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A SHORT RETURN TO SIMPLE AH-ALGEBRAS
WITH REAL RANK ZERO

HUAXIN LIN

Abstract
Let A be a unital simple AH-algebra with stable rank one and real rank zero such that kx = 0 for
all x ∈ ker ρA, the subgroup of infinitesmal elements in K0(A), and for the same integer k ≥ 1.
We show that A has tracial rank zero and is isomorphic to a unital simple AH-algebra with no
dimension growth.

1. Introduction

One of the most successful aspects of operator algebras is the classification of
simple separable amenable C∗-algebras, or otherwise known as the Elliott pro-
gram. The program started with the classification of unital simple AT-algebras
with real rank zero up to isomorphisms by their ordered K-theory (with the
scale) by G. A. Elliott [4] which was preceded by Elliott’s classification of
AF-algebras ([3]) some fifteen years earlier. It was followed immediately by
a number of earlier results. Then, Elliott and Gong ([5]) made a classification
of AH-algebras with slow dimension growth and real rank zero by their scaled
ordered K-theory. While the earlier results concentrated in the cases of real
rank zero, attention later shifted to the case that C∗-algebras are not assumed
to have real rank zero. One of the highlights of the program is the classific-
ation (up to isomorphisms) of unital simple AH-algebras with no dimension
growth (see [6]). These are C∗-algebras whose real rank may not be zero (in
fact these C∗-algebras have real rank one). However, the Elliott invariant this
time involves not only the ordered K-groups but also tracial information. Just
as one thought a complete classification for simple unital AH-algebras was
possible, J. Villadsen provided examples of unital simple AH-algebras whose
stable rank may be greater than one and examples of unital simpleAH-algebras
with stable rank one whose K0-group may have perforation ([10] and [11]). It
should be noted that unital simple AH-algebras with slow dimension growth
have stable rank one and have weakly unperforated K0-groups. On the other
hand, it was proved in [7] that a unital simple AH-algebra with stable rank one,
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real rank zero and with weakly unperforated K0-groups has tracial rank zero
and therefore it is isomorphic to a unital simple AH-algebra with no dimension
growth and with real rank zero. At that point, one might think the next goal
would be the classification of unital simple AH-algebras of stable rank one
and with weakly unperforated K0-groups by their orderd K-groups and tracial
information. However,A. Toms provided ([9]) an example of unital simpleAH-
algebra with stable rank one and with weakly unperforated K0-group which
is not isomorphic to a unital simple AH-algebra with slow dimension growth
and with the same Elliott invariant.

The real rank of these AH-algebras are greater than zero. The purpose of
this note is to show that, when a unital simple AH-algebra has real rank zero,
then it is more likely classifiable by its Elliott invariant. Toms’s first example
is an inductive limit of homogeneous C∗-algebras whose spectra are contract-
ive finite CW complexes. As we will show in this short note, this example
cannot be made so that it has real rank zero. More precisely, we observe that
a unital simple AH-algebra with real rank zero which is an inductive limit of
homogeneous C∗-algebras whose spectra are contractive finite CW complexes
is in fact a unital simple AH-algebra with tracial rank zero. In particular, it is
classifable and isomorphic to a unital simple AH-algebra with no dimension
growth. Using our earlier result in [7], we further show that if A is a unital
simple AH-algebra with stable rank one and real rank zero so that the sub-
group of infinitesmal elements of K0(A) is a finite group (or zero), then A

is isomorphic to a unital simple AH-algebra with no dimension growth and
therefore it is classifiable by the Elliott invariant. We actually prove a slightly
more general result.

Acknowledgements. This work was done in the summer 2011 when the
author was in East China Normal University. It was supported by East China
Normal University and the Changjiang Lectureship there. This work was also
supported by a grant from NSF.

2. The cases without torsion

Let A be a unital stably finite C∗-algebra. Denote by T (A) the tracial state space
of A. If τ ∈ T (A), we will also use τ for the trace τ ⊗ Tr on Mm(A), where
Tr is the standard trace on Mm, where m ≥ 1 is an integer. Let ρA : K0(A) →
Aff(T (A)) be the positive homomorphism defined by ρA([p])(τ ) = τ(p) for
all projections in Mm(A), m = 1, 2, . . ..

