial center.

Proof. For completeness, we include the few lines required to prove (i) ⇒
(ii): Suppose (G, σ) satisfies condition K and let T belong to the center of
W ∗(G, σ). By Lemma 2.2 and Lemma 2.4, fT can be nonzero only on the
finite σ -regular conjugacy classes, hence on {e}. So T δe = fT (e)δe, thus
T = fT (e)I as δe is separating for W ∗(G, σ) by Remark 2.1.

The implications (ii) ⇒ (iii) ⇒ (iv) follow from Proposition 2.5 and 2.6.
(iv) ⇒ (i): Suppose C is a finite nontrivial σ -regular conjugacy class of G.

Let f be a function satisfying part (ii) of Lemma 2.4 and define the operator
T = ∑

c∈C f (c)λ(c). Then T belongs to the center of C∗
r (G, σ ). Indeed,

λ(a)T λ(a)∗ =
∑
c∈C

f (c)λ(a)λ(c)λ(a)∗

=
∑
c∈C

f (c)σ (a, c)σ (aca−1, a)λ(aca−1)

=
∑

b∈aCa−1

f (a−1ba)σ (a, a−1ba)σ (b, a)λ(b)

=
∑
b∈C

f (a−1ba)σ (a−1, b)σ (a−1ba, a−1)λ(b)

=
∑
b∈C

f (b)λ(b) = T

for all a ∈ G, where the identity (6) is used to get the fourth equality.

The proof of the following corollary goes along the same lines as the one
given in [18, Proposition 2.1] in the untwisted case.

Corollary 2.8. If C∗(G, σ) is prime, then (G, σ) satisfies condition K.

Proof. Observe that the set {λ(a)}a∈G is linear independent in C∗
r (G, σ ),

and the universal property of C∗(G, σ) ensures that there is a surjective ∗-
homomorphism C∗(G, σ) → C∗

r (G, σ ) mapping iG(a) to λ(a). Hence,
{iG(a)}a∈G is also linear independent and has dense span in C∗(G, σ).

Therefore, the result follows by replacing iG with λ in the proof of The-
orem 2.7, and repeating the argument for (iii) ⇒ (iv) ⇒ (i) word by word.
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Remark 2.9. In general, the center of C∗(G, σ) is not easily determined.
However, a slightly stronger version of Corollary 2.8 is known in the un-

twisted case. If C∗(G) has trivial center, then G/H is icc whenever H is a
normal subgroup of G satisfying Kazhdan’s property T (see e.g. [14]).

Corollary 2.10 ([22, Proposition 1.4]). AssumeG is countable and amen-
able. Then the following conditions are equivalent:

(i) (G, σ) satisfies condition K.

(ii) C∗(G, σ) is primitive.

Proof. If (G, σ) satisfies condition K, then C∗
r (G, σ ) is prime by The-

orem 2.7. As G is countable, C∗
r (G, σ ) is separable and hence primitive

by Dixmier’s result. Now, the amenability of G implies that C∗(G, σ) ∼=
C∗
r (G, σ ), so C∗(G, σ) is also primitive. Finally, (ii) always implies (i) by

Corollary 2.8.

Remark 2.11. Condition K on (G, σ) does not imply primeness or prim-
itivity of C∗(G, σ) in general. To see this, let G = SL(3, Z) and σ = 1.
Then, G is countable, icc and satisfies Kazhdan’s property T. In particular, G
is nonamenable. As explained in [4, Proposition 2.5], C∗(G) is not primitive.

On the other hand, I don’t know any example of an uncountable and amen-
able group such that (i) holds, but not (ii).

Remark 2.12. IfG is countable and nilpotent, then condition K on (G, σ)
is actually equivalent to simplicity ofC∗(G, σ) [22, Proposition 1.7]. The same
is also true if G is finite.

However, this does not hold for all countable, amenable groups. For ex-
ample, if G is the group of all finite permutations on a countably infinite set,
then G is countable, amenable and icc, so C∗(G) is primitive and nonsimple.

Remark 2.13. Note that C∗
r (SL(3, Z)) is known to be simple [5], so Re-

mark 2.11 and 2.12 show that primitivity of a full twisted group C∗-algebra is
in general unrelated to simplicity of the corresponding reduced twisted group
C∗-algebra.

Proposition 2.14. The following conditions are equivalent:

(i) G is amenable.

(ii) C∗(G, σ) is nuclear.

