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IRRATIONALITY MEASURES OF NUMBERS RELATED
TO SOME q-BASIC HYPERGEOMETRIC SERIES

KEIJO VÄÄNÄNEN

Abstract
We obtain rather good irrationality measures for numbers related to some q-basic hypergeometric
series. The method uses Padé approximations combined with the iteration of the appropriate
functional equation.

1. Introduction and results

Let K be an algebraic number field of degree d = [K : Q]. For each place
w of K we normalize the valuation |.|w in the usual way and denote |.|∗w =
max{1, |.|w}, ‖.‖w = |.|dw/d

w , ‖.‖∗
w = |.|∗dw/d

w with dw = [Kw : Qw], here Qw

and Kw denote the completions of Q and K with respect to |.|w. The height of
α ∈ K∗ is defined by

h(α) =
∏
w

‖α‖∗
w,

where the product is over all places w of K . Furthermore, for a = (a1, . . . ,

am) ∈ Km, let |a|w = max{|ai |w}, |a|∗w = max{1, |ai |w}, ‖a‖w = |a|dw/d
w ,

‖a‖∗
w = |a|∗dw/d

w , and for a �= 0 define the height h(a) by

h(a) =
∏
w

‖a‖∗
w.

In the following we fix a place v of K and let a, b, q and ξ denote nonzero
elements of K satisfying

(1) |q|v < 1, |ξ |v < 1, aqn �= 1, bqn �= 1, n = 0, 1, . . . .

We are interested in the q-basic hypergeometric series

(2) f (z) = f (a, b, z) =
∞∑

n=0

(a, q)n(b, q)n

(q, q)n
zn,
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where (a, q)0 = 1, (a, q)n = (1 − a)(1 − aq) . . . (1 − aqn−1), n ≥ 1. Under
the conditions (1) the values f (ξ) and f (qξ) are defined in Kv . We note that
there are a lot of works considering arithmetic properties of different type of
q-series, see e.g. [14] for a survey of such results, and [3], [4], [5], [6], [8],
[10], [11], [12] and [15] for some more recent results, but only a few study
functions (2), see [7] and [10]. In [7] Chirskii considered the case K = Q with
finite p and proved the following result.

Theorem 1.1. If q = pm with a prime p, m ∈ N, a, b ∈ Z, and ξ = cpt

with a nonzero c ∈ Z, t ∈ N, t > m + logp(2|abc|), then the p-adic numbers
f (a, b, ξ) and f (aq, b, ξ) are linearly independent over Q.

Since
(1 − a)f (aq, b, z) = f (a, b, z) − af (a, b, qz),

Theorem 1.1 gives also linear independence of p-adic numbers f (ξ) and
f (qξ). The above theorem was generalized and made quantitative in [10],
where the authors study the solutions of functional equations

(3) (qz)sF (q2z) = −T (z)F (qz) + S(z)F (z), s ≥ 1,

with polynomials T and S, containing as a special case the functional equation

(4) abzf (q2z) = ((a + b)z − 1)f (qz) + (1 − z)f (z)

satisfied by f (z). If we define

(5) λ = λ(v, q) = log h(q)

log ‖q‖v

,

then λ ≤ −1, and [10] gives linear independence of f (ξ) and f (qξ), if
λ = −1. As a special case of [10, Theorem 2] we have

Theorem 1.2. Let the assumptions (1) be satisfied. If λ = −1, then there
exist positive constants c0 and H0 depending on a, b, q, ξ and v such that for
all nonzero A = (A0, A1) ∈ K2

|A0f (ξ) + A1f (qξ)|v > H−μ−c0/
√

log H ,

where μ = 60, 91d/dv and H = max{h(A), H0}.
Note that λ = −1 e.g. if K = Q and in the archimedean case q = Q−1,

Q ∈ Z, or in the p-adic case q = ±pm, m ≥ 1.
Our main result in this paper is the following improvement of the above

results.
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Theorem 1.3. Assume that a, b, q and ξ are nonzero elements of K

satisfying (1). If λ satisfies

(6) −λ <
2 + √

2

1 + √
2
,

then the numbers f (ξ) and f (qξ) belonging to Kv are linearly independent
over K , and there exist positive constants c0 and H0 depending on a, b, q, ξ

and v such that for all nonzero A = (A0, A1) ∈ K2 we have

|A0f (ξ) + A1f (qξ)|v > |A|∗vH−μ−c0/
√

log H

where H = max{h(A), H0} and

μ = d

dv

2 + √
2

2 + √
2 + λ(1 + √

2 )
.

In particular, we have μ = (2 + √
2 )d/dv if λ = −1.

As an immediate corollary we have

Corollary 1.4. If the assumptions of Theorem 1.3 are valid and −λ <

(2 + √
2 )/(1 + √

2 ), then f (ξ)/f (qξ) is not an element of K .