Lemma 2.1. Let A = limn→∞(An, φn) be a unital C∗-algebra, where An

is a unital C∗-subalgebra and φn : An → An+1 is a unital homomorphism.
Suppose that p, q ∈ A are two non-zero projections and there is an integer
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K ≥ 1 such that

Kτ(q) < τ(p) for all τ ∈ T (A).

Then, there exist an integer n(1) ≥ 1, two projections p′, q ′ ∈ An(1) and an
integer m0 ≥ n(1) such that φn(1),∞(p′) is unitarily equivalent to p, φn(1),∞(q ′)
is unitarily equivalent to q and

Kt(φn(1),m(q ′)) < t(φn(1),m(p′))

for all tracial states t of Am with m ≥ m0.

Proof. Put Bn = φn,∞(An), n = 1, 2, . . .. Without loss of generality, we
may assume that there are p′, q ′ ∈ An(1) for some n(1) such that

φn(1),∞(p′) = p and φn(1),∞(q ′) = q.

Suppose that, for some increasing subsequence {n(k)},
(1) Ktk(φn(1),n(k)(q

′)) ≥ tk(φ(n(1),n(k)(p
′))

for some tracial states tk of An(k). By a result of Choi and Effros ([2]), there
exists a contractive completely positive linear map Lk : Bk → Ak such that
φk,∞ ◦ Lk = idBk

, k = 1, 2, . . .. Note that, if m ≥ n(1),

(2) lim
k→∞ ‖φm,n(k)[Lm(φn(1),∞(b)) − φn(1),m(b)]‖ = 0

for all b ∈ An(1). In particular, it holds for m = n(2).
Define s ′

k : Bn(k) → C by s ′
k(b) = tk ◦ Ln(k)(b) for all b ∈ Bn(k), k =

1, 2, . . .. Then s ′
k is a state on Bn(k). Let sk be a state of A which extends s ′

k . Let
τ be a weak limit of {tk}. It follows from (2) that τ is a tracial state on Bn(1).
One would have, by (1),

Kτ(q) ≥ τ(p).

A contradiction.

Definition 2.2. Recall that a unital C∗-algebra A is said to be AH-algebra
if A = limn→∞(An, φn), where An = PnMr(n)(C(Xn))Pn, Xn is a finite CW
complex, r(n) ≥ 1 is an integer and Pn ∈ Mr(n)(C(Xn)) is a projection. We
also assume that φn : An → An+1 is unital. In what follows, we call Xn the
spectrum of An.

Theorem 2.3. Let A = limn→∞(An, φn) be a unital simple AH-algebra
such that the spectrum of An is a finite disjoint union of contractive spaces
and φn : An → An+1 is a unital homomorphism. Suppose also that A has real
rank zero. Then A has tracial rank zero.
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Proof. Let p, q ∈ A be two projections such that

τ(q) < τ(p)

for all τ ∈ T (A). We will show that q <∼ p.
We may assume that An = Mr(n)(C(Xn)), where Xn is a disjoint union of

contractive spaces. We may also assume that there are two projections p′, q ′ ∈
An for some n ≥ 1 such that φn,∞(p′) = p and φn,∞(q ′) = q. Moreover, by
2.1, we may assume that

t (q ′) < t(p′)

for all tracial states t of An. Since Xn is a disjoint union of contractive spaces,
all projections are trivial. Therefore in An, q ′ <∼ p′. It follows that q <∼ p. This
implies that K0(A) is weakly unperforated.

We will show that projections in A have the cancellation property. Suppose
that p, q ∈ A and p and q are equivalent. As above, there are p′, q ′ ∈ An

such that φn,∞(p′) = p and φn,∞(q ′) = q. Moreover, we may assume that p′
and q ′ are equivalent. So in An, 1 − p′ and 1 − q ′ have the same rank at each
point. Note that, since Xn is a disjoint union of contractive spaces, 1 − p′ and
1 − q ′ are trivial projections. It follows that 1 − p′ and 1 − q ′ are equivalent.
It follows that 1 − p and 1 − q are equivalent in A.

