
MATH. SCAND. 114 (2014), 275–298

CONTRACTIVE SPECTRAL TRIPLES FOR
CROSSED PRODUCTS

ALAN L. T. PATERSON

Abstract
Connes showed that spectral triples encode (noncommutative) metric information. Further, Connes
and Moscovici in their metric bundle construction showed that, as with the Takesaki duality
theorem, forming a crossed product spectral triple can substantially simplify the structure. In a
recent paper, Bellissard, Marcolli and Reihani (among other things) studied in depth metric notions
for spectral triples and crossed product spectral triples for Z-actions, with applications in number
theory and coding theory. In the work of Connes and Moscovici, crossed products involving
groups of diffeomorphisms and even of étale groupoids are required. With this motivation, the
present paper develops part of the Bellissard-Marcolli-Reihani theory for a general discrete group
action, and in particular, introduces coaction spectral triples and their associated metric notions.
The isometric condition is replaced by the contractive condition.

1. Introduction

Throughout the paper, X = (A,H,D) will be an odd spectral triple in the
sense of Connes ([4], [5]). This can be defined as follows. First, A is a C∗-
algebra, which we will always assume to be unital, equipped with a faithful
(non-degenerate) representation π on a Hilbert space H, and second, D is a
(usually unbounded) self-adjoint operator on H with compact resolvent. Third,
we require that the subalgebra C 1(X) of a’s in A for which π(a)Dom(D) ⊂
Dom(D)1 and ‖[D,π(a)]‖ < ∞ is dense in A. (The operator [D,π(a)] is at
this stage, of course, only defined on DomD, but since the latter is dense in H

and [D,π(a)] is bounded, it extends by continuity to an element ofB(H )with
the same norm, and so can be regarded as actually belonging to B(H ).) We
will sometimes regardA as a subalgebra of B(H ) and omit reference to the π .

If X is an odd spectral triple and A is a dense ∗-subalgebra of C 1(X) then
we will also regard (A,H,D) as an odd spectral triple. Given a spectral triple
of the form X = (A,H,D) (A a C∗-algebra), we obtain a canonical spectral
triple by taking A = C 1(X). In the other direction, if (A,H,D) is a spectral
triple, then we obtain a C∗-algebra spectral triple X determining it by taking
A to be the closure of A , and we say that (A,H,D) is a spectral triple on A.

Received 2 May 2012.
1 As commented by Kaad and Lesch ([17, Convention 4.2]), this assumption is very important,

but is often slightly obscured in the literature.
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In his development of noncommutative geometry, Connes showed that spec-
tral triples not only give a context for K-homology and cyclic cohomology but
also encode (noncommutative) metric information. Particularly notable was
his observation (e.g. [5, VI.1]) that for a compact spin manifold M , one can
recover, among other things, the (geodesic) distance d on M from the canon-
ical spectral triple (C(M),H,D) where ([27, § 5], [38, II.7]) H is the Hilbert
space of L2-spinors on M and D is the (self-adjoint) Dirac operator of M .
This recovery is achieved by considering the space of Lipschitz functions A

onM . Indeed, each a ∈ A can be regarded as a multiplication operator on H,
and the commutator [D, a] is densely defined and extends to a bounded linear
operator on H . The distance function d onM is then determined for p, q ∈ M
by:

(1.1) d(p, q) = sup{|a(p)− a(q)| : ‖[D, a]‖ ≤ 1}.
In particular, the right-hand side of (1.1) determines a metric for the topology
of M . We can, of course, think of points of M as states on the C∗-algebra
C(M), and Connes pointed out that, more generally, if we replace a(p)−a(q)
by φ(a) − ψ(a) above, we can extend the metric d to a metric (also denoted
d) on the state space S(C(M)) (i.e. the set of probability measures on M) of
C(M). Further, the metric topology of d on the state space is just the weak∗-
topology. This approach is motivation for replacing the special spectral triple
(C(M),H,D) by an arbitrary spectral triple X = (A,H,D), and this gives a
pseudo-metric dX, or simply d, on S(A). Following [2], we will refer to d as
the Connes pseudo-metric. So for φ,ψ ∈ S(A),
(1.2) d(φ,ψ) = sup{|φ(a)− ψ(a)| : a ∈ C 1(X), ‖[D, a]‖ ≤ 1}.

Two natural questions arise. (See the discussion in [2, 1.1].) First, when is d
actually a metric on S(A)? Referring to (1.2), we see that obstacles to this are
(1) the degeneracy of the representation π of A on H, and (2) there are non-
trivial a’s (i.e. a’s that are not multiples of the identity) in the metric commutant
({a ∈ C 1(X) : [D, a] = 0}) ofD. In fact ([30], [33], [32]) non-degeneracy for
π and triviality of the metric commutant are necessary and sufficient conditions
for d to be a metric. The second question was raised and studied by Rieffel:
given that d is a metric on S(A), when does its metric topology coincide with
the weak∗-topology? The answer in the unital case ([30], [33], [34], [29]) is
that the two topologies coincide if and only if the image of the Lipschitz ball
has compact closure inA/C1. The corresponding result for the non-unital case
was given by Latrémolière ([26]).

The main inspiration for the present paper is the recent work on spectral
triples for group actions on the C∗-algebra A by Bellissard, Marcolli and
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Reihani ([2]), in particular in the case when the group is Z (so that only a
single automorphism of A is involved). For an ordinary metric space, there
are a number of geometric notions associated with an action of a group on the
space by homeomorphisms. These include, in particular, the familiar notions
of quasi-isometric, equicontinuous and isometric. It is shown in [2] that there
are corresponding notions in the noncommutative case, i.e. for spectral triples.
(The definitions are given in § 4 of the present paper.)

These noncommutative versions are used in a central theme of the invest-
igations of [2], viz. given a spectral triple X = (A,H,D) where A supports
an action α of Z by automorphisms, how to define a dual spectral triple Y
on the (reduced) crossed product C∗-algebra A �α,r Z. (In [2, p. 16], the au-
thors write Y = X �α Z and call it the regular representation of the metric
dynamical system (X, α).) The dual spectral triple is actually an even spectral
triple, but for the purposes of this paper, we will regard it as odd by simply
ignoring the grading. Motivation for studying the dual spectral triple is that in
general, taking an appropriate dual action can greatly simplify the study of the
original spectral triple. A remarkable example of how an appropriate crossed
product can simplify the study of the original is in the von Neumann algebra
category, where the Takesaki duality theorem (e.g. [19, Theorem 13.3.7]) says
(among other things) that taking the crossed product of a von Neumann algebra
for the action of the modular automorphism group (corresponding to a faith-
ful normal state) transforms a type III factor into a type II∞ von Neumann
algebra. (The C∗-algebra version of this is given by the Imai-Takai duality
theorem ([15, Theorem 3.6], [24, Theorem 3], [11, Theorem A.68]) which in
its general form, uses the dual coaction – in particular, G does not have to
be abelian.) A philosophically similar, but geometrical, situation arose in the
work of Connes and Moscovici ([6]) in the context of diffeomorphism invari-
ant geometry. There, one needs to consider the crossed product C0(W) � �

whereW is a compact Riemannian manifold and � a subgroup of Diff(W). In
general, the action preserves no structure at all, in particular, no Riemannian
metric is invariant under the action. However, if we replace W by the metric
bundle W overW , whose fiber over w ∈ W is the space of Euclidean metrics
on the tangent space TwW then there is an invariant metric on W invariant
under the natural action of �, and the shift from W to W corresponds to the
shift from the type III situation to one of type II as above. (See [2, 4.2] for
a detailed description of the construction of the metric bundle.)

