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SHARP WEIGHTED BOUNDS FOR FRACTIONAL
INTEGRAL OPERATORS IN A SPACE OF

HOMOGENEOUS TYPE

ANNA KAIREMA∗

Abstract

We consider a version of M. Riesz fractional integral operator on a space of homogeneous type
and show an analogue of the well-known Hardy-Littlewood-Sobolev theorem in this context. In
our main result, we investigate the dependence of the operator norm on weighted spaces on the
weight constant, and find the relationship between these two quantities. It it shown that the estimate
obtained is sharp in any given space of homogeneous type with infinitely many points. Our result
generalizes the recent Euclidean result by Lacey, Moen, Pérez and Torres [21].

1. Introduction

In the Euclidean space Rn, the fractional integral operator Iα of order 0 < α <

n, the Riesz potential, is defined by

Iαf (x) =
∫

Rn

f (y)

|x − y|n−α
dy.

At a formal level, the limit α → 0 corresponds to the Calderón-Zygmund
case, and for α > 0 one deals with a positive operator. This classical poten-
tial has been studied in depth by several authors. By the well-known Hardy-
Littlewood-Sobolev theorem, Iα is a bounded operator from Lp(Rn) to Lq(Rn)

if and only if p > 1 and 1/p − 1/q = α/n. The qualitative one weight
problem was solved in the early 1970’s in the work of B. Muckenhoupt
and R. L. Wheeden [22] giving a characterization of weights w for which
Iα: Lp(Rn, wpdx) → Lq(Rn, wqdx) is bounded: For 1 < p < n/α and
1/p − 1/q = α/n, the inequality

‖Iαf ‖Lq(wq) ≤ C‖f ‖Lp(wp)
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holds if and only if

[w]Ap,q
:= sup

Q a cube

(
1

|Q|
∫

Q

wq dx

)(
1

|Q|
∫

Q

w−p′
dx

)q/p′

< ∞.

Nevertheless, the precise dependence of the operator norm on the weight con-
stant [w]Ap,q

was not considered in detail until the very recent times. The ori-
ginal interest in sharp estimates was motivated by applications in other areas
of analysis. In the last decade, the interest in understanding such quantitative
questions has been a general trend in the study of integral operators.

The central A2 conjecture for Calderón-Zygmund operators was only re-
cently solved by T. Hytönen [14]. Sharp estimates for Iα were obtained some-
what earlier by Lacey et al. [21]: For 1 < p < n/α and 1/p − 1/q = α/n,

(1) ‖Iα‖Lp(wp)→Lq(wq)
<∼ [w]

(1− α
n
) max{1,

p′
q

}
Ap,q

,

and the estimate is sharp. The main result in the present paper is the extension
of this estimate into general spaces of homogeneous type.

1.1. Fractional integral operators in metric measure spaces

Fractional integrals over quasi-metric measure spaces (X, ρ, μ) are known to
be considered in different forms. In this paper, one possible variant is studied. In
order to place our investigations into a larger picture, we shall briefly comment
on the different notations and the relationship between the operator chosen here
and some other types of fractional integrals studied by other authors elsewhere.

First, one common and widely studied notation; see e.g. the book [5] and
the paper [8], is given by the formula

I sf (x) :=
∫

X

f (y) dμ(y)

ρ(x, y)s
, s > 0,

and it has been studied in both the doubling [9], [10], [17] and non-doubling
[7], [18], [19] setting. Operators I s are better suited for non-doubling measure
spaces (X, μ) with the upper Ahlfors regularity condition that for some n > 0,

(2) μ(B(x, r)) ≤ C1r
n

where C1 > 0 does not depend on x ∈ X and r > 0. Indeed, by the analogue
of the Hardy-Littlewood-Sobolev Theorem; see e.g. [8, Theorem 1], I s is a
bounded operator from Lp(X, μ) to Lq(X, μ) for 1 < p < q < ∞ if and
only if μ satisfies (2), s = n − α with 0 < α < n, and 1/p − 1/q = α/n.
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Second, another types of fractional integrals are given by

�αf (x) :=
∫

X

ρ(x, y)α

μ(B(x, ρ(x, y)))
f (y) dμ(y), α > 0.

These operators are studied e.g. in the book [11] and the paper [1], and they
are better adjusted for and commonly studied in measure spaces (X, μ) with
the lower Ahlfors regularity condition that for some n > 0,

(3) μ(B(x, r)) ≥ C2r
n,

where C2 > 0 does not depend on x ∈ X and r > 0. We mention that, for
example, all doubling measures (see Section 2.1 for a definition) satisfy the
lower Alhfors regularity condition with n = log2 Cμ and C2 = Cμ, and for all
x ∈ � and 0 < r ≤ � where � < ∞ is any fixed number and � ⊆ X is any
open set with the property that infx∈� μ(B(x, �)) > 0.

In the present paper we study fractional integrals of the type

(4) Tγ f (x) :=
∫

X

f (y) dμ(y)

μ(B(x, ρ(x, y)))1−γ
, 0 < γ < 1,

in a space of homogeneous type. These operators have been studied e.g. in [2],
[5], [9], [20] in the same context. Obviously, (2) implies that

I sf (x) = I n−αf (x) ≤ C1

{
Tγ f (x)

�αf (x)
and Tγ f (x) ≤ C1�αf (x)

for f ≥ 0 and γ := α/n. Similarly, (3) implies

�αf (x) ≤ 1

C2

{
I n−αf (x)

Tγ f (x)
and Tγ f (x) ≤ 1

C2
I n−αf (x)

for f ≥ 0 and γ := α/n. If X has a constant dimension in the sense that μ

satisfies both the regularity conditions (2) and (3), then all the three variants of
fractional integrals mentioned are equivalent. Accordingly, our results apply
to all of them. In particular, in the usual Euclidean space Rn with the Lebesgue
measure, all the three operators reduce to the classical Riesz potentials.