Since A is also assumed to have real rank zero, by (the proof of) part (3) of
III.2.4 of [1], A has stable rank one. It follows from [7] that A has tracial rank
zero.

Corollary 2.4. Let A = limn→∞(An, φn) be a unital simple AH-algebra
such that ker ρAn

= {0}. Suppose that A has real rank zero and stable rank one.
Then A has tracial rank zero and is isomorphic to a unital simple AH-algebra
with no dimension growth.

Proof. The proof is the same as that of 2.3. Note that since ker ρAn
= {0},

two projections p, q in Mm(An) with the same rank must give the same element
in K0(An).

Lemma 2.5. Let A be a unital AH-algebra and x ∈ ρA(K0(A)) such that
x > 0. Then, there is a projection e ∈ Mm(A) for some integer m ≥ 1 such
that ρA([e]) = x.

Proof. Note that Mm(A) is also a unital AH-algebra for any integer m ≥ 1.
We may assume that there are two projections p, q ∈ A such that

ρ([p] − [q]) = x.

We write A = limn→∞(An, φn), where An = PnMr(n)(C(Xn))Pn, Xn is a
finite CW complex, and r(n) ≥ 1 is an integer and Pn ∈ Mr(n)(C(Xn)) is
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a projection. We may assume that there is an integer n ≥ 1 and projections
p′, q ′ ∈ An such that φn,∞(p′) = p and φn,∞(q ′) = q. By 2.1, we may also
assume that

(3) t (q ′) < t(p′)

for all tracial states t of An. There is an integer K(n) ≥ 1 and there are trivial
projections p0, q0 ∈ MK(n)(An) such that p0 has the same rank at each point
of X as that of p′, and q0 has the same rank at each point of X as that of q ′.
Therefore

(4) t (p0) = t (p′) and t (q0) = t (q ′)

for all tracial states t of An. It follows that

(5) τ (φn,∞(p0)) = τ(p) and τ(φn,∞(q0)) = τ(q)

for all τ ∈ T (A). On the other hand, by (3) and (4), since both p0 and q0 are
trivial, there is a partial isometry v0 ∈ An such that

v∗
0v0 = q0 and v0v

∗
0 ≤ p0.

Let v = φn,∞(v0) and let e = p0 − vv∗. Then e ∈ Mm(A) is a non-zero
projection and, by (5),

ρA([e]) = x.

From the above and combining the result in [7], one has the following
corollary:

Corollary 2.6. Let A be a unital simple AH-algebra with real rank zero
and stable rank one. Suppose that ker ρA = {0}. Then A has tracial rank zero.

Note that, 2.6 is not a generalization of 2.4. In fact a simple AF-algebra
may have non-zero infinitesmal elements in its K0-group.

We will prove a much more general result that will allow non-zero ker ρA.

3. The case that ρA(K0(A)) is torsion

Lemma 3.1. Let A be a unital simple AH-algebra with stable rank one and
with real rank zero. Let K ≥ 1 be an integer. Suppose that for any x ∈
ker ρA, Kx = 0. Suppose that p, q ∈ Mm(A) are two projections such that
(K + 2)τ (q) < τ(p) for all τ ∈ T (A). Then

[q] ≤ [p].
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Proof. Since A has real rank zero, by a result of S. Zhang ([12], see also 9.4
of [8]), there exist mutually orthogonal projections e1, e2, . . . , eK+1 ∈ pAp

such that ei is equivalent to e1 for i = 1, 2, . . . , K , eK+1 <∼ e1 and p =∑K+1
i=1 ei . Write A = limn→∞(An, φn), where An = PnMr(n)(C(X))Pn, X

is a finite CW complex, r(n) ≥ 1 is an integer and Pn ∈ Mr(n)(C(X)) is a
projection. Without loss of generality, we may assume that there are projections

p′, q ′, e′
1, e

′
2, . . . , e

′
K+1 ∈ Mm(An)

such that φn,∞(p′) = p, φn,∞(q ′) = q, φn,∞(e′
i ) = ei , i = 1, 2, . . . , K + 1.