Among a number of results in [2], the authors show the following (for a
Z-action α onA). Given thatX is equicontinuous, there exists a natural “dual”
spectral triple Y for the reduced crossed product A�α,r Z, where

Y = (A�α,r Z,K ⊗ C2, D̂).
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Here, K is the space of sequences �2(Z,H ) = H ⊗ �2(Z), and D̂ is given
by a diagonal operator whose entry over n ∈ Z is the 2 × 2 matrix with zero
diagonal entries and off-diagonal entriesD∓ ın. One considers the dual action
of Ẑ = T on A�α,r Z. Further results in [2] are:

(1) Y is isometric;

(2) if X is such that the metric commutant is trivial and the image of the
Lipschitz ball has compact closure in A/C1, then the Connes metrics
induced on the state space of A by both X, Y are equivalent (and give
the weak∗-topology of A);

(3) ifX is not equicontinuous but is quasi-isometric, it can effectively be re-
placed by a spectral triple that is equicontinuous (using a “metric bundle”
construction inspired by that of Connes-Moscovici above).

A number of interesting examples illustrating the theory is given. See also [13,
Theorem 2.11] for further results in this direction.

These results involve, of course, actions by the group Z. However, it is
desirable to extend them to actions by general discrete groups. We saw this
above in the discussion of the metric bundle, where the group acting could
be any subgroup of Diff(W). More generally, in further work of Connes and
Moscovici ([7]), allowing for local rather than just global diffeomorphisms,
one needs to consider the case where the transformation group is replaced by
an étale groupoid. In this paper we will prove the general version of (1) for a
discrete group acting on A. While there is, of course, much more to be done
to extend to this general context the other results in [2], even in the case of (1)
alone, there are, as we shall see, questions that first have to be resolved.

We now define the two geometrical notions that we will require for an action
α of a locally compact group G on a spectral triple X = (A,H,D). First, we
say that X is pointwise bounded if the set

C 1
b (G,X) = {

a ∈ C 1(X) : αg(a) ∈ C 1(X) for all g ∈ G, the

map g → [D,αg(a)] is continuous, and supg∈G ‖[D,αg(a)]‖ < ∞}
is dense in A (or equivalently dense in C 1(X)). This is weaker than the
“equicontinuous” condition used in [2]: there, X is equicontinuous if C 1

b (G,

X) = C 1(X). The motivation for the terminology “pointwise bounded” is
that for each appropriate “point” a ∈ A, the maps g → [D,αg(a)] are uni-
formly bounded, so that the set of “functions” a → [D,αg(a)] (g ∈ G) is
pointwise bounded. We can think of this condition as corresponding to the
“pointwise bounded” condition in the classical Arzelà-Ascoli theorem (cf. the
use of equicontinuity in the noncommutative Arzelà-Ascoli theorem, [2, The-
orem 1]). Pointwise boundedness is a natural condition to require. (Indeed,
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the density of C 1(X) in A in the spectral triple definition is just pointwise
boundedness for the trivial group action.) It is surely a weaker condition than
equicontinuity, but unfortunately I do not have an example where pointwise
boundedness holds but equicontinuity does not. As in [2, Definition 3], X will
be called isometric if C 1(X) = C 1

b (G,X) and

‖[D,αg(a)]‖ = ‖[D, a]‖
for all a ∈ C 1(X), g ∈ G.

One problem that arises when trying to prove a version of (1) for a general
discrete group acting on A is how to define D̂. What should we put in place of
the ∓ın that occurred above in the formula for D̂ for theG = Z case? However,
n can be recognized as coming from the usual word metric on the group Z, and
so for a general finitely generated, infinite group G, we need to replace n by
c(g) where c is the word metric on G associated with a symmetric generating
subset ofG. In fact, such a word metric is naturally associated ([4]) with an odd
spectral triple (C∗

r (G), �
2(G),Mc), whereMc is the multiplication operator by

c on �2(G),C∗
r (G) is the reducedC∗-algebra ofG, and D̂ gives the unbounded

Fredholm operator determining the Kasparov product of K-homology classes
in the unbounded Fredholm picture ([1], [22], [5, IV, Appendix A]). More
generally, one can, in the terminology of Rieffel ([35]) take c : G → R to be
a proper translation bounded function on G.

Hawkins, Skalski, White and Zacharias ([13, Theorem 2.7]) (among other
results) have shown that if A is a unital C∗-algebra with an action α of a
discrete group G, (A,H,D) is an equicontinuous odd spectral triple on A
and c is a proper translation bounded function on G then there is a canonical
dual spectral triple of the form (A�α,r G, �

2(G,H )⊗ C2, D̂) (see infra) just
as in the case G = Z as above. We will need a version of this in the paper
(Proposition 4.1). Since slightly subtle considerations of domains and cores
for the unbounded operators involved are required for the proof of this theorem,
we give a complete proof.

Starting (as we do) with an odd spectral triple X, its dual spectral triple is
naturally even. (We note ([13, 2.4]) that starting with an even spectral triple,
one can produce, using the same procedure, a dual spectral triple that is odd.)
However for the (limited) purposes of the present paper, the grading coming
from the evenness on the dual spectral triple is not used, and it is convenient
(as is done in [2]) simply to regard such a triple as an odd spectral triple by
forgetting the grading. All of the spectral triples of the present paper are then
taken to be odd spectral triples.

A second problem is that in the Z case, the group was abelian, and we had
the dual group T available to act on the crossed product. This is no longer the
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case for general G. Instead, as in the Imai-Takai duality theorem, we have to
consider the dual coaction

α̂ : A�α,r G → (A�α,r G)⊗ C∗
r (G)

where for F ∈ Cc(G,A),

(1.3) α̂(F ) =
∫
π̃(F (s))̃λs ⊗ λs ds.

Here, α̂ is continuous for the A �α,r G norm restricted to Cc(G,A), and so
extends by continuity to the whole ofA�α,r G. Further, (π̃, λ̃) is the covariant
representation giving the regular representation of A �α,r G as realized on
H ⊗ �2(G) = �2(G,H ), and λ is the left regular representation of G on
�2(G). The dual spectral triple associated with X = (A,H,D) will be the
triple Y = (A �α,r G,H ⊗ �2(G) ⊗ C2, D̂). In the abelian case, the dual
coaction reduces to the familiar action of the dual group on the crossed product.

We need geometric definitions of metric notions (such as “isometry”) for
coactions just as we had for actions. It is not immediately clear what they should
be. However, roughly, it is reasonable to think that if we dualize the coaction
in some sense, then we should have something like an action (though not
necessarily of a group). More precisely, let Pr(G) be the state space ofC∗

r (G).
This is a subsemigroup of (C∗

r (G))
∗, which is an ideal in the Fourier-Stieltjes

algebra B(G) of G. (The multiplication is just pointwise multiplication on
G when we regard the elements φ of Pr(G) as functions on G by setting
φ(s) = φ(λs).) It is this semigroup that we want acting in place of the group
G. For a general C∗-algebra B with a coaction δ : B → B ⊗ C∗

r (G), the
action β of Pr(G) on B is given by slicing by φ ∈ Pr(G): so for b ∈ B,
βφ(b) = Sφ(δ(b)).

WhenG is abelian, so that we are dealing with the dual action in place of the
dual coaction, the dual action on the crossed product is just β restricted to the
characters of G, the set of extreme points of Pr(G). The isometric condition
makes good sense in this case since under the dual action, each character acts
by multiplication as a unitary on �2(G). However, when we extend this action
to convex combinations in Pr(G) of these characters, this is no longer the case.
Instead we need to replace the isometric condition by the contractive one. In
the case of a spectral triple Y = (B,K ,D′) – and we have in mind primarily
the dual spectral triple – for which a coaction on B is given, the idea is that Y
is contractive if the set

{b ∈ C 1(Y ) : ‖[D′, βφ(b)]‖ ≤ ‖[D′, b]‖ < ∞ for all φ ∈ Pr(G)}
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is dense inB (or equivalently dense in C 1(Y )). (The precise definition is given
in Section 4.)