Finally, we mention that also some further types of fractional integrals have
been considered elsewhere; see [5, Chapter 6].

The paper is organized as follows. First, we show an analogue of the Eu-
clidean Hardy-Littlewood-Sobolev theorem in our context. This preliminary
unweighted result motivates us to restrict our considerations only to exponents
which satisfy the identity 1/p−1/q = γ . Second, in our main result we show
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that the estimate (1) holds for Tγ defined in (4) and 1/p−1/q = γ . Finally, we
show that this estimate is sharp in any given space (X, μ) with infinitely many
points. We do this by showing that any such space supports functions which,
at least locally, behave sufficiently similarly to the basic power functions |x|−α

on the Euclidean space.
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2. Preliminaries

2.1. Set-up

Our set-up is a space of homogeneous type (X, ρ, μ) with a quasi-metric ρ

and a doubling measure μ. By a quasi-metric we mean a mapping that satisfies
the axioms of a metric except for the triangle inequality, which is assumed in
the weaker form

ρ(x, y) ≤ A0(ρ(x, z) + ρ(z, y))

with a quasi-metric constant A0 ≥ 1. As usual, for a ball B = B(x, r) :=
{y ∈ X: ρ(x, y) < r} and a > 0, the notation aB := B(x, ar) stands for the
concentric dilation of B. By a doubling measure we mean a positive Borel-
measure μ defined on a σ -algebra of subsets that contains the quasi-metric
balls which has the doubling property that there exists a constant C ≥ 1 such
that

(5) 0 < μ(B(x, 2r)) ≤ Cμ(B(x, r)) < ∞ for all x ∈ X, r > 0.

The smallest constant satisfying (5) is denoted by Cμ and referred to as the
doubling constant.

We recall the following properties of a doubling measure.

Lemma 2.1. Let (X, ρ, μ) be a space of homogeneous type. Then the fol-
lowing is true.

(i) For x ∈ X, μ({x}) > 0 if and only if there exists ε > 0 such that
{x} = B(x, ε).
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(ii) The set {x ∈ X: μ({x}) > 0} of atoms is at most countable. In particular,
if μ({x}) ≥ δ > 0 for all x ∈ X, then X is countable.

(iii) μ(X) < ∞ if and only if X = B(x, R) for some x ∈ X and R < ∞.

We mention that, in fact, the property (ii) does not depend on the doubling
property; only σ -finiteness is needed for this. We further recall the following
well-known result.

Lemma 2.2. Suppose μ is a doubling measure. Then for every x ∈ X and
0 < r ≤ R we have

μ(B(x, R))

μ(B(x, r))
≤ Cμ

(
R

r

)cμ

where cμ = log2 Cμ.

2.2. A space of homogeneous type with infinitely many points

Some of our results, most importantly the example in Section 8, require that
X is sufficiently non-trivial in that it contains infinitely many points.

Lemma 2.3. Let (X, ρ, μ) be a space of homogeneous type. The property
#X = ∞ is equivalent to the property that

(6) for any N > 0 there exist balls B0 and B1 such that μ(B1) > Nμ(B0).

Proof. It is clear that (6) implies #X = ∞. Indeed, if X = {x1, . . . , xk}
and thereby, μ({xi}) ≥ δ > 0 and μ(X) = ∑

i μ({xi}) < ∞, then X can not
have the property (6).

We are left to show that the property #X = ∞ implies (6). Let N > 0.
First suppose that there exists x0 ∈ X with the property that μ({x0}) = 0.
Choose B1 = B(x0, 1) and B0 = B(x0, ε) where ε > 0 is small so that
μ(B(x0, ε)) < 1/(Nμ(B1)). Then μ(B1)/μ(B0) > N .

Then assume that μ({x}) > 0 for all x ∈ X and thus, {x} = B(x, ε) for
some ε = ε(x) > 0.

Case 1. Suppose that there exists δ > 0 such that μ({x}) ≥ δ for all x.
Given N > 0, choose B0 := {x0} and B1 := B(x0, M) where M is large so
that xi ∈ B1 for at least Nμ(B0)/δ + 1 different i (since #X = ∞, such an M

exists). Then
μ(B1)

μ(B0)
≥ (Nμ(B0)/δ + 1)δ

μ(B0)
> N.

Case 2. Then assume that μ({xi}) → 0 as i → ∞. Given N > 0, choose
B1 := {x1} and B0 := {xi} where i is large so that μ({xi}) < μ(B1)/N . Then
μ(B1)/μ(B0) > N .
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Remarks 2.4.
1) Suppose that X has the property (6). Then the balls B0 and B1 in (6)

may be assumed to have a mutual centre point. Indeed, suppose Bi =
B(xi, ri), i = 0, 1, and let R ≥ r1 be large so that B1 ⊆ B̃1 := B(x0, R).
Then μ(B̃1) ≥ μ(B1) > Nμ(B0) where B̃1 and B0 have a mutual centre
point.

2) Lemma 2.3 in particular implies that if X has infinitely many points, then
at least one of the following two conditions is satisfied by balls B in X:
(A) μ(B) can have arbitrarily small values; (B) μ(B) can have arbitrarily
large values which is equivalent to μ(X) = ∞. Conversely, both (A)
and (B) imply (6) and thereby also that #X = ∞. This observation leads
to the three categories of spaces listed in Lemma 2.5 below.

3) The basic intuition behind (6) is that the quantities μ({x}) are, in some
sense, vanishing. Indeed, the condition (6) entails points x ∈ X with
the property that μ({x}) � μ(B(x, R)) for some R > 0. Thus, by
working on this larger scale (we informally re-scale the measure so that
μ(B(x, R)) ≈ 1), the measure of the singleton {x} becomes negligible.
This observation will help us in Section 8 to construct functions that,
at least locally, behave similarly to the power functions |x|−α on the
Euclidean spaces.