We may also assume that e′
i ≤ p′, i = 1, 2, . . . , K + 1, e′

1, e
′
2, . . . , e

′
K+1

are mutually orthogonal, e′
i is equivalent to e′

1 in Mm(An), i = 1, 2, . . . , K ,
e′
K+1

<∼ e′
1 in Mm(An) and

∑K+1
i=1 e′

i = p′. Moreover, by 2.1, we may also
assume that

(K + 2)t (q ′) < t(p′) ≤ (K + 1)t (e′
1)

for all tracial states t of An. Note also, we have

(6) (K + 1)t (q ′) < Kt(e′
1)

for all tracial states t of An.
There are trivial projections q ′′, e′′

1 ∈ MR(An) for some R ≥ 1 such that

t (q ′′) = t (q ′) and t (e′′
1) = t (e′

1)

for all tracial states t ∈ T (An). Let q̄, ē ∈ MR(A) such that φn,∞(q ′′) = q̄ and
φn,∞(e′′

1) = ē. It follows that

τ(q̄) = τ(q) and τ(ē) = τ(e1)

for all τ ∈ T (A). Therefore

[q̄] − [q] and [ē] − [e1] are in ker ρA.

It follows from the assumption that

(7) K[q] = K[q̄] and K[ē] = K[e1].

On the other hand, by (6), since both q ′′ and e′′
1 are trivial,

(8) q ′′ <∼ e′′
1 .

By (7) and (8),

(9) K[q] = K[q̄] ≤ K[e1] ≤ p.
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Since A also has stable rank one,

(10) q <∼ e1 + e2 + · · · + eK ≤ p.

The following theorem was proved in [7].

Theorem 3.2. Let A be a unital simple AH-algebra with stable rank one and
real rank zero. Then, for any ε > 0, σ > 0 and any finite subset F ⊂ A, there
exists a non-zero projection p ∈ A and a finite dimensional C∗-subalgebra
B ⊂ A with 1B = p such that

‖px − xp‖ < ε for all x ∈ F ,(11)

dist(pxp, B) < ε for all x ∈ F , and(12)

τ (1 − p) < σ for all τ ∈ T (A).(13)

Corollary 3.3. Let A be a unital simple AH-algebra with stable rank one
and real rank zero. Let e1, e2 ∈ A be two projections such that

(14) τ (e1) > τ(e2) for all τ ∈ T (A).

Then, for any ε > 0, σ > 0 and any finite subset F ⊂ A, there exists a
non-zero projection p ∈ A and a finite dimensional C∗-subalgebra B ⊂ A

with 1B = p such that

‖px − xp‖ < ε for all x ∈ F ,(15)

dist(pxp, B) < ε for all x ∈ F , and(16)

τ (1 − p) < σ for all τ ∈ T (A).(17)

Moreover, there are projections ej,0 ∈ (1−p)A(1−p) and ej,1 ∈ B, j = 1, 2,
such that

‖ej,0 + ej,1 − ej‖ < min{1/2, ε}, j = 1, 2,(18)

t (e1,1) > t(e2,1) for all tracial states of B, and(19)

τ (e1,0) > τ(e2,0) for all τ ∈ T (A).(20)

Proof. Note that A is separable. Let ε > 0, σ > 0 and let F ⊂ A be a
finite subset. Let {x1, x2, . . . , } be a dense subset of A. Let Fn = F ∪{e1, e2}∪
{x1, x2, . . . , xn} and let εn = ε/2n and σn = σ/2n, n = 1, 2, . . .. By 3.2, there
exists a sequence of projections pn ∈ A and finite dimensional C∗-subalgebras
Bn ⊂ A with 1Bn

= pn such that

‖pnx − xpn‖ < ε/2n for all x ∈ Fn,(21)

dist(pnxpn, Bn) < ε/2n for all x ∈ Fn and τ(1 − pn) < σ/2n,(22)
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n = 1, 2, . . .. For all sufficiently large n, there are projections e(j,1,n) ∈ Bn

and e(j,0,n) ∈ (1 − pn)A(1 − pn) such that

(23) ‖e(j,1,n) + e(j,0,n) − ej‖ < ε/2n−2,

j = 1, 2 and n = 1, 2, . . .. We also have

(24) lim
n→∞ ‖pnejpn − e(j,1,n)‖ = 0, j = 1, 2.