The main result of this paper (Theorem 4.2) (roughly) states that if X is a
pointwise bounded spectral triple, then the dual spectral triple Y is contractive
for the dual coaction.

As is well-known, some care has to be exercised with unbounded operators
on a Hilbert space because of their partially defined domains. The details on
unbounded operators that we need for this paper are contained in theAppendix.
In particular, it gives a proof that the operator D̂ used in the dual spectral
triple really is a self-adjoint operator with compact resolvent. (The author has
been unable to find a written proof in the literature of this fundamental fact,
and the proof also gives information about cores for D̂ that is needed in the
proof of the main result of the paper.) Also, the coaction literature can be
rather technical, and for the reader who, like the present author, feels his or
her background in the subject limited, a simple account of the material, as
self-contained as possible, that we need from the theory of reduced crossed
products and coactions is incorporated into the paper. In particular, substantial
simplifications result because in the coaction part of the paper, we only deal
with the reduced case, the group G is discrete and the C∗-algebras involved
unital. (For a short, informative exposition (with proofs) of the general theory
for full and reduced crossed products and coactions, AppendixA of the memoir
[11] by Echterhoff, Kaliszewski, Quigg and Raeburn is recommended.)

I am grateful to Marc Rieffel and Kamran Reihani for helpful comments
on the paper. I am especially grateful to the referee whose many suggestions
substantially improved the original version of this paper, and who, in particular,
drew my attention to the recent paper [13].

2. Preliminaries

LetG be a locally compact group. (For most of the paper,Gwill be a countably
infinite discrete group.) Then ([4], [35]) a function c : G → R is called
translation bounded if for every s ∈ G,

(2.1) sup
t∈G

|c(t)− c(st)| < ∞.

As in [13], we will usually require the translation bounded function c to be
proper, or equivalently (G assumed infinite) that |c(t)| → ∞ as t → ∞.

The most important example of a proper translation bounded function is
that of the word length function on G (e.g. [12, p. 89], [4]) where G is a
countably infinite discrete group that is finitely generated. To define this, let S
be a finite, symmetric set of generators for G. For t ∈ G, let c(t) be the word
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norm associated with S, i.e. c(t) is smallest integer n such that t can be written
as a product of n elements of S. Then (as is easy to check) c is indeed a proper
translation bounded function on G.

We now establish notation for reduced crossed products for a locally com-
pact group G. Let A be a unital C∗-algebra and (A,G, α) be a dynamical
system; so α : G → Aut A is a homomorphism which is pointwise norm con-
tinuous. Then (e.g. [31, 7.6, 7.7]) Cc(G,A) is a convolution normed algebra
under the L1-norm, and with product and involution given by:

f ∗ g(t) =
∫
f (s)αs(g(s

−1t)) ds f ∗(t) = �(t)−1αt(f (t
−1)∗)

where ds denotes a left Haar measure on G. (When G is discrete, then ds
is just counting measure.) The completion L1(G,A) of Cc(G,A) is then a
Banach algebra, and the full crossed product A �α G is defined to be the
enveloping C∗-algebra of L1(G,A). The (non-degenerate) representations of
A �α G are determined by the covariant representations (π, u) on a Hilbert
space K of (A,G, α), i.e. a pair for which π is a representation of A and
u a unitary representation of G on the same Hilbert space K and for which
π(αt (a)) = utπ(a)u

∗
t for all a ∈ A, t ∈ G. Such a covariant representation

determines the corresponding representation π × u of A�α G by defining

(2.2) π × u(F ) =
∫
π(F (s))us ds.

In the present day study of crossed products and coactions, it is, for cat-
egorical reasons, usually desirable to work in the full setting because of the
good universal properties. (See [11, A.9] for a discussion of the pros and cons
of using the full or reduced theories.) However, since we are concerned in this
paper with spectral triples and such a triple involves an explicit Hilbert space,
we will work with the reduced crossed product (as was the case in the early
work on the subject, e.g. [15], [24]).

The reduced crossed product of G and A will be denoted by A �α,r G. It
is a homomorphic image of the full crossed product and can be constructed as
follows. Let π : A → B(H ) be a faithful, non-degenerate representation of
A on a Hilbert space H . Then (e.g. [31, 7.7]) there are a representation π̃ ofA
on L2(G,H ) and a homomorphism λ̃ : G → U(B(L2(G,H ))) defined by:

π̃(a)ξ(t) = π(α−1
t (a))ξ(t), λ̃sξ(t) = ξ(s−1t)

for ξ ∈ L2(G,H ). Let λ be the left regular representation of G on L2(G):
λsf (t) = f (s−1t).) The pair (π̃, λ̃) is a covariant representation of (A,G, α)
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and hence determines a representation π̂ = π̃ × λ̃ of A�α G. From (2.2), for
F ∈ Cc(G,A), ξ ∈ L2(G,H ),

(2.3) π̂(F )ξ(t) =
∫
π̃(F (s))(λ̃sξ)(t) ds =

∫
π(αt−1(F (s)))ξ(s−1t) ds.

The image of this representation is the reduced crossed product A �α,r G,
realized spatially on L2(G,H ). As is customary, for notational simplicity, we
sometimes identify F ∈ Cc(G,A) with its image π̂(F ).

If G is abelian, then (e.g. [24, pp. 265–266], [11, A.3]) there is an action
of the dual group Ĝ on A�α,r G called the dual action. This action is defined
by: for γ ∈ Ĝ and F ∈ Cc(G,A), we take α̂γ F (s) = γ (s)F (s). The map
α̂γ extends by continuity to give an automorphism on A�α,r G, and (A�α,r

G, Ĝ, α̂) is a C∗-dynamical system. (Often, authors define the dual action
using the complex conjugate of γ (s), i.e. α̂F (s) = γ (s)F (s), and (cf. [39,
pp. 26, 194–195]) either choice is fine, depending on how we identify elements
in the dual group with actual functions on the group. However, in the study of
coactions, it is more convenient to use the α̂F (s) = γ (s)F (s) version for the
dual action.) In the following, for C∗-algebras A1, A2, A1 ⊗ A2 is the spatial
tensor product of A1 and A2.

In the non-abelian case, the dual group is no longer relevant for duality
purposes, and instead one replaces the dual action in the abelian case by the
dual coaction. The coaction theory that we will use is the classical reduced
theory, references for which are [28], [15], [25], [24], [20], [11]. The definition
of coaction which we now give is for the case whereG is discrete and the C∗-
algebraB unital, the general case being more involved (in particular, requiring
the use of multiplier algebras). So let B be a unital C∗-algebra, and idB be
the identity map on B and idG the identity map on C∗

r (G). We first define an
important special case of a coaction. Let δG : C∗

r (G) → C∗
r (G)⊗C∗

r (G) be the
homomorphism determined by: δG(λs) = λs ⊗λs . (This extends continuously
toC∗

r (G) since (e.g. [9, 13.11.3] or [11, pp. 131–132])λ⊗λ is weakly contained
in λ.) A (reduced) coaction for B (with respect to G) is a unital injective
homomorphism δ : B → B ⊗ C∗

r (G) that satisfies the coaction identity:

(δ ⊗ idG) ◦ δ = (idB ⊗δG) ◦ δ.
Of course, if (as will be in our case) B is a C∗-subalgebra of B(K ) (K a
Hilbert space) then B ⊗ C∗

r (G) ⊂ B(�2(G,K )) so that δ will also be an
injective homomorphism into B(�2(G,K )). (Coactions are also required to
be non-degenerate (e.g. [24, p. 256]) – this condition is always satisfied by
the dual coaction, the only coaction with which we will be concerned in this
paper, and so we will not define non-degeneracy here.)