We show that every space of homogeneous type with infinitely many points
belongs to one of the three categories listed in Lemma 2.5 below. The most
basic examples of such three categories are provided by ([0, 1], dx), (Z, μ)

and (R, dx), respectively, where dx denotes the one-dimensional Lebesgue
measure and μ is the counting measure.

Lemma 2.5. Suppose that (X, μ) is a space of homogeneous type and #X =
∞. Then precisely one of the following is satisfied:

(i) μ(X) < ∞;

(ii) X is countably infinite and μ({x}) ≥ δ > 0 for all x ∈ X;

(iii) μ(B) can have arbitrarily small and large values with balls B.

Proof. First note that if μ(X) < ∞, then (iii) can not be satisfied. The
property #X = ∞ implies (6), and thereby we must have that μ(B) can have
arbitrarily small values so that also (ii) fails. Also note that (ii) and (iii) are
mutually exclusive properties.

Then suppose μ(X) = ∞. Thus, μ(B) can have arbitrarily large values.
If (i) is not satisfied, then μ(B) ≥ δ > 0 for all balls which implies that
μ({x}) ≥ δ > 0 for all x ∈ X. Hence X is countable by Lemma 2.1(ii), and
(ii) is satisfied.
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Remark 2.6. We record the following easy observations:

1) Suppose that X belongs to the category 1 of Lemma 2.5. Thus, μ(X) <

∞. Hölder’s inequality implies that Lp1(X) ⊆ Lp0(X) for all p1 ≥ p0 ≥
1.

2) Suppose that X belongs to the category 2 of Lemma 2.5 so that μ({x}) ≥
δ > 0 for all x ∈ X. Then X is a countable set. Now we have that that
Lp0(X) ⊆ Lp1(X) for all p1 ≥ p0 ≥ 1. Indeed,

‖f ‖Lp1 =
(∑

x∈X

|f (x)|p1μ({x})
)1/p1

=
(∑

x∈X

|f (x)|p1μ({x})
)p0/p1·1/p0

≤
(∑

x∈X

|f (x)|p0μ({x})p0/p1

)1/p0

since p0 ≤ p1,

= δ1/p1−1/p0

(∑
x∈X

|f (x)|p0μ({x})
(

μ({x})
δ

)p0/p1−1)1/p0

≤ δ1/p1−1/p0

(∑
x∈X

|f (x)|p0μ({x})
)1/p0

= δ1/p1−1/p0‖f ‖Lp0

since p0/p1 − 1 ≤ 0 and μ({x})/δ ≥ 1.
Thus, the two properties μ(X) < ∞ and μ({x}) ≥ δ > 0 for all x ∈ X

organize the Lp(X, μ) spaces in mutually reversed order.

2.3. Weight classes of interest

We recall definitions and some easy results concerning the classes of weights
relevant in our investigations. A non-negative locally integrable function w is
a weight. A weight defines a measure (denoted by the same symbol) w(E) :=∫
E

w dμ. We say that a weight w belongs to the Ap class for 1 < p < ∞ if it
satisfies the condition

[w]Ap
:= sup

B

(
1

μ(B)

∫
B

w dμ

)(
1

μ(B)

∫
B

w
− 1

p−1 dμ

)p−1

< ∞,

where the supremum is over all balls B in X. The quantity [w]Ap
≥ 1 is then

called the Ap constant of the weight w. A weight w is said to belong to the A1

class if
Mw ≤ Cw a.e,

where M is the Hardy-Littlewood maximal operator defined by

Mf (x) = sup
B

χB(x)

μ(B)

∫
B

|f | dμ for f ∈ L1
loc(X).
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The smallest possible constant C is then called the A1 constant of the weight
w, i.e.

[w]A1 := ess sup
x∈X

Mw(x)

w(x)
.

As is well-known, if w ∈ Ap for some 1 ≤ p < ∞ then w = 0 a.e. or w > 0
a.e. so that the interesting examples of such weights enjoy the latter property.
Hence, whenever we have an Ap weight we may assume that it is strictly
positive. It is also easy to check from the definitions that [w]A1 ≥ [w]Ap

≥ 1
for every 1 ≤ p < ∞.

For 1 ≤ p ≤ ∞ we denote by p′ the dual exponent of p, i.e. 1/p+1/p′ = 1.
In this definition 1/∞ means zero. A weight w is said to belong to Ap,q class
for 1 < p ≤ q < ∞ if it satisfies the condition

[w]Ap,q
:= sup

B

(
1

μ(B)

∫
B

wqdμ

)(
1

μ(B)

∫
B

w−p′
dμ

)q/p′

< ∞.

The quantity [w]Ap,q
≥ 1 is called the Ap,q constant of the weight w. A weight

w is said to belong to the A1,q class for 1 ≤ q < ∞ if

Mwq ≤ Cwq a.e,

and [w]A1,q
will again be the smallest constant C that satisfies the above in-

equality.
The following lemma is easy to check, and we leave the proof to the reader.

Lemma 2.7. Let 1 < p ≤ q < ∞, and denote r = 1 + q/p′ and s =
1 + p′/q. Then

(i) [w]Ap,q
= [wq]Ar

. In particular, w ∈ Ap,q if and only if wq ∈ Ar ;

(ii) [w]Ap,q
= [w−1]q/p′

Aq′ ,p′ . In particular, w ∈ Ap,q if and only if w−1 ∈ Aq ′,p′ ;

(iii) [w−p′
]As

= [w]p
′/q

Ap,q
. In particular, w ∈ Ap,q if and only if w−p′ ∈ As;

(iv) [w]A1,q
= [wq]A1 . In particular, w ∈ A1,q if and only if wq ∈ A1.