(iii) C∗
r (G, σ ) is nuclear.

(iv) W ∗(G, σ) is injective.

Proof. This is well known in the untwisted case. The result in the twisted
case appeared in a preprint by Bédos and Conti [2], but was left out in the
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final version. For the convenience of the reader we repeat the argument. First,
(i) ⇒ (ii) follows from [23, Corollary 3.9]. The implication (ii) ⇒ (iii) holds
since every quotient of a nuclear C∗-algebra is nuclear. Moreover, the von
Neumann algebra generated by a nuclearC∗-algebra is injective, hence (iii) ⇒
(iv). Finally, ifW ∗(G, σ) is injective, it has a hypertrace and thusG is amenable
by [1, Corollary 1.7], so (iv) ⇒ (i).

According to [8], all injective II1 factors acting on a separable Hilbert space
are isomorphic to the hyperfinite II1 factor. Hence, we get the following co-
rollary.

Corollary 2.15. Assume G is countably infinite. Then the following con-
ditions are equivalent:

(i) G is amenable and (G, σ) satisfies condition K.

(ii) C∗(G, σ) is nuclear and primitive.

(iii) C∗
r (G, σ ) is nuclear and primitive.

(iv) W ∗(G, σ) is the hyperfinite II1 factor.

3. Direct products

Let G1 and G2 be two groups. A function f : G1 × G2 → T is called a
bihomomorphism if

f (a1b1, a2) = f (a1, a2)f (b1, a2) and f (a1, a2b2) = f (a1, a2)f (a1, b2)

for all a1, b1 ∈ G1 and a2, b2 ∈ G2. Let B(G1,G2) denote the set of bihomo-
morphismsG1 ×G2 → T. This is a group under pointwise multiplication and
is isomorphic with Hom(G1,Hom(G2, T)).

It is well known (see e.g. [15]) that the Schur multiplier of G1 × G2 de-
composes as

M(G1 ×G2) ∼= M(G1)⊕ M(G2)⊕ B(G1,G2).

We will only need to know the following. Let (σ1, σ2, f ) be a triple where σ1

and σ2 are multipliers onG1 andG2, respectively, and f belongs toB(G1,G2).
Then we can define a multiplier σ on G1 ×G2 by

(7) σ ((a1, a2), (b1, b2)) = σ1(a1, b1)σ2(a2, b2)f (b1, a2)

for a1, b1 ∈ G1 and a2, b2 ∈ G2, and it can be shown that every multiplier on
G1 ×G2 is similar to such a σ . When σ is a multiplier onG1 ×G2, we let σ1

be the multiplier on G1 defined by

σ1(a1, b1) = σ((a1, e), (b1, e))
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for a1, b1 ∈ G1 and call it the restriction of σ to G1. Similarly we can define
the restriction σ2 of σ to G2.

Henceforth, we fix two groups G1 and G2, multipliers σ1 on G1 and σ2 on
G2, and a bihomomorphism f in B(G1,G2). We set G = G1 × G2 and let
σ be the multiplier on G defined by (7). Moreover, we write σ = σ1 × σ2 if
f = 1.

It is convenient to record the identity

(8) σ (a, b)σ (b, a) · f (a1, b2)f (b1, a2)

= σ1(a1, b1)σ1(b1, a1) · σ2(a2, b2)σ2(b2, a2)

which follows directly from (7). Note also that C is a conjugacy class of G if
and only if C = C1 × C2 where C1 and C2 are conjugacy classes of G1 and
G2, respectively.

Proposition 3.1. The following are equivalent:

(i) C∗
r (G, σ ) is prime.

(ii) For every finite nontrivial conjugacy class C of G, there exist a =
(a1, a2) in C and b = (b1, b2) in G such that at least one of these
conditions hold:
1. a1b1 = b1a1 and f (b1, a2) �= σ1(a1, b1)σ1(b1, a1).
2. a2b2 = b2a2 and f (a1, b2) �= σ2(a2, b2)σ2(b2, a2).