284 alan l. t. paterson

Of particular importance is the dual coaction α̂ forA�α,rG, defined in (1.3).
It is easily checked that α̂ satisfies the coaction identity. IfG is abelian, then the
dual action and the dual coaction are effectively the same, the relation between
them being given by: (1 ⊗ 1 ⊗ σχ)(̂α(F )) = αχ(F ) where σχ is the state on
C∗
r (G)

∼= C0(Ĝ) associated with point evaluation at χ : σχ(λs) = χ(s). (We
will return to this more generally in Section 3, and for this, as we will see, it
is helpful to use slice maps (below).)

First, let Pr(G) be the state space of C∗
r (G). Since C∗

r (G) is unital, Pr(G)
is a weak∗ compact, convex subset of Br(G) = C∗

r (G)
∗. (A brief discus-

sion of Br(G) is given on [24, p. 258].) The canonical embedding of Br(G)
into B(G) = C∗(G)∗ (itself coming from the canonical homomorphism from
C∗(G) onto C∗

r (G)) identifies the Banach space Br(G) with a subspace of
B(G), the Fourier-Stieltjes algebra of G, and Pr(G) with a weak∗-compact
convex subset of the state space P(G) of C∗(G). Now regard B(G) as a space
of functions on G, where, for φ ∈ B(G), φ(s) = φ(λus ), where s → λus is
the canonical homomorphism from G into the unitary group of C∗(G). Then
Br(G) is a (normed closed) ideal in B(G) and Pr(G) is a subsemigroup of
P(G). As a function on G, φ ∈ Br(G) is given by: φ(s) = φ(λs), and since
δG(s) = λs⊗λs , the product onBr(G) can be defined by: φψ = (φ⊗ψ)◦δG.
In order to associate an action of Br(G) – and hence of Pr(G) – on B for a
coaction with respect toG, we use slice maps (e.g. [23, Chapter 8], [11, A.4]).
(As commented in [11, A.4], slicing in tensor products is one of the basic tools
in the theory of coactions.)

If A1, A2 are C∗-algebras realized on Hilbert spaces H1,H2, let A1 � A2

be the span of simple tensors a1 ⊗ a2 in B(H1 ⊗ H2) (ai ∈ Ai). The closure
of A1 � A2 is the spatial tensor product A1 ⊗ A2 of A1 and A2. If φ ∈ A∗

2,
then the slice map Sφ : A1 ⊗ A2 → A1 is a well-defined bounded linear map
of norm ‖φ‖ and is determined by its value on A1 � A2:

Sφ(a1 � a2) = a1φ(a2).

Next for c ∈ A1 ⊗ A2, the map φ → Sφ(c) is weak∗-norm continuous on
bounded subsets of A∗

2. To show this, let φn → φ weak∗ in a bounded subset
ofA∗

2. Trivially, Sφn(a⊗b) = φn(b)a → φ(b)a = φ(a⊗b) in norm for every
simple tensor a ⊗ b. Hence this result is also true for elements in the span C
of such tensors in A1 ⊗ A2. A “uniform convergence” type argument, using
the density of C in A1 ⊗ A2 and the norm boundedness of {Sφn}, then gives
the result.

Given a coaction δ : B → B ⊗ C∗
r (G), the (left) action β of Br(G) on B

is defined by: βφ(b) = φ.b where

(2.4) φ.b = Sφ(δ(b)).
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To check that this is an action, we have to show (among other things) that
φ.(ψ.b) = (φψ).b, i.e. Sφ(δ(Sψ(δ(b)))) = Sφψ(δ(b)). This amounts to show-
ing that for b ∈ B,

Sφ(δ(Sψ(δ(b)))) = Sφ⊗ψ((1 ⊗ δG)(δ(b))) = Sφ⊗ψ((δ ⊗ 1)(δ(b)))

(using the coaction identity). It is simple to prove this by approximating δ(b)
by a finite sum of simple tensors

∑
bi ⊗ si (bi ∈ B, si ∈ G) then similarly,

each δ(bi) by a finite sum
∑
bij ⊗ sij . The remaining verifications that B is a

left Banach Br(G)-module are easy.

3. Crossed product spectral triples

We saw above that every coaction on a C∗-algebra B gives rise to an action
φ → βφ of the semigroup P = Pr(G) on B. In the case which concerns us
in this paper, viz. where δ is the dual coaction for an action α of G on a C∗-
algebra A, the action β of Br(G) on B = A�α,r G ⊂ B(H ⊗ �2(G)) is easy
to calculate, and fits in well with the familiar dual action for the commutative
case.

Indeed (cf. [24, Theorem 4]) for F ∈ Cc(G,A),

(3.1) βφF = Sφ

(∫
π̃(F (s))̃λs ⊗ λs ds

)
=

∫
π̃(φ(s)F (s))̃λs ds

so that βφF is just pointwise multiplication by φ on Cc(G,A), exactly the
same as what happens in the abelian case with the characters of G. In that
case, C∗

r (G) = C0(Ĝ), so that Br(G) = M(Ĝ), and P is just the set of
probability measures on Ĝ. The extreme points of P are just the characters
of G, and restricting the action of P to these gives the dual action of Ĝ on
A �α,r G. Of course, when G is not abelian, the extreme points of P are the
pure states on C∗

r (G) which are usually not characters. There is no advantage
in restricting the action of P to the pure states, and by doing that, we also lose
the semigroup structure of P . For these reasons, for general G, we use the
action of P on A�α,r G.

Now let c be a proper translation bounded function on G, and Mc be the
multiplication operator by c on �2(G): so (Mcξ)(t) = c(t)ξ(t) defined for
the subspace D of elements ξ ∈ �2(G) for which

∑
t∈G c(t)2|ξ(t)|2 < ∞.

Then ([18, 2.7.1]) Mc is an unbounded self-adjoint operator on �2(G) with
domain D . Further, Cc(G) ⊂ �2(G) is a core for Mc. Also, since each c(t)
is real and |c(t)| → ∞, the operator (Mc − ı)−1 is compact, so that Mc

has compact resolvent. Let Z = (C∗
r (G), �

2(G),Mc). For each s ∈ G let
ms = supt∈G |c(t)−c(s−1t)| < ∞ (by (2.1)). We now slightly extend a simple
result of Rieffel ([35, p. 11]). Let B be the space of functions f ∈ �1(G)
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for which mf ∈ �1(G) where (mf )(s) = msf (s), and let πr be the left
regular representation of C∗

r (G). Then Cc(G) ⊂ B ↪→ C∗
r (G), so that B is a

dense subspace of C∗
r (G). Then for f ∈ B and ξ ∈ D , |[Mc, πr(f )]ξ(t)| =∣∣∑

s∈G[c(t) − c(s−1t)]f (s)ξ(s−1t)
∣∣ ≤ ∑

s∈G ms |f (s)||ξ(s−1t)| = (|mf | ∗
|ξ |)(t). So

(3.2) ‖[Mc, πr(f )]ξ‖2 ≤ ‖mf ‖1‖ξ‖2

from which it follows that f ∈ C 1(Z) and that Z is a spectral triple.
So we now have two spectral triples X = (A,H,D) and Z = (C∗

r (G),

�2(G),Mc). In particular, bothD,Mc are self-adjoint operators with compact
resolvent, and so by Proposition A.2 with K = H ⊗ �2(G), the operator D̂
on H ⊗ �2(G)⊗ C2, where

(3.3) D̂ =
[

0 D̂−
D̂+ 0

]

is self-adjoint with compact resolvent, where D̂∓ = D⊗1∓ ı⊗Mc. From the
proof of Proposition A.2, the domain of D̂∓ is V̂ and Dom D̂ = V̂ 2 = V̂ ⊕ V̂

where V̂ is given in (A.3).
In the next section, we will show that if X is pointwise bounded (for the

G-action), then the triple Y = (A �α,r G,H ⊗ �2(G) ⊗ C2, D̂) is in fact a
spectral triple, which we will call the dual spectral triple forX. Further, Y will
be shown to be contractive for the dual coaction.