3. Fractional integral operators and the main result

Let (X, ρ, μ)be a space of homogeneous type. We consider a fractional integral
operators of order 0 < γ < 1, defined by

(7) Tγ f (x) =
∫

X

Kγ (x, y)f (y) dμ(y)
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where the kernel Kγ is the positive function

(8) Kγ (x, y) =
{

μ(B(x, ρ(x, y)))γ−1, when x �= y

μ({x})γ−1, when x = y.

Remarks 3.1. 1) Suppose that x ∈ X and μ({x}) = 0. Then our definition
for Kγ formally gives Kγ (x, x) = +∞. However, we may write

Tγ f (x) =
∫

X\{x}
Kγ (x, y)f (y) dμ(y) + Kγ (x, x)f (x)μ({x}),

and the latter term vanishes in case μ({x}) = 0 (by the usual interpretation
0 · ∞ = 0). In fact, we may give an equivalent definition

Tγ f (x) :=
∫

X\{x}
f (y) dμ(y)

μ(B(x, ρ(x, y)))1−γ
+ f (x)μ({x})γ .

If μ does not have atoms, the domain of integration X \ {x} may be replaced
by X, and the extra term f (x)μ({x})γ does not appear.

2) Consider X = Rn with the usual n-dimensional Lebesgue measure dμ =
dx. Then μ(B(x, ρ(x, y))) = |B(x, |x − y|)| = Cn|x − y|n with a positive
dimensional constant Cn. By the notation α := nγ ∈ (0, n), our definition for
Tγ yields (up to a dimensional constant) the operator

Iαf (x) =
∫

Rn

f (y)

|x − y|n−α
dy,

which is the classical fractional integration (or the Riesz potential) of order α

on Rn.

The following lemma shows that the operator Tγ is an example of more
general potential type operators studied in [16]. The proof of the Lemma only
involves elementary estimations by the triangle inequality and Lemma 2.2, and
we leave the details to the reader.

Lemma 3.2. The operator Tγ is an operator of potential type, i.e. the kernel
Kγ , defined in (8), satisfies the following monotonicity conditions: For every
k2 > 1 there exists k1 > 1 such that

(9)
Kγ (x, y) ≤ k1Kγ (x ′, y) whenever ρ(x ′, y) ≤ k2ρ(x, y),

Kγ (x, y) ≤ k1Kγ (x, y ′) whenever ρ(x, y ′) ≤ k2ρ(x, y).

Moreover, there exists a geometric constant C > 0 such that for all x, y ∈ X,
x �= y,

(10)
1

C
Kγ (x, y) ≤ Kγ (y, x) ≤ CKγ (x, y).
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We investigate the dependence of the operator norm of Tγ on the Ap,q

constant of the weight in weighted spaces. Sharp weighted inequalities for
the Riesz potentials Iα in the Euclidean spaces, acting on weighted Lebesgue
spaces were obtained recently in [21, Theorem 2.6]. We use the ideas intro-
duced there to extend this result into general spaces of homogeneous type. Our
main result is the following.

Theorem 3.3. Suppose (X, ρ, μ) is a space of homogeneous type. Let 0 <

γ < 1 and suppose 1 < p ≤ q < ∞ satisfy 1/p − 1/q = γ . Then

‖Tγ ‖Lp(wp)→Lq(wq)
<∼ [w]

(1−γ ) max{1,
p′
q

}
Ap,q

.

This estimate is sharp in any space X with infinitely many points in the sense
described in Section 8.

We mention that a similar qualitative result in a slightly less general setting
can be found, for instance, in [5, Theorem A on p. 412] (see also the references
mentioned there).

4. A preliminary result

Let us begin our investigations by motivating the restriction 1/p − 1/q = γ

imposed on exponents in Theorem 3.3.
Recall the well-known Hardy-Littlewood-Sobolev Theorem in the Euc-

lidean space that if the Riesz potential Iα maps Lp(Rn) to Lq(Rn) for some p

and q, then we must have that the exponents are related by 1/p − 1/q = α/n,
and this condition is also sufficient to have a bounded operator. We record
an analogous result for Tγ in the present context. In fact, the following non-
weighted result describes a necessary and sufficient condition for the exponents
p and q for which Tγ is a bounded operator from Lp(X) to Lq(X). This easy
observation can probably be found elsewhere; cf. [5, Theorem 6.2.2] where
the set-up is slightly less general, but in the lack of a suitable reference, we
shall also provide a proof.

Proposition 4.1. Let (X, ρ, μ) be a space of homogeneous type. Let 0 <

γ < 1 and 1 < p, q < ∞, and suppose Tγ : Lp(X) → Lq(X) is bounded.
Then

μ(B)1/q−1/p+γ ≤ C < ∞
for all balls B. Moreover, the following is true:

(i) If X belongs to the category 1 of Lemma 2.5, then Tγ : Lp(X) → Lq(X)

is bounded if and only if 1/p − 1/q ≤ γ .
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(ii) If X belongs to the category 2 of Lemma 2.5, then Tγ : Lp(X) → Lq(X)

is bounded if and only if 1/p − 1/q ≥ γ .

(iii) If X belongs to the category 3 of Lemma 2.5, then Tγ : Lp(X) → Lq(X)

is bounded if and only if 1/p − 1/q = γ .

Remark 4.2. If none of the cases (i)–(iii) holds, then X has finitely many
points, and the boundedness of Tγ is trivial.

Proof. First assume that Tγ : Lp(X) → Lq(X) is bounded. Fix a ball B =
B(x0, r) and suppose x, y ∈ B. Then

μ(B(x, ρ(x, y))) ≤ μ(B(x0, 3A2
0r)) <∼ μ(B(x0, r)).

Thus, for y �= x,

Kγ (x, y) = 1

μ(B(x, ρ(x, y)))1−γ
>∼

1

μ(B)1−γ
.

For y = x,
Kγ (x, y) = 1

μ({x})1−γ
≥ 1

μ(B)1−γ
.