In the archimedean case Theorem 1.3 implies

Corollary 1.5. Let a, b, q = Q−1, Q ∈ Z and ξ be nonzero rationals
satisfying (1). Then the numbers f (ξ) and f (qξ) are linearly independent
over Q and for all nonzero A = (A0, A1) ∈ Z2 we have

|A0f (ξ) + A1f (qξ)| > H−(1+√
2 )−c0/

√
log H

where H = max{|A0|, |A1|, H0} and c0, H0 are as in Theorem 1.3.

Corollary 1.6. Under the assumptions of Corollary 1.5 f (ξ)/f (qξ) is
irrational and has the irrationality measure 2 + √

2.

As a final corollary we give

Corollary 1.7. Let p be a prime and let a, b, ξ and q = ±pm be nonzero
rationals satisfying (1). Then the p-adic numbers f (ξ) and f (qξ) are linearly
independent over Q and for all nonzero A = (A0, A1) ∈ Z2 we have

|A0f (ξ) + A1f (qξ)|p > H−(2+√
2 )−c0/

√
log H

where H = max{|A0|, |A1|, H0} and c0, H0 are as in Theorem 1.3.
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In his proof of Theorem 1.1 Chirskii [7] constructs explicit Padé approx-
imations for the functions f (a, b, z) and f (aq, b, z). To prove Theorem 1.3
we shall improve these approximations by using iteration of the functional
equation (4). This kind of iteration process is used often successfully in the
consideration of q-series, and in this case we can apply [10], where the iteration
of (3) is given in details. We may also say that the improvement in compar-
ision to [10] is obtained by replacing linear forms before iteration, obtained
by Siegel’s lemma in [1], by Padé approximations given in [7]. It would be of
interest to study if this kind of combination of explicit Padé approximations
and the iteration of the appropriate functional equation could be applied to get
new results also on some other q-series.

2. Preliminaries

By defining

α1 = a, α2 = b, αk+2 = αkq, k = 1, 2, . . . ,

we get a sequence (αk) with

(7) α2k−1 = aqk−1, α2k = bqk−1, k = 1, 2, . . . .

If

(8) fn(z) = f (αn+1, αn+2, z), n = 0, 1, . . . ,

then f0(z) = f (a, b, z), f1(z) = f (aq, b, z), and

(9) αn+1(1 − αn+2)zfn+2(z) = fn+1(z) − fn(z), n = 0, 1, . . . ,

see [7]. Furthermore, if

(10)

R0(z) = f0(z),

R1(z) = (1 − α1)f1(z),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rn(z) = α1 . . . αn−1(1 − α1) . . . (1 − αn)z
n−1fn(z),

n = 2, 3, . . ., then, by (9),

(11)
R2(z) = R1(z) − (1 − α1)R0(z), Rn+2(z)

= Rn+1(z) − αn(1 − αn+1)zRn(z),

n = 1, 2, . . ..
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We now suppose that the assumptions of Theorem 1.3 are valid and define
n0 to be the smallest integer such that |aqn|v < 1 and |bqn|v < 1 for all
n ≥ n0. We also denote by c1, c2, . . . effectively computable positive constants
independent of n.

Lemma 2.1. For all n ≥ n0, we have

|R2n(ξ)|v ≤ c1|a|nv |b|n−1
v |q|(n−1)2

v |ξ |2n−1
v ,

|R2n+1(ξ)|v ≤ c2|a|nv |b|nv |q|n(n−1)
v |ξ |2n

v .

Proof. By the definition (8),

(12)

f2n(ξ) =
∞∑

j=0

(α2n+1, q)j (α2n+2, q)j

(q, q)j
ξ j

=
∞∑

j=0

∏j−1
k=0(1 − aqn+k)

∏j−1
k=0(1 − bqn+k)∏j

k=1(1 − qk)
ξ j .

Thus |f2n(ξ)|v = 1 for finite v, if n ≥ n0. This together with (10) gives the
first bound of Lemma 2.1 for finite p.

We next consider an infinite v. If n ≥ n0, then

0 <

∣∣∣∣
∏j−1

k=0(1 − aqn+k)
∏j−1

k=0(1 − bqn+k)∏j

k=1(1 − qk)

∣∣∣∣
v

≤
∏j−1

k=0(1 + |a|v|q|n+k
v )

∏j−1
k=0(1 + |b|v|q|n+k

v )∏j

k=1(1 − |q|kv)

≤
∏∞

k=0(1 + |a|v|q|n0+k
v )

∏∞
k=0(1 + |b|v|q|n0+k

v )∏∞
k=1(1 − |q|kv)

=: c3.