4. The main result

Let X = (A,H,D) be a spectral triple (defined in the Introduction to this
paper). It is obvious from the definition of C 1(X) and the Leibniz formula
that C 1(X) is a subalgebra of A. (In fact ([2, (2.1), Lemma 1]) C 1(X) is a
Banach ∗-algebra invariant under the holomorphic functional calculus where
the Banach algebra norm is given by: ‖a‖1 = ‖a‖ + ‖[D, a]‖.)

LetG be a locally compact group and α as above be an action ofG onA (i.e.
a strongly continuous homomorphism α of G into the ∗-automorphism group
Aut(A) of A). In [2], the authors define three noncommutative geometric
properties with respect to the group action on A. The names given are those
used in the “commutative” case of a group action on a locally compact metric
space. Let C 1(G,X) be the set of a ∈ A such that αt(a) ∈ C 1(X) for all
t ∈ G and the map t → [D,αt(a)] is norm continuous. Note that taking
t = e in this definition gives that C 1(G,X) ⊂ C 1(X). Now define C 1

b (G,X)

to be the set of a’s in C 1(G,X) such that supt ‖[D,αt(a)]‖ < ∞. Note
that if a ∈ C 1

b (G,X) then so also is every αt(a). Then X is called quasi-
isometric if C 1(G,X) = C 1(X). The spectral tripleX is called equicontinuous
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if C 1
b (G,X) = C 1(X). Last, it is called isometric if it is quasi-isometric and for

all a ∈ C 1(X) and all t ∈ G, we have ‖[D,αt(a)]‖ = ‖[D, a]‖. (In particular,
X is equicontinuous if it is isometric.) The condition that we will be concerned
with in this paper is similar to that of equicontinuity but not quite so strong. We
will call X pointwise bounded if C 1

b (G,X) is dense in C 1(X) (and hence by
the spectral triple requirement, dense in A.) (Corresponding definitions apply
in the obvious way for spectral triples (A,H,D) on A, and in that context,
pointwise boundedness takes the form of metric equicontinuity discussed in
[13, Definition 2.5].)

We now turn to the corresponding definitions for a coaction δ : B →
B ⊗ C∗

r (G) of a unital C∗-algebra B instead of an action of G on A. So
let Y = (B,K ,D′) be a spectral triple. Then (2.4) associated with δ is the
semigroup action φ → βφ ofP = Pr(G) onB. Then, similar to the definitions
for an action, we define C 1(P, Y ) to be the set of b’s in C 1(Y ) such that for
all φ ∈ P , βφ(b) ∈ C 1(Y ) and the map φ → [D′, βφ(b)] is weak∗-norm
continuous. Next C 1

b (P, Y ) is defined to be the set of b’s in C 1(P, Y ) such that
supφ∈P ‖[D′, βφ(b)]‖ < ∞. As in the group action case, we say thatY is quasi-
isometric if C 1(P, Y ) = C 1(Y ). The spectral triple Y is called equicontinuous
if C 1

b (P, Y ) = C 1(Y ). We replace the isometric condition of the action case
by the contractive condition: Y is called contractive if

C 1
contr(P, Y ) = {b ∈ C 1(P, Y ) : ‖[D′, βφ(b)]‖ ≤ ‖[D′, b]‖ < ∞

for all φ ∈ Pr(G)}
is dense in B. (For justification of this definition (and as we will see later), for
abelian discrete G, the isometric condition for the dual action is equivalent to
the contractive condition for the dual coaction.) Last, the spectral triple Y is
called pointwise bounded if C 1

b (P, Y ) is dense in C 1(Y ) (and hence dense in
B). In this paper, we will only have occasion to use pointwise boundedness
for group actions and the contractive condition for coactions.

We will require the following proposition which (among other results) is
contained in [13, Theorem 2.7]. However, a complete proof of the proposi-
tion does require discussion of the domains of and cores for the unbounded
operators involved, and we will give the details for that here.

Proposition 4.1. Suppose that X is pointwise bounded and that c is a
proper, translation bounded function on an infinite discrete group G. Then
Y = (A�α,r G,H ⊗ �2(G)⊗ C2, D̂) is a spectral triple.

Proof. We only need to show that C 1(Y ) is dense in B, since Y satisfies
all the other requirements for a spectral triple. Since X is pointwise bounded,
C 1
b (G,X) is dense in A. Now let C be the space of functions F : G →
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C1
b (G,X) that vanish outside a finite subset ofG. It is obvious that C is dense

in �1(G,A) and hence its image, also denoted C , is dense in A �α,r G. It
is sufficient, then, to show that C ⊂ C 1(Y ). Let E = DomD � Cc(G) ⊂
H ⊗ �2(G). We will use Proposition A.1 to prove that C ⊂ C 1(Y ).

SinceG is discrete, we have that E = Cc(G,DomD) and that E is contained
in the domains of both D ⊗ 1 and 1 ⊗ Mc. Since DomD and Cc(G) are
respectively cores for D,Mc, it follows by Proposition A.2 that E 2 is a core
for D̂. Next we claim that for F ∈ C , we have

(4.1) π̂(F )E ⊂ E .

To see this, let ξ ∈ E . Then π̂(F )ξ(t) = ∫
π(αt−1(F (s))̃λsξ(t) ds. Now

for each s, λ̃sξ ∈ E and since each F(s) ∈ C 1
b (G,X), so also does every

αt−1(F (s)), in particular, it belongs to C 1(X) and so preserves the domain
of D. So for fixed s, the map Fs given by t → π(αt−1(F (s))̃λsξ(t) sends
G into DomD. Further, Fs has finite support since ξ has and so Fs ∈ E .
Since F vanishes off a finite subset of G, π̂(F )ξ is a finite sum of Fs’s and
so π̂(F ) maps E into E as asserted by (4.1) It follows that the commutators
[D ⊗ 1, F ], [1 ⊗ Mc, F ] are operators defined on E , and we now calculate
them. (Recall that, when convenient, we identify F with π̂(F ).)

First we claim that for ξ ∈ E , t ∈ G,

(4.2) ([D ⊗ 1, F ]ξ)(t) =
∫

[D,π(αt−1(F (s))]ξ(s−1t) ds.

For, recalling that π̂(F )ξ is a finite sum of Fs’s,

[D ⊗ 1, F ]ξ(t)

= ((D ⊗ 1)π̂(F )ξ)(t)− (π̂(F )(D ⊗ 1)ξ)(t)

= (D ⊗ 1)
∫
π(αt−1(F (s))̃λsξ(t) ds

−
∫
π(αt−1(F (s)))̃λs((D ⊗ 1)ξ)(t) ds

=
∫
D(π(αt−1(F (s))))ξ(s−1t) ds −

∫
π(αt−1(F (s)))D(ξ(s−1t)) ds

=
∫

[D,π(αt−1(F (s)))]ξ(s−1t) ds.

Next, we show that

(4.3) [1 ⊗Mc, F ]ξ(t) =
∫
π(αt−1(F (s)))[c(t)− c(s−1t)]ξ(s−1t) ds.
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For

[1 ⊗Mc, F ]ξ(t)

= c(t)

∫
π(αt−1(F (s)))̃λsξ(t) ds −

∫
π(αt−1(F (s)))̃λs(cξ)(t) ds

=
∫
π(αt−1(F (s)))[c(t)− c(s−1t)]ξ(s−1t) ds.