Proof. Suppose that condition (ii) does not hold. Then there is a finite
nontrivial conjugacy classC such that both 1. and 2. fail for alla inC andb inG.
Hence, f (b1, a2) = σ1(a1, b1)σ1(b1, a1) andf (a1, b2) = σ2(a2, b2)σ2(b2, a2)

whenever a = (a1, a2) is in C, b = (b1, b2) in G and b commutes with a.
Then C is σ -regular by (8), and therefore (G, σ) does not satisfy condition K,
that is, C∗

r (G, σ ) is not prime by Theorem 2.7. Thus, (i) ⇒ (ii).
Conversely, assume that (G, σ) does not satisfy condition K and let C =

C1 × C2 be a finite nontrivial σ -regular conjugacy class of G. If b1 in G1

commutes with a1 in C1, then (b1, e) commutes with (a1, a2) for every a2 in
C2. Hence, the σ -regularity of C and identity (8) give that

f (b1, a2) = σ1(a1, b1)σ1(b1, a1)

whenever a belongs to C and b1 in G1 commutes with a1. Similarly,

f (a1, b2) = σ2(a2, b2)σ2(b2, a2)

whenever b2 inG2 commutes with a2. It follows that for all a in C and b inG,
both 1. and 2. fail to hold, hence condition (ii) is not satisfied.
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Remark 3.2. Let G1 and G2 be abelian and assume that σ1 and σ2 are
trivial. Condition (ii) of Proposition 3.1 then says that for all nontrivial (a1, a2)

in G there exists (b1, b2) in G such that f (a1, b2) �= 1 or f (b1, a2) �= 1. If
this holds, σ is called nondegenerate and it was first shown by Slawny [24,
Theorem 3.7] that C∗(G, σ) ∼= C∗

r (G, σ ) is simple in this case.

Lemma 3.3. Let a = (a1, a2) be an element in G. If two of the following
conditions hold, then all three hold:

(i) a is σ -regular.

(ii) ai is σi-regular for both i = 1 and 2.

(iii) f (a1, b2) = f (b1, a2) whenever b = (b1, b2) commutes with a.

Moreover, (iii) is equivalent to:

(iv) f (a1, b2) = f (b1, a2) = 1 whenever b = (b1, b2) commutes with a.

Proof. Suppose that (ii) holds and pick any b = (b1, b2) in G. Then it
follows readily from (8) that (i) holds if and only if (iii) holds.

Next, assume that (iii) holds and let b = (b1, b2) commute with a. Then
b′ = (b1, e) also commutes with a, so 1 = f (a1, e) = f (b1, a2). Similarly,
we get f (a1, b2) = 1 and thus (iv) holds.

Suppose finally that (i) and (iii) hold and pick an element b = (b1, b2)

in G that commutes with a. As (iv) also holds, we have that f (b1, a2) = 1.
By applying (8) with b′ = (b1, e), we see that a1 is σ1-regular. Similarly,
f (a1, b2) = 1 and a2 is σ2-regular.

Corollary 3.4. Let C = C1 × C2 be a conjugacy class of G. Suppose
there is some a = (a1, a2) in C such that f (a1, b2) = f (b1, a2) whenever
b = (b1, b2) commutes with a. Then the following are equivalent:

(i) C is a finite nontrivial σ -regular conjugacy class of G.

(ii) Ci is a finite σi-regular conjugacy class of Gi for both i = 1 and 2 and
at least one of C1 and C2 is nontrivial.

Corollary 3.5. Suppose both C∗
r (G1, σ1) and C∗

r (G2, σ2) are prime. Let
a = (a1, a2) be such that f (a1, b2) = f (b1, a2) whenever b = (b1, b2)

commutes with a. Then at most one of the following two conditions hold:

(i) a is σ -regular.

(ii) a belongs to a finite nontrivial conjugacy class of G.

Corollary 3.6. Suppose f (a1, b2) = f (b1, a2) whenever a = (a1, a2) is
σ -regular and b = (b1, b2) commutes with a. Then C∗

r (G, σ ) is prime if both
C∗
r (G1, σ1) and C∗

r (G2, σ2) are prime.
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Remark 3.7. In general, primeness of C∗
r (G, σ ) does not imply primeness

of either C∗
r (G1, σ1) or C∗

r (G2, σ2). For example, if G1 = G2 = Z, then
C∗(G, σ) can be simple even if both σ1 and σ2 are trivial.

Also, C∗
r (G, σ ) can be nonprime even if both C∗(G1, σ1) and C∗(G2, σ2)

are simple. To see this, let G1 = G2 = Z2 and consider the case described in
the last part of Example 1.2.