Suppose that, for a subsequence {nk},
(25) tk(e

(2,1,nk)) ≤ tk(e
(1,1,nk))

for some tracial state tk of Bnk
. Let s ′

k : pAp → C be a state which extends tk .
Define sk : A → C by sk(a) = s ′

k(pap) for all a ∈ A. Then sk is a state on A.
Let t be a weak limit of {sk}. One checks that t is a tracial state on A. Then
(25) and (24) imply that

t (e1) ≤ t (e2)

which contradicts with (14).
It follows that, for all sufficiently large n,

(26) t (e(2,1,n)) > t(e(1,1,n)) for all t ∈ T (Bn).

The lemma follows.

Theorem 3.4. Let A be a unital simple AH-algebra with stable rank one
and real rank zero. Suppose that there is an integer K ≥ 1 such that, for any
x ∈ ker ρA, Kx = 0. Then A has tracial rank zero. Moreover, A is isomorphic
to a unital simple AH-algebra with slow dimension growth.

Proof. We may assume that A is infinite dimensional. We will show that
K0(A) is weakly unperforated. It then follows from [7] that A has tracial rank
zero.

It suffices to show the following: If p, q ∈ Mm(A) are two non-zero pro-
jections for some integer m ≥ 1 and

τ(p) > τ(q) for all τ ∈ T (A),

then q <∼ p.
To prove this, we note that Mm(A) is also a unital simple AH-algebra with

stable rank one, real rank zero and K0(Mm(A)) = K0(A), so, to simplify the
notation, without loss of generality, we may assume that p, q ∈ A.

Let
d1 = inf{τ(p) − τ(q) : τ ∈ T (A)}.
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Since A is simple, d1 > 0. Since A is an infinite dimensional simple C∗-algebra
with real rank zero, pAp is also an infinite dimensional simple C∗-algebra with
real rank zero. It follows that there is a non-zero projection e ∈ pAp such that

(27) τ (e) < d1/2 for all τ ∈ T (A).

Put

(28) d2 = inf{τ(e) : τ ∈ T (A)}.
Note that d2 > 0. Put p0 = p − e. Then

(29) τ (p0) > τ(q) for all τ ∈ T (A).

Let
F = {p, q, e, p0}.

It follows from 3.2 and 3.3 that, there exists a projection E ∈ A and a finite
dimensional C∗-subalgebra B with 1B = E such that

‖Ex − xE‖ <
d2

64K
for all x ∈ F ,(30)

dist(ExE, B) <
min{d2, 1}

64K
for all x ∈ F , and(31)

τ (1 − E) <
d2

64K
for all τ ∈ T (A).(32)

Moreover, there are projections p0,1, q1 ∈ B and p0,0, q0 ∈ (1 − E)A(1 − E)

such that

‖p0,1 + p0,0 − p0‖ <
1

16K
,(33)

‖q1 + q0 − q‖ <
1

16K
, and(34)

t (q1) < t(p0,1)(35)

for all tracial state t of B. It follows that, in B,

(36) q1 <∼ p0,1.

We compute, by (28) and (32) that

(37) (K + 2)τ (q0) < τ(e) for all τ ∈ T (A).
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It follows from 3.1 that

(38) q0 <∼ e.

Combining (36) and (38), we obtain that

q1 + q0 <∼ p0,1 + e.

But, by (33) and (34),

[q1 + q0] = [q] and p0,1 ≤ p0.

Therefore
q <∼ p.