We now want to show that each of the commutators in (4.2), (4.3) is a
bounded map on E . For the first of these, suppose that a ∈ C 1

b (G,X), f ∈
Cc(G) and take F = a ⊗ f ∈ C . Then

(4.4) ‖[D ⊗ 1, F ]‖ ≤ (sup
t

‖[D,αt−1(a)]‖)‖f ‖1.

For let M = supt ‖[D,αt−1(a)]‖ and ξ, η ∈ E . Then M < ∞ since a ∈
C 1
b (G,X), and by (4.2),

|〈[D ⊗ 1, F ]ξ, η〉|

=
∣∣∣∣
∫∫

〈[D,π(αt−1(f (s)a))]ξ(s−1t), η(t)〉 ds dt
∣∣∣∣

≤
∫∫

|〈[D,π(αt−1(a))]ξ(s−1t), η(t)〉||f (s)| ds dt

≤
∫∫

|f (s)|M‖ξ(s−1t)‖‖η(t)‖ ds dt

≤ M

∫
|f (s)|

(∫
‖ξ(s−1t)‖2dt

)1/2(∫
‖η(t)‖2 dt

)1/2

ds

≤ M‖f ‖1‖ξ‖‖η‖
giving (4.4).

Since every F ∈ C is a linear combination of terms of the form a ⊗ f ,
it follows that for general F ∈ C , [D ⊗ 1, F ] is a bounded operator on E .
The boundedness of the second commutator on E follows similarly using (4.3)
since for each s, supt |c(t) − c(s−1t)| < ∞ by (2.1) and f (s) �= 0 for only
finitely many s. Precisely,

‖[1 ⊗Mc, a ⊗ f ]‖ ≤ ‖a‖‖f ‖1 sup{|c(t)− c(s−1t | : f (s) �= 0, t ∈ G}.
So for F ∈ C , the commutators

[D ⊗ 1 ± ı1 ⊗Mc, F ] = [D ⊗ 1, F ] ± ı[1 ⊗Mc, F ]
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are bounded operators on E . Let F ′ = F ⊕ F , a diagonal operator on �2(G,

H ) ⊗ C2. Then the commutator [D̂, F ′] has zero diagonal and off-diagonal
entries [D ⊗ 1 ± ı1 ⊗Mc, F ], and is as well a bounded operator on E ⊕ E .
From 4.1, F ′E 2 ⊂ E 2 and from the preceding, [D̂, F ′] is bounded on E 2. From
Proposition A.1, we conclude that F ′ ∈ C 1(Y ), so that Y is a spectral triple.

Note. The present writer is grateful to the referee for sketching an altern-
ative approach to the above proof which may well be simpler and extend to the
case of non-discrete groups. One considers functionsF ∈ C of the above proof
of the simple form a ⊗ v for some a ∈ Cb(G,X) and some v ∈ G: F(s) = 0
if s �= v and is a if s = v. Such functions span C , and as in the first paragraph
of the proof, for such an F , π̂(F ) = π̃(a)̃λv . One then has to show that both
commutator operators [D⊗1, π̃(a)̃λv], [1⊗Mc, π̃(a)̃λv] are bounded. Using
Leibniz’s rule and the fact that λ̃v = 1⊗λv commutes withD⊗1, this amounts
to checking that all three operators [D⊗1, π̃(a)], [1⊗Mc, π̃(a)], [1⊗Mc, λ̃v]
are bounded. The boundedness of the first is effectively the pointwise bounded-
ness condition, that of the third is effectively just the translation boundedness
of c, while the second commutator is 0. As pointed out by the referee, this sug-
gests a generalization of the proposition to the case where G is not assumed
discrete. For this, the spectral triple (Cc(G), �2(G),Mc) onC∗

r (G) for discrete
G is replaced by a spectral triple (Cc(G), L2(G),D2) on C∗

r (G) for an arbit-
rary locally compact group, with three boundedness conditions corresponding
to those above holding. Of course, we would need to use the non-unital notion
of spectral triple (e.g. [3, 17.11]) since C∗

r (G) is not unital ifG is not discrete,
so that in particular, D2 will not have compact resolvent. A particular import-
ant motivation for such spectral triples is the case where G = R and D2 is
multiplication by the identity function.

The next theorem is the main result of this paper.

Theorem 4.2. Let A be a unital C∗-algebra, X = (A,H,D) a spectral
triple, G a discrete countably infinite group with proper translation bounded
function c and (A,G, α) be a C∗-dynamical system. Suppose that X is point-
wise bounded forG. Then the dual spectral triple Y = (A�α,r G, �

2(G,H )⊗
C2, D̂) is contractive for the dual coaction δ : A�α,rG → (A�α,rG)⊗C∗

r (G).

Proof. By Proposition 4.1, Y is a spectral triple. It remains to show that
Y is contractive. It is sufficient to show that C = Cc(G,C 1

b (G,X)) (which
we used in the previous proof) is a subspace of C 1

contr (P , Y ). First, C is P -
invariant. This is trivial, since if F ∈ C , i.e. the map F : G → C 1

b (G,X)

has finite support, so also does βφF (since βφF (s) = φ(s)F (s)). It remains
to show that

‖[D,βφ(F )]‖ ≤ ‖[D,F ]‖
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and that the map φ → [D,βφ(F )] is weak∗-norm continuous.
To this end, define ([15], [24]) the unitary W on �2(G×G,H ) by:

Wζ(s, t) = ζ(s, s−1t).

ThenW ∗ζ(s, t) = ζ(s, st) and trivially,W is unitary. We shall also useW for
the case H = C. For t ∈ G, ζ ∈ �2(G ×G,H ), ζt ∈ �2(G,H ) is given by:
ζt (s) = ζ(s, t).

Let δ be the dual coaction on B. Then for F ∈ Cc(G,A),
W(F ⊗ 1)W ∗ζ(v, t) = ((F ⊗ 1)W ∗ζ )(v, v−1t) = F((W ∗ζ )v−1t )(v)

=
∫
π(αv−1(F (s)))(W ∗ζ )v−1t (s

−1v) ds

=
∫
π(αv−1(F (s)))(W ∗ζ )(s−1v, v−1t) ds

=
∫
π(αv−1(F (s)))ζ(s−1v, s−1t) ds = δ(F )ζ(v, t)

using the formula (2.3). It follows by continuity that for w ∈ A�α,r G,

(4.5) W(w ⊗ 1)W ∗ = δ(w).

So we can extend δ to a homomorphism, also denoted δ : B(�2(G,H )) →
B(�2(G×G,H )), by defining

(4.6) δ(T ) = W(T ⊗ 1)W ∗.

We want to extend it to certain unbounded operators associated with D̂, spe-
cifically, the unbounded operatorsD⊗ 1 and 1 ⊗Mc on B(�2(G,H )). To this
end, let Z = E �Cc(G). Then Z is a dense subspace of �2(G×G,H ) that is
invariant under bothW,W ∗. Also, Z is invariant for π̂(F )⊗ 1,D⊗ 1 ⊗ 1 and
1 ⊗Mc ⊗ 1 because of the corresponding properties for π̂(F ),D⊗ 1, 1 ⊗Mc

for E (in the proof of Proposition 4.1).
We now claim that on Z and conjugating with W as in (4.5) to define δ on

D ⊗ 1, 1 ⊗Mc,

(4.7) δ(D ⊗ 1) = D ⊗ 1 ⊗ 1, δ(1 ⊗Mc) = 1 ⊗Mc ⊗ 1.

These follow since, for a simple tensor ζ = h ⊗ ξ , where h ∈ DomD and
ξ ∈ Cc(G×G),

(W(D ⊗ 1 ⊗ 1)W ∗ζ )(s, t) = ((D ⊗ 1 ⊗ 1)W ∗ζ )(s, s−1t)

= D(h)(W ∗ξ)(s, s−1t)

= ((D ⊗ 1 ⊗ 1)ζ )(s, t),
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and

(W(1 ⊗Mc ⊗ 1)W ∗ζ )(s, t) = ((1 ⊗Mc ⊗ 1)W ∗ζ )(s, s−1t)

= hc(s)(W ∗ξ)(s, s−1t)

= ((1 ⊗Mc ⊗ 1)ζ )(s, t).