Thus,
Tγ χB(x) =

∫
B

Kγ (x, y) dμ >∼
μ(B)

μ(B)1−γ
= μ(B)γ .

It follows that

‖Tγ ‖μ(B)1/p = ‖Tγ ‖‖χB‖Lp(X) ≥ ‖Tγ χB‖Lq(X)

≥ ‖χB Tγ χB‖Lq(X)
>∼ μ(B)γ · μ(B)1/q

so that
μ(B)1/q−1/p+γ <∼ ‖Tγ ‖ < ∞.

This shows the necessity of the conditions imposed on the exponents in (i)–(iii).
The sufficiency in (iii) follows from Theorem 3.3 by choosing w ≡ 1.

For the sufficiency in (i), let 1 < p, q < ∞ be exponents such that 1/p −
1/q ≤ γ , and let q0 ≥ q is such that 1/p − 1/q0 = γ . First, (iii) implies that
Tγ : Lp(X) → Lq0(X) is bounded, and the claimed boundedness follows since
Lq0 ⊆ Lq for q0 ≥ q by Remark 2.6.

For the sufficiency in (ii), let 1 < p, q < ∞ be exponents such that
1/p − 1/q ≥ γ , and let q0 ≤ q be such that 1/p − 1/q0 = γ . The claimed
boundedness follows again by (iii) and Remark 2.6.
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5. First steps of the proof: Reduction to the weak-type result

The proof of our main result, Theorem 3.3, entails several reductions. We start
by observing that in order to obtain sharp bounds for the strong-type estimates
it is sufficient to show sharp bounds for the weak-type ones. This follows from
the investigations of [16]; cf. [23], [24], where a large class of potential type
operators were studied.

Indeed, in [16, Theorem 1.12], it was shown that if σ and v are positive
Borel-measures in a quasi-metric space (X, ρ) which are finite on balls, and
T is a positive operator of the form

(11) T (f dσ)(x) =
∫

X

K(x, y)f (y) dσ(y), x ∈ X,

where the kernel K is a non-negative function which satisfies the monotonicity
conditions (9), and 1 < p ≤ q < ∞, then the boundedness

T (· dσ): Lp
σ → Lq

v

is characterized by Sawyer-type testing conditions, which we recall below.
In the present paper, we investigate the particular case T = Tγ , dσ =

w−p/(p−1)dμ and dv = wqdμ where w is an Ap,q-weight and (X, ρ, μ) is a
space of homogeneous type. In this particular case, Theorem 1.12 of [16] says
that

Tγ : Lp(wp) → Lq(wq)

is a bounded operator if and only if the functions σ := w−p/(p−1) and v := wq

satisfy the (local) testing conditions that

[σ, v]Sp,q
:= sup

Q

σ(Q)−1/p‖χQTγ (χQσ)‖Lq(v) < ∞

and
[v, σ ]Sq′ ,p′ := sup

Q

v(Q)−1/q ′ ‖χQTγ (χQv)‖Lp′
(σ ) < ∞,

where the supremum is over all so-called dyadic cubes Q ∈ ⋃K
t=1 D t (for

precise definitions, see [16, Section 2.2]). The proof further shows that

(12) ‖Tγ ‖Lp(wp)→Lq(wq) ≈ [σ, v]Sp,q
+ [v, σ ]Sq′ ,p′ .

Moreover, by the characterization of the weak-type two-weight estimate [16,
Theorem 5.2],

(13) ‖Tγ ‖Lp(wp)→Lq,∞(wq) ≈ [v, σ ]Sq′ ,p′ .
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Using these characterizations and the fact that Tγ is self-adjoint, we get the
following.

Proposition 5.1.

‖Tγ ‖Lp(wp)→Lq(wq) ≈ ‖Tγ ‖Lp(wp)→Lq,∞(wq) + ‖Tγ ‖Lq′
(w−q′

)→Lp′ ,∞(w−p′
)

Proof. Denoteu := wp so thatσ = u1−p′
which is equivalent tou = σ 1−p.

With this notation and v := wq , (13) becomes

‖Tγ ‖Lp(u)→Lq,∞(v) ≈ [v, u1−p′
]Sq′ ,p′ .

Thus,

[σ, v]Sp,q
= [u1−p′

, v(1−q ′)(1−q)]Sp,q
≈ ‖Tγ ‖Lq′

(v1−q′
)→Lp′ ,∞(u1−p′

).

Then combine this and (13) with (12) to make the final conclusion.

By Proposition 5.1, the proof of Theorem 3.3 is completed by the following
proposition.

Proposition 5.2 (Weak-type estimate). Let 0 < γ < 1 and suppose 1 ≤
p ≤ q < ∞ satisfy 1/p − 1/q = γ . Then

‖Tγ ‖Lp(wp)→Lq,∞(wq)
<∼ [w]1−γ

Ap,q
.

This estimate is sharp in any space X in the sense described in Section 8.

Proof of Theorem 3.3 assuming Proposition 5.2. Note that if 1/p −
1/q = γ , then also 1/q ′ − 1/p′ = γ . By Proposition 5.1, we have that

‖Tγ ‖Lp(wp)→Lq(wq)
<∼ ‖Tγ ‖Lp(wp)→Lq,∞(wq) + ‖Tγ ‖Lq′

(w−q′
)→Lp′ ,∞(w−p′

)

<∼ [w]1−γ

Ap,q
+ [w−1]1−γ

Aq′ ,p′ = [w]1−γ

Ap,q
+ [w](1−γ )p′/q

Ap,q

≤ 2[w]
(1−γ ) max{1,

p′
q

}
Ap,q

,

where we used Lemma 2.7(ii).

6. Proof of the weak-type result via extrapolation

To prove Proposition 5.2, we will perform yet another reduction where we use
the following sharp weak-type version of an extrapolation theorem for Ap,q

weights.