Proposition 3.8. Suppose f (c1, c2) = 1 whenever ci belongs to a finite
conjugacy class of Gi for either i = 1 or 2. Then C∗

r (G, σ ) is prime if and
only if both C∗

r (G1, σ1) and C∗
r (G2, σ2) are prime.

In particular, this holds when σ = σ1 × σ2.

Proof. Suppose C∗
r (G, σ ) is prime and C1 is a finite σ1-regular conjugacy

class of G1. Then C1 × {e} is σ -regular by Corollary 3.4 so C1 = {e} and
hence C∗

r (G1, σ1) is prime. Similarly we get that C∗
r (G2, σ2) is prime.

The converse follows directly from Corollary 3.5.

Remark 3.9. Assume that σ = σ1 × σ2. Then C∗
r (G, σ ) is simple if and

only both C∗
r (G1, σ1) and C∗

r (G2, σ2) are simple. Indeed, note that the map
λσ (a1, a2) �→ λσ1(a1)⊗ λσ2(a2) induces an isomorphism

C∗
r (G, σ )

∼= C∗
r (G1, σ1)⊗min C

∗
r (G2, σ2).

The result now follows from the fact that a spatial tensor product of two C∗-
algebras is simple if and only if both involvedC∗-algebras are simple (see [12,
11.5.5-6]).

The only positive result on primitivity so far in this paper concerns count-
able, amenable groups. However, Corollary 2.10 relies on Dixmier’s result that
is not constructive in the sense that it does not give a procedure to construct
an explicit faithful irreducible representation.

In some cases, one may construct faithful irreducible representations of
C∗(G, σ) through an inducing process on representations of C∗(G1, σ1).

Theorem 3.10. Assume thatG2 is amenable. Suppose there exists a faithful
irreducible representation π of C∗(G1, σ1) such that for any given nontrivial
a2 in G2, there exists a1 in G1 such that

f (a1, a2)π(iG1(a1)) �� π(iG1(a1)).

Then C∗(G, σ) is primitive.

Proof. Recall that there is a twisted action (α, ω) ofG2 onA = C∗(G1, σ1)
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satisfying (see e.g. [25])

αa2(iG1(a1)) = f (a1, a2)iG1(a1),

ω(a2, b2) = σ2(a2, b2).

Hence, there is also a natural action ofG2 on the set Â0 of equivalence classes
of faithful irreducible representations of A given by

a2 · [ψ] = [ψ ◦ αa−1
2

].

For any given nontrivial a2 in G2, the assumptions on π gives that

π ◦ αa−1
2
(iG1(a1)) = f (a1, a2)π(iG1(a1)) �� π(iG1(a1))

for some a1 in G1. Hence
a2 · [π ] �= [π ]

for all nontrivial a2 in G2. In other words, [π ] is a free point for this action.
The conclusion follows from [4, Theorem 2.1].

Example 3.11. Let G = F2 × Z and let u, v be the generators of F2. Since
M(F2) = M(Z) = {1}, every multiplier on G is, up to similarity, determined
by a bihomomorphismf : F2×Z → T. Moreover, f is determined by its values
on the generators, that is, by f (u, 1) and f (v, 1). Let σ be the multiplier on
G defined by these two numbers, say μ and ν. We remark that

C∗(G, σ) ∼= C∗(F2)�α Z

where α is determined by αk(iF2(x)) = f (x, k)iF2(x) for x ∈ F2 and k ∈ Z.
Assume μ is nontorsion and let A = C∗(F2) sit inside B(H ) for some

separable Hilbert space H . LetU = iF2(u) and V = iF2(v) be the two unitaries
in B(H ) generating A. Now, proceeding as Choi in [7, Lemma 4], there is an
operatorD for whichU−D is compact and such that the following hold; with
respect to a suitable basis on H , D is diagonal with diagonal entries {zi}∞i=1
satisfying |zi | = 1 for all i, z1 = 1, zi �= zj if i �= j and zi /∈ {μk : k ∈ Z}
when i ≥ 2.

Using [7, Lemma 5], we can find a compact perturbation E of V which is
a unitary operator having no common nontrivial invariant subspace with D.
Then, as explained in [7, Theorem 6], the map U �→ D, V �→ E defines a
faithful and irreducible representation π of A on H .

Now we have

π ◦ αk−1(U) = f (u, k)π(U) = μkπ(U) �� π(U)
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for all k in Z. Indeed, this holds as the point spectrum of π(U) = D is different
from the point spectrum of π(αk−1(U)) = μkD by construction.