We will use the notation D̂± forD⊗ 1 ± ı1 ⊗Mc. To prove the contractive
property for Y , we recall that for F ∈ C , the operator matrices [D̂, (βφ ⊕
βφ)(F ⊕ F)] are off-diagonal, and considering their entries, it is sufficient to
prove that

(4.8) ‖[D̂±, βφF ]‖ ≤ ‖[D̂±, F ]‖.
and establish the continuity of the maps φ → [D̂±, βφF ].

From (4.7) and (4.6),

δ([D̂±, F ]) = [δ(D ⊗ 1)± ıδ(1 ⊗Mc), δ(F )]

=
[
(D ⊗ 1 ± ı1 ⊗Mc)⊗ 1,

∫
π̃(F (s))λ̃s ⊗ λs ds

]

=
∫

[D̂±, π̃(F (s))λ̃s] ⊗ λs ds.

Of particular significance, this gives that δ([D̂±, F ]) belongs to B(H ⊗
�2(G))⊗ C∗

r (G)) and we can then use slice maps. Precisely, if φ ∈ P , then

Sφ(δ([D̂±, F ])) = Sφ(

∫
[D̂±, π̃(F (s))λ̃s] ⊗ λs ds)

=
∫

[D̂±, π̃(F (s))λ̃s]φ(s) ds

=
∫

[D̂±, π̃(φ(s)F (s))λ̃s] ds = [D̂±, βφF ].

The continuity of the maps φ → [D̂±, βφF ] now follows from the corres-
ponding continuity property for slice maps. (4.8) also follows using ‖Sφ‖ ≤
‖φ‖ = 1 and the fact that δ is a homomorphism (and so norm decreasing).

Note on the abelian case. We now discuss how the theorem above sim-
plifies whenG is abelian. The case whereG = Z was examined in detail in [2,
Theorem 2], which relates equicontinuity for X to the isometric condition for
Y . Suppose that X is pointwise bounded. Then we know that Y is contractive.
Let χ ∈ Ĝ ⊂ P . Then for F ∈ C ,

‖[D̂±, F ]‖ = ‖[D̂±, βχ−1βχF ]‖ ≤ ‖[D̂±, βχF ]‖ ≤ ‖[D̂±, F ]‖
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so that Y is isometric, at least with respect to F ∈ C . However, because
G is abelian, there is a nice formula for π̂(βχF ). As is easily proved (and
well-known)

π̂(βχF ) = (1 ⊗Mχ)π̂(F )(1 ⊗Mχ)
−1

where Mχ is the unitary on �2(G) given by: f → χf (pointwise multiplica-
tion). It is left to the reader to check that for all b ∈ C 1(Y ), [D̂±, βχ(b)] =
(1 ⊗ Mχ)[D̂±, b](1 ⊗ Mχ)

−1 and that we get the isometry condition for all
b ∈ C 1(Y ). This generalizes part of [2, Theorem 2], extending from Z to
general abelian G and using the weaker pointwise boundedness condition in
place of equicontinuity. Incidentally, going in the other direction, the isometry
condition for Ĝ gives the contractive property for P . Indeed, contractivity for
φ ∈ co Ĝ ⊂ P follows trivially, and by weak∗-norm continuity, the contractive

inequality follows for all φ ∈ P (= co Ĝ).
Lastly, from the above, in the abelian case, a stronger version of Theorem 4.2

holds, in which the contractive condition holds for all b ∈ C 1(Y ) and not just
for b ∈ C as in Theorem 4.2. I do not know if this stronger version also holds
for the non-abelian case.

Appendix A. Unbounded operators with compact resolvent

We briefly recall some basic information about unbounded operators on a
Hilbert space (e.g. [18, 2.7, 5.6], [19, p. 836f.], [21], [37, Chapter 13], [10].) Let
D be an unbounded linear operator on a Hilbert space H with domain DomD.
The operator D is called closed if its graph G(D) is closed in H × H . It is
called preclosed if the closure of G(D) is itself the graph of a linear operatorD.
In particular, in that case, D is a closed operator, the minimal closed operator
that restricts to D. If D is closed, a subspace E of DomD is called a core for
D if the graph ofD restricted to E is dense in G(D). (In particular, E is dense
in DomD.) We will require the following simple and (no doubt) well known
result; for lack of a reference we give the proof.

Proposition A.1. Let D be a closed operator on the Hilbert space H .
Let E be a core for D and DE be the restriction of D to E . Suppose that
T ∈ B(H ) is such that T E ⊂ E and the commutator operator [DE , T ] on E

is bounded. Let [D, T ] be the continuous extension of [DE , T ] to DomD. Then
T (DomD) ⊂ DomD and the commutator [D, T ] on DomD is bounded.

Proof. Let ξ ∈ DomD. Since E is a core for D, there exists a sequence
{ξn} in E such that ξn → ξ,D(ξn) → Dξ . Then T ξn ∈ E , T ξn → T ξ and
D(T ξn) = TDξn + [D, T ]ξn → TDξ + [D, T ]ξ . So T ξ ∈ DomD.
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Now let D have dense domain. Its adjoint D∗ has as its domain the set
of η ∈ H for which there is a ζ (which will be unique) such that for all
ξ ∈ DomD, 〈Dξ, η〉 = 〈ξ, ζ 〉, and for such an η, D∗η is defined to be ζ .
The unbounded operator D∗ is always closed, and D is called self-adjoint if
D = D∗. In particular, such a D is closed. If D is self-adjoint, then (e.g. [37,
Theorem 13.13], [18, Remark 2.7.11]) (D ± ı1) is a one-to-one map from
DomD onto H, and its inverse (D ± ıI )−1 is bounded.

We will have to consider tensor products of unbounded operators. Let
D1, . . . , Dn be densely defined closed operators on Hilbert spaces H1, . . . ,Hn.
Then the tensor product D1 � · · · �Dn is defined in the obvious way on the
algebraic tensor product DomD1 �· · ·�DomDn. This operator is preclosed,
and its closure D is denoted by D1 ⊗ · · · ⊗Dn. The algebraic tensor product
of cores for the Di is a core for D ([19, Lemma 11.2.29]). If the Di’s are
self-adjoint then ([19, Proposition 11.2.33])D1 ⊗· · ·⊗Dn is also self-adjoint.