Theorem 6.1. Let T be an operator defined on an appropriate class of
functions (e.g. bounded functions with bounded support). Suppose that for
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some pair (p0, q0) of exponents 1 ≤ p0 ≤ q0 < ∞, T satisfies the weak-type
inequality

(14) ‖Tf ‖Lq0 ,∞(wq0 ) ≤ C[w]αAp0 ,q0
‖f ‖Lp0 (wp0 )

for all weights w ∈ Ap0,q0 and with some α > 0. Then,

‖Tf ‖Lq,∞(wq) ≤ C[w]
α max{1,

q0
p′

0

p′
q

}
Ap,q

‖f ‖Lp(wp)

for all weights w ∈ Ap,q and all pairs (p, q) of exponents that satisfy

1

p
− 1

q
= 1

p0
− 1

q0
.

The Euclidean version of this extrapolation theorem can be found in [21,
Corollary 2.2] where it is shown to follow from the corresponding sharp strong-
type extrapolation result. The Euclidean proofs can be adapted into the present
context. We will comment on this in Section 7.

As for now, assume Theorem 6.1. We observe that in order to successfully
apply the Theorem and obtain the desired exponent 1 − γ for all pairs (p, q)

of exponents in the norm estimate of Proposition 5.2, it becomes necessary
that we show the weak-type inequality (14) for Tγ with exponents p0 = 1
and q0 = 1/(1 − γ ); for any other pair, the extrapolation theorem would only
give the positive result for a limited range of exponents, i.e. for the ones with
q0p

′/p′
0q ≤ 1, and for large p, the exponent obtained by the extrapolation

would be strictly larger. Thus, we state the following lemma.

Main Lemma 6.2. Let 0 ≤ u ∈ L1
loc(X, μ) be a weight. A fractional integral

operator Tγ , 0 < γ < 1, satisfies the weak-type estimate

‖Tγ f ‖Lq0 ,∞(u) ≤ C‖f ‖L1((Mu)1/q0 )

with q0 = 1/(1 − γ ). As a consequence,

‖Tγ ‖Lq0 ,∞(wq0 ) ≤ C[w]1−γ

A1,q0
‖f ‖L1(w)

for all weights w ∈ A1,q0 .

The Main Lemma together with the extrapolation result gives Proposi-
tion 5.2 which in turn leads to strong-type estimates and complete the proof
of our main result, Theorem 3.3, as already described:
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Proof of Proposition 5.2 assuming Main lemma 6.2. We apply The-
orem 6.1 with exponents p0 = 1 and q0 = 1/(1 − γ ), and α = 1 − γ . First
note that

α max

{
1,

q0

p′
0

p′

q

}
= 1 − γ.

Theorem 6.1 together with Main Lemma 6.2 show that

‖Tγ f ‖Lq,∞(wq) ≤ C[w]1−γ

Ap,q
‖f ‖Lp(wp)

for all weights w ∈ Ap,q and all exponents 1 < p ≤ q < ∞ that satisfy

1

p
− 1

q
= 1

p0
− 1

q0
= 1 − (1 − γ ) = γ.

We are left to prove Main Lemma 6.2. The proof follows the corresponding
Euclidean proof given in [21] except that we need to put out some extra work
with the technical details when working with general doubling measures.

Proof of Main Lemma 6.2. We recall that ‖·‖Lp,∞(u) is equivalent to a
norm when p > 1. Hence, we may use the triangle inequality as follows

(15) ‖Tγ f ‖Lq0 ,∞(u) ≤ Cq0

∫
X

|f (y)|‖Kγ (·, y)‖Lq0 ,∞(u) dμ(y).

Fix y ∈ X. First note that for all x ∈ X

Kγ (x, y) ≤ 1

μ({y})1−γ
.

We then calculate

‖Kγ (·, y)‖Lq0 ,∞(u)

= sup
λ>0

λ
[
u
({x ∈ X: Kγ (x, y) > λ})]1/q0

= sup
0<λ<μ({y})γ−1

λ
[
u
({x ∈ X: Kγ (x, y) > λ})]1/q0

= [
sup

0<λ<μ({y})γ−1

λq0u
({

x ∈ X: Kγ (x, y)
1

γ−1 < λ
1

γ−1
})]1/q0

= [
sup

t>μ({y})
1
t
u
({

x ∈ X, x �= y: μ(B(x, ρ(x, y))) < t
})]1/q0

since q0 = 1/(1 − γ )
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≤ [
sup

t>μ({y})
1
t
u
({

x ∈ X: μ(B(y, ρ(x, y))) < Ct
})]1/q0

≤ C1/q0
[

sup
t>μ({y})

1
t
u
({

x ∈ X: μ(B(y, ρ(x, y))) < t
})]1/q0

,

C = C(A0, μ).

The second to last estimate is true since μ(B(x, ρ(x, y))) < t implies that
μ(B(y, ρ(x, y))) ≤ μ(B(x, 2A0ρ(x, y))) < Ct , C = C(A0, μ), by the
doubling property.

For a fixed y ∈ X, denote Et := {x ∈ X: μ(B(y, ρ(y, x))) < t}. Note that
y ∈ Et for all t > 0. We make the following technical observation.

Lemma 6.3. Given y ∈ X and t > 0, consider the set Et := {x ∈
X: μ(B(y, ρ(y, x))) < t} and the quantity

ry(t) := sup{r ≥ 0: μ(B(y, r)) < t} ∈ [0, ∞].

Here it is understood that B(y, 0) = ∅ so that the supremum always exists.
Then the following is true:

(i) If x1 ∈ Et for some x1 �= y, then x ∈ Et for all x with ρ(y, x) ≤
ρ(y, x1), and ry(t) > 0.

(ii) If x2 /∈ Et for some x2, then x /∈ Et for all x with ρ(y, x) ≥ ρ(y, x2),
and ry(t) < ∞.

(iii) If ry(t) = 0, then Et = {y}.
(iv) If ry(t) = ∞, then Et = X and μ(X) ≤ t .