A similar argument also holds if ν is nontorsion. Hence, we get from The-
orem 3.10 that C∗(G, σ) is primitive if either μ or ν is nontorsion.

On the other hand, if (G, σ) satisfies condition K, then at least one of μ
and ν must be nontorsion, so this is also a necessary condition for primitivity
of C∗(G, σ). Indeed, condition (ii) of Proposition 3.1 does not hold if both μ
and ν are torsion.

Proposition 3.12. Assume that σ = σ1 ×σ2 and that both C∗(G1, σ1) and
C∗(G2, σ2) are primitive. Then C∗(G, σ) is primitive if at least one ofG1 and
G2 is amenable.

Proof. Without loss of generality we may assume that G1 is amenable.
Then C∗(G1, σ1) is nuclear by Proposition 2.14 so the minimal and maximal
tensor products of C∗(G1, σ1) and C∗(G2, σ2) coincide. According to [11,
Section 3], there is a unique isomorphism

C∗(G, σ) → C∗(G1, σ1)⊗ C∗(G2, σ2)

given by iG(a1, a2) �→ iG1(a1)⊗ iG2(a2).
For i = 1, 2, let πi be a faithful irreducible representation of C∗(Gi, σi)

on Hi . Then π = π1 ⊗ π2 is a representation of C∗(G, σ) on H = H1 ⊗ H2,
which is faithful by [17, Theorem 6.5.1] and irreducible by [11, Section 2].
Hence C∗(G, σ) is primitive.

Remark 3.13. Primitivity of C∗(G, σ) is in general difficult to decide.
For example, let F be a free nonabelian group. Then it is unknown whether
C∗(F × F) is primitive (see [4, Remark 2.2] for a brief discussion).

4. Free products

In some sense, free products are easier to treat than direct products, since the
Schur multiplier decomposes nicely. Indeed, let G1 and G2 be two groups.
Then we have that (see e.g. [6, page 51])

(9) M(G1 ∗G2) ∼= M(G1)⊕ M(G2).

Let σ1 be a normalized multiplier onG1 and σ2 a normalized multiplier on
G2. Following [16, Section 5], we will explain how to obtain a normalized free
product multiplier σ1 ∗ σ2 on G1 ∗G2.

Every nontrivial element x inG1 ∗G2 can be uniquely written as a reduced
word x = x1x2 . . . xn, for which the letters with odd index belong to Gi and
the letters with even index belong to Gj for i �= j . Define the length function
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as l(x) = l(x1x2 . . . xn) = n and l(e) = 0. If l(x), l(y) ≤ 1, we write x ⊥ y

if either x = e or y = e or else if x is in Gi and y is in Gj for i �= j .
Let s(x) and r(x) denote the first and last letter of a nontrivial word x and

set s(e) = r(e) = e. For a pair of words (x, y), we say that the pair is reduced
if r(x) �= s(y)−1.

When (x, y) is not reduced, letw be the longest word such that r(xw−1) ⊥
s(w) and r(w−1) ⊥ s(wy). Set xw = xw−1 and yw = wy, so that x = xww

and y = w−1yw. Let (x, y)w = (xw, yw) be the reduction of (x, y) and note
in particular that xwyw = xy.

If the pair (x, y) is reduced, then we set (x, y)w = (x, y).
Define now the multiplier τ on G1 ∗G2 by

τ(x, y) = τ((x, y)w) =

⎧⎪⎨
⎪⎩
σ1(r(xw), s(yw)) if r(xw), s(yw) ∈ G1 \ {e},
σ2(r(xw), s(yw)) if r(xw), s(yw) ∈ G2 \ {e},
1 if r(xw) ⊥ s(yw),

and note that this definition coincides with the one explained in [16, Section 5].
Furthermore, let

X = {
[a, b] = aba−1b−1 : a ∈ G1 \ {e}, b ∈ G2 \ {e}}

and recall that the free nonabelian group on X, denoted FX, may be identified
with the normal subgroup of G1 ∗G2 generated by X.

Moreover, define a function β : G1 ∗ G2 → T by β(x) = 1 if x /∈ FX,
while for nontrivial x = q

p1
1 . . . q

pn
n in FX, where qi belongs to X and pi is an

integer, we set

β(x) = β(q
p1
1 . . . q

pn
n )

=
{
τ(q

p1
1 , q

p2
2 )τ (q

p2
2 , q

p3
3 ) . . . τ (q

pn−1
n−1 , q

pn
n ) if n ≥ 2,

1 if n = 1.