We next describe some of the basic properties of a self-adjoint unbounded
operatorD on a Hilbert space H with compact resolvent ([21]). Having a com-
pact resolvent means that for some ζ ∈ C, the map (D−ζ ) : Dom(D) → H is
one to one and onto, and the resolventR(ζ ) = (D−ζ )−1 : H → DomD ⊂ H

is a compact linear operator. Then ([21, p. 187]) since D is closed (as it is
self-adjoint), the compact resolvent property ensures the remarkable facts that
the entire spectrum of D consists of isolated eigenvalues {λk} with finite-
dimensional eigenspaces Ek , and for every complex number λ which is not an
eigenvalue of D, R(λ) is compact. Further ([21, p. 272]) all the λk’s are real,
and ([21, p. 277]) for ζ not in the spectrum of D, the eigenvalues of R(ζ ) are
of the form (λk − ζ )−1 and have the same set of mutually orthogonal eigen-
spaces Ek and eigenprojections Pk as D. Further, R(ζ ) = ∑

k(λk − ζ )−1Pk
in the norm topology. In particular, since by compactness, (λk − ζ )−1 → 0,
we have |λk| → ∞. By the spectral theorem for self-adjoint compact oper-
ators,

∑
k Pk = 1 in the strong operator topology. From these facts we can

determine DomD. In fact, DomD is the subspace of all vectors ξ of the form∑
k ξk where ξk = Pkξ ∈ Ek and

∑
k ‖ξk‖2 < ∞,

∑
k λ

2
k‖ξk‖2 < ∞, and for

such an ξ , D(
∑

k ξk) = ∑
k λkξk . So we can write D = ∑

k λkPk on DomD,
convergence being in the strong operator topology. Conversely given real λk
with |λk| → ∞ and a family Ek of mutually orthogonal finite dimensional
subspaces of H with associated orthogonal projections Pk and

∑
k Pk = 1,

then D = ∑
k λkPk defines a self-adjoint operator on H with compact re-

solvent. To show this, it is obvious that D is densely defined, and it is simple
to check from the definition that if η ∈ DomD∗, then η ∈ DomD and D is
self-adjoint. Using the facts that |λk| → ∞ and that the Pk form a complete
orthonormal set of projections, one shows that (D− ı)−1 is a compact normal
operator. So D is self-adjoint with compact resolvent as claimed.
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The following proposition gives the information that we will need about the
operator D̂ used in this paper. (We note, by the way, that in the general Hil-
bert C∗-module context, Kaad and Lesch ([16], [17]) give general conditions
that ensure self-adjointness and regularity for a class of two-by-two matrix
operators that include D̂ below.)

Proposition A.2. Let D1,D2 be self-adjoint unbounded operators with
compact resolvents on the Hilbert spaces H1,H2, K = H1 ⊗ H2 and (as
above)D1 ⊗1, 1⊗D2, be the closures of the operatorsD1 �1, 1�D2. Define
operators D′, D̂ on K ⊗ C2 = K 2 by:

(A.1) D′ =
[ 0 D1 � 1 − ı1 �D2

D1 � 1 + ı1 �D2 0

]

and

(A.2) D̂ =
[ 0 D1 ⊗ 1 − ı1 ⊗D2

D1 ⊗ 1 + ı1 ⊗D2 0

]
.

Then D̂ is a self-adjoint unbounded operator on K 2 and is the closure of D′.
Further, D̂ has compact resolvent, and if E1, E2 are cores forD1,D2, then E 2,
where E = E1 � E2, is a core for D̂.

Proof. By the preceding, the operatorsD1 ⊗ 1 and 1 ⊗D2 are self-adjoint
and V = DomD1 � DomD2 is a core for both. Since

V = (DomD1 � H2) ∩ (H1 � DomD2) = Dom(D1 � 1) ∩ Dom(1 �D2),

it follows that DomD′ = V 2 = V ⊕ V . We now adapt the approach of [2,
p. 16].

In the above notation, we can writeD1 = ∑
k λkPk ,D2 = ∑

r μrQr , where
the eigenspaces forD1,D2 associated with λk, μr areEk, Fr . Of course, these
are also the ranges of the projections Pk,Qr . Let Ek,r = Ek ⊗ Fr . Then E2

k,r

is an eigenspace for the operator D′, and the restriction D′
k,r of D′ to E2

k,r is

the 2 × 2 matrix
(

0 (λk−ıμr )I
(λk+ıμr )I 0

)
where I is the identity operator on Ek,r .

An elementary calculation shows that the eigenvalues ofD′
k,r are ±

√
λ2
k + μ2

r .
Let λ be any one of these eigenvalues, and suppose that λ �= 0. Then the
eigenspace for λ is

Eλk,r = {(ξ, η)′ ∈ E2
k,r : λξ = (λk − ıμr)η}.

Since D′
k,r is self-adjoint, E2

k,r = Eλk,r ⊕ E−λ
k,r (orthogonal direct sum). Let

Pλ,k,r : K 2 → Eλk,r be the orthogonal projection. So (Pk ⊗ Qr) ⊗ 1 =
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Pλ,k,r ⊕ P−λ,k,r . If λ = 0, then D′
k,r = 0, and trivially Eλk,r = E2

k,r and
(Pk⊗Qr)⊗1 = Pλ,k,r . Then {Pλ,k,r} (λ2 = λ2

k+μ2
r ) is a complete orthonormal

family of projections on K 2 = ⊕λ,k,r (E
λ
k,r )

2 (since {(Pk ⊗Qr) ⊗ 1} is) and
|λ| → ∞ as k2 + r2 → ∞.

Let L be the self-adjoint operator with compact resolvent associated above
with the λ’s and Pλ,k,r : so DomL is the space of [ξ, η]′ = {[ξλ,k,r , ηλ,k,r ]′} in
K 2 for which

∑
λ[ξλ,k,r , ηλ,k,r ]′ ∈ K 2, and for such an [ξ, η]′, L[ξ, η]′ =∑

λ[ξλ,k,r , ηλ,k,r ]′. Let W be the space of ξ ∈ DomL for which ξλ,k,r = 0
except for a finite number of triples (λ, k, r). (So W is just the linear span of
∪k,rE2

k,r in K 2.) It is left to the reader to check that L,D′, D̂ coincide on W ,
and thatW is dense in K 2, and is a core for L. Further, the closure ofD′ is L.
It remains to show that D̂ = L (so that, in particular, D̂ is self-adjoint and has
compact resolvent) and to prove the core assertion of the proposition.

To this end, we first determine the domain of D̂. First, a core for D1 � 1
is the space of all linear combinations of elements of the form ξk,r ∈ Ek,r
over k, r . Since by definition, D1 ⊗ 1 is the closure of D1 � 1, its domain is
the space of elements ξ ∈ K such that

∑
λkξk,r ∈ K and (D1 ⊗ 1)(ξ) =∑

λkξk,r . Similarly, the domain of 1 ⊗ D2 is the space of elements η ∈ K

such that
∑
μrηk,r ∈ K and (1 ⊗D2)(η) = ∑

μrηk,r . Hence the domain of
D1 ⊗ 1 ∓ ı1 ⊗D2 is the space

(A.3) V̂ =
{
ξ ∈ K : both

∑
λkξk,r ,

∑
μrξk,r ∈ K

}
.

Obviously, if ξ ∈ K , then ξ ∈ V̂ if and only if
∑
(λk ∓ ıμr)ξk,r ∈ K , since

that amounts to saying that
∑
(λ2
k+μ2

r )‖ξk,r‖2 < ∞. The domain of D̂ is then
V̂ 2, and this is the same as DomL. Indeed,

∑
k,r (λ

2
k + μ2

r )‖[ξk,r , ηk,r ]′‖2 =∑
k,r (λ

2
k +μ2

r )(‖ξk,r‖2 + ‖ηk,r‖2) = ∑
λ2‖[ξλ,k,r , ηλ,k,r ]′‖2. Since both D̂, L

coincide on every E2
k,r , they are the same on their common domain V̂ 2.

Now let Ei be cores for Di and E = E1 � E2. Then trivially, E 2 ⊂ Dom D̂.
Since V̂ 2 is the domain of D̂, we just have to show that each pair (ζ,D′ζ ),
where ζ = [ξk ⊗ ηr, ξ

′
k ⊗ η′

r ]
′ with ξk, ξ ′

k ∈ Ek, ηr , η′
r ∈ Fr , is in the closure

of the graph of D̂ restricted to E 2. To prove this, we need only show that
(ξk⊗ηr,D1ξk⊗ηr∓ıξk⊗D2ηr) is in the closure of the graph ofD1�1∓ı1�D2

restricted to E . This follows since there are sequences {vn}, {wn} in E1, E2 such
that (vn,D1vn) → (ξk,D1ξk) = (ξk, λkξk) and (wn,D2wn) → (ηr ,D2ηr) =
(ηr , μrηr).
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