(v) If 0 < ry(t) < ∞, then the set Et is one of the two choices B(y, ry(t))

and B̄(y, ry(t)). Moreover, μ(Et) ≤ t .

Case 1. Consider such t > μ({y}) for which there exists x ∈ X, x �= y,
with x ∈ Et . Then ry(t) > 0, and Et is one of the three choices, B(y, ry(t))

or B̄(y, ry(t)) or X, and μ(Et) ≤ t . Recall that in case Et = X, the condition
μ(Et) ≤ t < ∞ implies that X = B(y, R) for some 0 < R < ∞. Hence, for
such t we have

1

t
u(Et ) ≤ u(Et)

μ(Et)
≤ Mu(y).

Case 2. Then consider t > μ({y}) with Et = {y}. If μ({y}) = 0, then
u(Et)/t = 0. Recall that μ({y}) > 0 implies that {y} = B(y, ε) for some
ε > 0. For such t we have

1

t
u(Et ) ≤ u(B(y, ε))

μ(B(y, ε))
≤ Mu(y).
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Altogether we have obtained that the inner norm in (15) satisfies

‖Kγ (·, y)‖Lq0 ,∞(u) ≤ Cq0

(
sup

t>μ({y})
1

t
u(Et )

)1/q0

≤ Cq0(Mu(y))1/q0 ,

and consequently,

‖Tγ f ‖Lq0 ,∞(u) ≤ Cq0

∫
X

|f (y)| (Mu(y))1/q0 dμ(y) = Cq0‖f ‖L1((Mu)1/q0 ).

This is the first assertion.
Then suppose that w ∈ A1,q0 and denote u := wq0 . Recall the A1,q0 condi-

tion for w,
Mu ≤ [w]A1,q0

u a.e,

and that q0 = 1/(1 − γ ). From this and the first assertion we may deduce

‖Tγ f ‖Lq0 ,∞(wq0 ) ≤ Cq0

∫
X

|f |(Mu)1/q0 dμ ≤ Cq0 [w]1/q0
A1,q0

∫
X

|f |w dμ

= Cq0 [w]1−γ

A1,q0
‖f ‖L1(w),

which completes the proof.

7. Extrapolation

In this section we justify the use of the sharp extrapolation Theorem 6.1 by
verifying that the Euclidean proof of the theorem can be adapted into our
situation.

To this end, we recall that in [21, Corollary 2.2] and the Euclidean setting,
the sharp weak-type extrapolation Theorem 6.1, was deduced from the cor-
responding sharp strong-type extrapolation result, which we recall below. To
show this deduction, the authors used an idea from Grafakos and Martell [12,
Theorem 6.1] which is very general and applies to our situation. Thus, we may
complete the proof of Theorem 6.1 by the following theorem.

Theorem 7.1. Let T be an operator defined on an appropriate class of
functions (e.g. bounded functions with bounded support). Suppose that for
some exponents 1 ≤ p0 ≤ q0 < ∞, T satisfies

‖Tf ‖Lq0 (wq0 ) ≤ C[w]αAp0 ,q0
‖f ‖Lp0 (wp0 )

for all weights w ∈ Ap0,q0 and some α > 0. Then,

‖Tf ‖Lq(wq) ≤ C[w]
α max{1,

q0
p′

0

p′
q

}
Ap,q

‖f ‖Lp(wp)
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holds for all weights w ∈ Ap,q and all exponents 1 < p ≤ q < ∞ that satisfy

1

p
− 1

q
= 1

p0
− 1

q0
.

The original qualitative version of this extrapolation result in the Euclidean
space is due to Harboure, Macías and Segovia [13]. The sharp version in the
Euclidean space can be found in [21, Theorem 2.1]. To show the metric space
version, Theorem 7.1, we may follow, from line to line, the Euclidean proof
from [21] except that we need the following result for Ap weights which is the
main tool in the proof.

Lemma 7.2. Suppose μ is a doubling measure on X. Let 1 ≤ r0 < r < ∞
and w ∈ Ar . Then for any g ≥ 0, g ∈ L(r/r0)

′
(w), there exists a function

G ∈ L(r/r0)
′
(w) with the properties that

(i) G ≥ g;

(ii) ‖G‖L(r/r0)′ (w) ≤ 2‖g‖L(r/r0)′ (w);

(iii) Gw ∈ Ar0 ; moreover, [Gw]Ar0
≤ C[w]Ar

where C > 0 depends only
on X, μ, r0 and r .

A qualitative version of Lemma 7.2 in the Euclidean space first appeared
in [6]. A quantitative version; cf. the results in [4], uses a suitable sharp
version of the celebrated Rubio de Francia algorithm, a very general tech-
nique, and Buckley’s theorem [3] on the sharp dependence of ‖M‖Lp(w) on
[w]Ap

in Muckenhoupt’s theorem for the Hardy-Littlewood maximal operator.
Buckley’s result in a space of homogeneous type was shown in [15, Proposi-
tion 7.13]. After this, the proof of Lemma 7.2 follows, again from line to line,
the Euclidean proof, and we may refer the reader to the original proof given
in [4].

8. Sharpness of the result

In this final section, we show that the exponent 1 − γ in the estimate

(16) ‖Tγ f ‖Lq,∞(wq)
<∼ [w]1−γ

Ap,q
‖f ‖Lp(wp)

from Proposition 5.2 is best possible in the sense described as follows. This
also implies that the exponent (1 − γ ) max{1, p′/q} in the norm estimate in
Theorem 3.3 is sharp. In fact, we will show the following.

Proposition 8.1. Let (X, ρ, μ) be a space of homogeneous type with the
property that #X = ∞. Then, there exists a family {wt : 0 < t < 1} of weights
such that

[wt ]Ap,q
≈ 1

t
,
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and

(17) ‖Tγ ‖Lp(w
p
t )→Lq,∞(w

q
t )

>∼ [wt ]
1−γ

Ap,q
.