Furthermore,

∣∣∣∣
n−1∏
k=0

(1 − aqk)

n−2∏
k=0

(1 − bqk)

∣∣∣∣
v

≤
∞∏

k=0

(1 + |a|v|q|kv)
∞∏

k=0

(1 + |b|v|q|kv) =: c4.

Now the first inequality of Lemma 2.1 follows by (10).
The bound for |R2n+1(ξ)|v is obtained in a similar way.

Lemma 2.2. At least one of the numbers f (ξ) and f (qξ) is different from
zero.
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Proof. Assume that f (ξ) = f (qξ) = 0. Then f (qnξ) = 0 for all n ≥ 0 by
(1) and (4), and we obtain a contradiction 0 = limn→∞ f (qnξ) = f (0) = 1.
This proves Lemma 2.2.

3. Approximation polynomials

By using the equations (10) and (11) we may write

(13) Rn(z) = Pn,0(z)R0(z) + Pn,1(z)R1(z), n = 0, 1, . . . ,

where Pn,i are polynomials satisfying

P0,0(z) = 1

P0,1(z) = 0
,

P1,0(z) = 0

P1,1(z) = 1
,

P2,0(z) = α1 − 1

P2,1(z) = 1
,

and, for all n ≥ 1, the recursions

(14) Pn+2,i (z) = Pn+1,i (z) − αn(1 − αn+1)zPn,i(z), i = 0, 1.

Here deg P2n,i(z) ≤ n − 1, deg P2n+1,i (z) ≤ n, ord R2n(z) = 2n − 1, and
ord R2n+1(z) = 2n. Thus the polynomials Pn,i are Padé approximations for
R0 and R1. For these polynomials we have the following non-vanishing result,
see Lemma 1 of [7].

Lemma 3.1. If the assumptions of Theorem 1.3 are valid, then

δ(ξ, n) :=
∣∣∣∣ Pn,0(ξ) Pn,1(ξ)

Pn+1,0(ξ) Pn+1,1(ξ)

∣∣∣∣ �= 0

for all n ≥ 0.

Proof. By the above definition of Pn,i we have δ(ξ, 0) = 1, δ(ξ, 1) = (1−
α1), and δ(ξ, n) = αn−1(1 − αn)ξδ(ξ, n − 1), n ≥ 2. This proves Lemma 3.1.

Lemma 3.2. If the assumptions of Theorem 1.3 are valid, then, for all places
w,

max(‖P2n,i(ξ)‖w, ‖P2n+1,i (ξ)‖w) ≤ C1(w)n‖q‖∗n(n−1)
w ,

where
C1(w) = 4δw‖a‖∗

w‖b‖∗
w‖ξ‖∗

w,

and here δw = 0, if w is finite, and δw = 1 for infinite w.

Proof. Clearly |P0,i (ξ)|w ≤ 1, |P1,i (ξ)|w ≤ 1, |P2,i (ξ)|w ≤ 2δw |a|∗w,
|P3,i (ξ)|w ≤ 22δw |a|∗w|b|∗w|ξ |∗w. The recursion (14) gives

P2n+2,i (ξ) = P2n+1,i (ξ) − bqn−1(1 − aqn)ξP2n,i(ξ)
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and
P2n+3,i (ξ) = P2n+2,i (ξ) − aqn(1 − bqn)ξP2n+1,i (ξ),

and therefore we can see, by induction, that

|P2n,i(ξ)|w ≤ 2(2n−1)δw |a|∗n
w |b|∗(n−1)

w |ξ |∗(n−1)
w |q|∗(n−1)2

w ,

|P2n+1,i (ξ)|w ≤ 22nδw |a|∗n
w |b|∗n

w |ξ |∗n
w |q|∗n(n−1)

w .

This proves Lemma 3.2.

4. Improved approximations

In this section we shall use iteration of (4) to improve linear forms Rn(z) in
(13). For this we write (4) to the form (3)

qzf (q2z) = q

ab
((a + b)z − 1)f (qz) + q

ab
(1 − z)f (z)

=: −T (z)f (qz) + S(z)f (z).

It is proved in Section 4 of [10] that the iteration of this functional equation
gives, for each k = 1, 2, . . ., polynomials Tk and Sk in K[z] such that

(15) zk+1q( k+2
2 )f (qk+2) =: Tk(z)f (qz) + Sk(z)f (z)

and the following lemma holds.

Lemma 4.1. For all w

max{‖Tk(ξ)‖w , ‖Sk(ξ)‖w} ≤ C2(w)k ‖q‖∗k2/2
w ,

where
C2(w) = 8δw‖�‖∗

w‖ξ‖∗3
w ‖q‖∗

w, � = q

ab
(1, a + b).

Furthermore the determinant

γ (ξ, k) :=
∣∣∣∣ Sk−1(ξ) Tk−1(ξ)

Sk(ξ) Tk(ξ)

∣∣∣∣ �= 0.