Corollary 3.5. Let A be a unital simple AH-algebra with stable rank one
and real rank zero. Suppose that ker ρA is finite. Then A has tracial rank zero
and K0(A) is weakly unperforated.

4. Concluding remarks

Remark 4.1. Theorem 2.3 shows that that Toms’ example (as in [9]) could
not occur under the assumption that A has real rank zero.

Remark 4.2. More can be said in Theorem 2.3. It is clear that, in The-
orem 2.3, it suffices to assume that every An has the property that all projec-
tions in the matrix algebras of An are unitarily equivalent to those constant
projections. So it allows An to have non-zero K1-groups.

Let An = PnMr(n)(C(Xn))Pn, where Xn is a finite CW complex, r(n) ≥ 1
is an integer and Pn ∈ Mr(n)(C(Xn)). Suppose that Yn is another finite CW
complex with covering dimension hd(Xn) which has the same homotopy type
of that of Xn. Suppose that

lim inf
n→∞

(
sup
x∈Xn

hd(Xn)

Rank Pn(x)

)
= 0.

Suppose also that A = limn→∞ An is a unital simple C∗-algebra with real rank
zero. Then, from the proof of 2.3, one can show that A has tracial rank zero and
stable rank one. In other words, if A is homotopically slow dimension growth
and is of real rank zero and stable rank one, then A is isomorphic to a unital
simple AH-algebra with no dimension growth. One should note that, as in [9],
without the assumption of real rank zero, the Cuntz semigroup of A could be
very different from those of unital simple AH-algebras with slow dimension
growth.
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Remark 4.3. From the proof of 3.4, one sees that Theorem 3.4 holds if
the assumption on ker ρA is replaced by the conclusion of 3.1, i.e., there is an
integer K ≥ 1 such that for any pair of projections p, q ∈ Mm(A) (for any
integer m ≥ 1), Kτ(p) ≤ τ(q) for all τ ∈ T (A) implies p <∼ q.

REFERENCES

1. Blackadar, B., and Handelman, D., Dimension functions and traces on C∗-algebras, J. Funct.
Anal. 45 (1982), 297–340.

2. Choi, M-D., and Effros, E. G.,The completely positive lifting problem for C∗-algebras, Ann.
of Math. 104 (1976), 585 – 609

3. Elliott, G. A., On the classification of inductive limits of sequences of semisimple finite-
dimensional algebras, J. Algebra 38 (1976), 29–44.

4. Elliott, G. A., On the classification of C∗-algebras of real rank zero, J. Reine Angew. Math.
443 (1993), 179–219.

5. Elliott, G. A., and Gong, G., On the classification of C∗-algebras of real rank zero. II, Ann.
of Math. 144 (1996), 497–610.

6. Elliott, G. A., Gong, G., and Li, L.,On the classification of simple inductive limit C∗-algebras.
II, The isomorphism theorem, Invent. Math. 168 (2007), 249–320.

7. Lin, H., Simple AH-algebras of real rank zero, Proc.Amer. Math. Soc. 131 (2003), 3813–3819
8. Lin, H., Approximate homotopy of homomorphisms from C(X) into a simple C∗-algebra,

Mem. Amer. Math. Soc. 205 (2010), no. 963.
9. Toms, A. S., On the classification problem for nuclear C∗-algebras, Ann. of Math. 167 (2008),

1029 –1044.
10. Villadsen, J., Simple C∗-algebras with perforation, J. Funct. Anal. 154 (1998), 110–116.
11. Villadsen, J., On the stable rank of simple C∗-algebras, J. Amer. Math. Soc. 12 (1999),

1091–1102.
12. Zhang, S., Matricial structure and homotopy type of simple C∗-algebras with real rank zero,

J. Operator Theory 26 (1991), 283–312.

DEPARTMENT OF MATHEMATICS
EAST CHINA NORMAL UNIVERSITY
SHANGHAI, CHINA

and current

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OREGON
EUGENE, OR 97405
U.S.A.
E-mail: hlin@uoregon.edu