Now define the multiplier σ on G1 ∗G2 by

σ(x, y) = β(x)β(y)β(xy)τ(x, y).

We write σ = σ1 ∗ σ2 and note that σ ∼ τ , σ|Gi×Gi
= σi and σ|FX×FX = 1.

On the other hand, if σ is a normalized multiplier onG1 ∗G2, we can define
the restriction σ1 on G1 by

σ1(x, y) =
{
σ(x, y) if x, y ∈ G1 \ {e},
1 if x or y = e.
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Similarly, we can define the restriction σ2 of σ toG2. Next, define the function
β : G1 ∗G2 → T by β(x) = 1 if l(x) ≤ 1 and else

β(x) = β(x1 . . . xn) = σ(x1, x2)σ (x1x2, x3) . . . σ (x1 . . . xn−1, xn).

Then σ is similar to σ1 ∗ σ2 through β.
Remark that every multiplier is similar to a normalized one. Therefore, every

multiplier onG1 ∗G2 is similar to σ1 ∗ σ2 for some normalized multipliers σ1

on G1 and σ2 on G2.
We are now ready to prove the twisted version of [3, Theorem 1.2].

Theorem 4.1. AssumeG = G1 ∗G2, whereG1 andG2 are countable and
amenable and (|G1| − 1)(|G2| − 1) ≥ 2, and let σ be a multiplier onG. Then
C∗(G, σ) is primitive.

Proof. We may assume that σ = σ1 ∗ σ2 where σ1 and σ2 are normalized
multipliers on G1 and G2, respectively, and that σ|FX×FX = 1. The proof is
only a slight modification of the proof of [3, Theorem 1.2], so we just point
out what needs to be adjusted in this proof and use the notation therein. First,
recall that there is a twisted action (α, ω) of (G1 ∗ G2)/FX ∼= G1 × G2 on
H = FX. Straightforward calculations give that

α(c,d)(iH ([a, b])) =
{
iH (cd[a, b]d−1c−1) · σ2(d, b) if d �= e

iH (cd[a, b]d−1c−1) · σ1(c, a) if d = e

for a, c ∈ G1 and b, d ∈ G2. Hence the expressions in the equations [3,
(2.3), (2.4)] remain unchanged, so it is enough to reconsider [3, Case 3].
More straightforward calculations give that the conditions at the bottom of [3,
page 54] must be replaced with:

k = (s0, t) and k = (sl, e2)

if λ(s0sl, t)U(s0sl, t) �� σ1(sl, s0sl)U(s0, t)(λ(sl, t)U(sl, t))
∗;

k = (s0, e2) and k = (sl, t)

if λ(s0sl, t)U(s0sl, t) �� σ1(s0, s0sl)λ(sl, t)U(sl, t)U(s0, t)
∗;

k = (s0, t) and k = (s0sl, e2)

if λ(sl, t)U(sl, t) �� σ1(s0sl, sl)U(s0, t)(λ(s0sl, t)U(s0sl, t))
∗;

k = (s0sl, t) and k = (s0, e2)

if λ(sl, t)U(sl, t) �� σ1(s0, sl)λ(s0sl, t)U(s0sl, t)U(s0, t)
∗.

Now it is easily seen that the rest of the proof works with appropriate modi-
fications.
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Remark 4.2. Theorem 4.1 is not surprising. In fact, I am not aware of any
pair (G, σ) such that C∗(G) is primitive, but C∗(G, σ) is nonprimitive.

Remark 4.3. Let G = G1 ∗ G2, let σ be a multiplier on G and assume
σ = σ1 ∗ σ2. Then it is known that (see [16, Section 5])

C∗(G, σ) = C∗(G1, σ1) ∗ C∗(G2, σ2).

Example 4.4. As explained in Example 1.1 we have that for each natural
number n, there exists a multiplier σk on Zn × Zn such that C∗(Zn × Zn, σk) ∼=
Mn(C). One immediate consequence of Theorem 4.1 is that

Mj(C) ∗Mk(C)

is primitive for all j, k ≥ 2. More generally, it has recently been shown [10]
thatF1∗F2 is primitive wheneverF1 andF2 are finite-dimensionalC∗-algebras
and (dim F1 − 1)(dim F2 − 1) ≥ 2.
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