The claim concerning the determinant follows immediately from the recur-
sion

γ (ξ, k) = −ξqkS(qkξ)γ (ξ, k − 1),

k = 1, 2, . . . , γ (ξ, 0) = −S(ξ) �= 0, see [10].
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We next construct improved approximations by applying the above itera-
tions to (13). Let

(16) rn,k(z) = Rn(q
k+1z).

Then

zk+1q( k+2
2 )

(
r2n,k(z)

r2n+1,k(z)

)

= zk+1q( k+2
2 )

(
P2n,0(q

k+1z) P2n,1(q
k+1z)

P2n+1,0(q
k+1z) P2n+1,1(q

k+1z)

) (
R0(q

k+1z)

R1(q
k+1z)

)

=
(

P2n,0(q
k+1z) P2n,1(q

k+1z)

P2n+1,0(q
k+1z) P2n+1,1(q

k+1z)

) (
1 0

1 −a

)

·
(

zqk+1Sk−1(z) zqk+1Tk−1(z)

Sk(z) Tk(z)

) (
f (z)

f (qz)

)

=:

(
p2n,0,k(z) p2n,1,k(z)

p2n+1,0,k(z) p2n+1,1,k(z)

) (
f (z)

f (qz)

)
.

Here

(17)
�n,k :=

∣∣∣∣ p2n,0,k(ξ) p2n,1,k(ξ)

p2n+1,0,k(ξ) p2n+1,1,k(ξ)

∣∣∣∣
= −aξqk+1δ(qk+1ξ, 2n)γ (ξ, k) �= 0

by Lemmas 3.1 and 4.1.
We now denote

r2n = ξk+1q( k+2
2 )r2n,k(ξ),

r2n+1 = ξk+1q( k+2
2 )r2n+1,k(ξ),

p2n,i = p2n,i,k(ξ),

p2n+1,i = p2n+1,i,k(ξ),

where k has the value k = [ρn] with some ρ > 0. By using these notations
we obtain, for all n = 0, 1, . . ., linear forms

(18)
r2n = p2n,0f (ξ) + p2n,1f (qξ),

r2n+1 = p2n+1,0f (ξ) + p2n+1,1f (qξ),

with the following properties.
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Lemma 4.2. The linear forms r2n and r2n+1 are linearly independent and,
for all places w,

max{‖p2n,i‖w, ‖p2n+1,i‖w} ≤ C3(w)C4(w)n‖q‖∗An2

w ,

where

A = A(ρ) = 1 + ρ + ρ2/2, C3(w) = 4δw‖a‖∗
w, C4(w) = C1(w)C2(w)ρ.

Furthermore, for all n ≥ n0, we have

max{‖r2n‖v, ‖r2n+1‖v} ≤ c5C5(v)n‖q‖Bn2

v

with B = B(ρ) = 1 + 2ρ + ρ2/2, c5 = max{c1, c2} and

C5(v) = ‖a‖∗
v‖b‖∗

v‖ξ‖∗2+ρ
v ‖q‖−(2+ρ/2)

v .

Proof. The linear independence of r2n and r2n+1 follows from (17), and
the estimate for ‖p2n,i‖w and ‖p2n+1,i‖w is a consequence of Lemmas 3.2 and
4.1 together with the definition of p2n,i and p2n+1,i . Finally, the last estimate
is obtained by Lemma 2.1, (16) and (18).

5. Proof of Theorem 1.3 and the corollaries

Let the assumptions of Theorem 1.3 hold and let

L = A0f (ξ) + A1f (qξ),

where A = (A0, A1) ∈ K2 is nonzero. By Lemma 2.2 at least one of the
numbers f (ξ) and f (qξ) is different from zero, say f (ξ) �= 0. We then apply
Lemma 4.2, which implies that at least one of �2n and �2n+1 is nonzero, if

�n :=
∣∣∣∣ A0 A1

pn,0 pn,1

∣∣∣∣ .
We may assume that �2n �= 0. Then

(19) �2nf (ξ) = p2n,1L − A1r2n

with �2nf (ξ) �= 0. By using Lemma 4.2 with the special choice ρ = √
2

and considering the equation (19) in a standard way, see e.g. the proof of
Theorem 6.1 in [2], the proof of Theorem 3.3 in [9], or the proof of Theorem 1
in [13], we obtain the estimate

|L|v > |A|∗vH− d
dv

B(
√

2 )

B(
√

2 )+λA(
√

2 )
−c0/

√
log H
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giving the truth of Theorem 1.3.
In Corollary 1.5 λ = −1 and |A|∗ = max{|A0|, |A1|}, which gives the truth

of Corollary 1.5. This proves Corollary 1.6, too. Also in Corollary 1.7 λ = −1,
and the truth of this corollary follows, since |A|∗p = 1.
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