Consequently, if ‖Tγ ‖Lp(wp)→Lq,∞(wq) ≤ φ([w]Ap,q
) for some increasing

φ: [1, ∞) → (0, ∞), then φ(s) >∼ s1−γ . In particular, for any ε > 0, we
have that

sup
w∈Ap,q

‖Tγ ‖Lp(wp)→Lq,∞(wq)

[w](1−γ )−ε

Ap,q

= ∞.

We will first observe that Proposition 8.1 follows from the following lemma.

Lemma 8.2 (Reduction). Let (X, ρ, μ) be a space of homogeneous type with
the property that #X = ∞. Then, for every 0 < t < 1, there exists a weight
ut and a function ft �= 0 such that [ut ]A1 ≈ 1/t and

(18) ‖Tγ (ftu
γ
t )‖Lq,∞(ut )

>∼ [ut ]
1−γ

A1
‖ft‖Lp(ut ).

Proof of Proposition 8.1 assuming Lemma 8.2. First, note that

‖ft‖Lp(ut ) = ‖ftu
γ
t ‖

Lp(u
p/q
t )

since 1/p − 1/q = γ . By replacing ft with ftu
−γ
t , (18) becomes

(19) ‖Tγ ft‖Lq,∞(ut )
>∼ [ut ]

1−γ

A1
‖ft‖Lp(u

p/q
t )

.

We denote wt := u
1/q
t and observe that, by Lemma 2.7(i), [ut ]A1 = [wq

t ]A1 ≥
[wq

t ]A1+q/p′ = [wt ]Ap,q
. Thus, (19) yields

‖Tγ ft‖Lq,∞(w
q
t )

>∼ [wq
t ]1−γ

A1
‖ft‖Lp(w

p
t ) ≥ [wt ]

1−γ

Ap,q
‖ft‖Lp(w

p
t ).

This shows the estimate (17). Moreover, we have that

[wt ]
1−γ

Ap,q
‖ft‖Lp(w

p
t )

>∼ ‖Tγ ft‖Lq,∞(w
q
t )

>∼ [wq
t ]1−γ

A1
‖ft‖Lp(w

p
t )

≥ [wt ]
1−γ

Ap,q
‖ft‖Lp(w

p
t )

so that
[wt ]Ap,q

≈ [wq
t ]A1 = [ut ]A1 ≈ 1

t
.

Finally, let φ: [1, ∞) → (0, ∞) be an increasing function such that
‖Tγ ‖Lp(wp)→Lq,∞(wq) ≤ φ([w]Ap,q

). Then, in particular, for every 0 < t < 1
and a large C,

φ(C/t) ≥ φ([wt ]Ap,q
) ≥ ‖Tγ ‖Lp(wp)→Lq,∞(wq)

>∼ [wt ]
1−γ

Ap,q

>∼ tγ−1
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so that for every s := C/t ∈ (C, ∞),

φ(s) >∼ (C/s)γ−1 >∼ s1−γ .

We are left to prove Lemma 8.2. The proof consists of several steps. We
start with the following definitions.

Definition 8.3 (ε-point). We say that a point x ∈ X is an ε-point for
ε > 0, if there exists R > 0 such that

(20) μ(B(x, R)) > ε−1μ({x}).
The key observation in our investigations in this section is that the property
#X = ∞ implies, by Lemma 2.3, the existence of an ε-point for every ε > 0.

Definition 8.4 (Power weights). For 0 < t < 1, let xt ∈ X be an ε = ε(t)-
point (for a small ε(t) > 0 to be fixed). We define

(21) ut (x) := 1

μ(B(xt , ρ(x, xt )))1−t
,

where it is agreed that B(x, 0) = {x} for all x ∈ X.

The small positive number ε(t) will vary in the different lemmata below,
until we fix it at the end of the proof.

Lemma 8.5. Let 0 < t < 1 and suppose that xt is an ε-point with ε =
(2Cμ)−3/t . Then, for any ball B = B(xt , R),

ut (B) :=
∫

B

ut dμ <∼
μ(B)t

t
.

Moreover, if μ(B(xt , R)) > ε−1μ({xt }), then

ut (B) >∼
μ(B)t

t
.

Proof. Fix B = B(xt , R).
Case 1. First assume that μ(B) ≤ 2μ({xt }), so that only the first assertion

requires a proof. Note that now μ({xt }) > 0, and thus {xt } = B(xt , ε) for
some ε > 0. We have∫

B

ut dμ =
∫

{xt }
ut dμ +

∫
B\B(xt ,ε)

ut dμ ≤ μ({xt })t + μ(B) − μ({xt })
μ({xt })1−t

≤ 2μ({xt })t <∼
μ(B)t

t
.
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Case 2. We may then assume thatμ(B) > 2μ({xt }). We choose a decreasing
sequence (rk) of radii as follows: Let r0 = R. Then let k1 ≥ 1 be the smallest
integer such that μ(B(xt , 2−k1R)) < 2−1μ(B(xt , r0)), and set r1 := 2−k1R.
Note that since μ(B(xt , r0)) > 2μ({xt }), such an r1 exists. Having chosen
km and rm in this fashion, let km+1 > km be the smallest integer such that
μ(B(xt , 2−km+1R)) < 2−1μ(B(xt , rm)), and set rm+1 := 2−km+1R. Note that
if μ({xt }) = 0, we may keep sub-dividing infinitely many times. Otherwise,
we stop iterating at the step K ≥ 1 for which μ(B(xt , rK−1)) > 2μ({xt }) and
μ(B(xt , rK)) ≤ 2μ({xt }).

Note that we have

(22) μ(B(xt , ri+1)) < 2−1μ(B(xt , ri)).

On the other hand, since ri+1 is, by choice, the largest number of the form
2−k1r with the property (22), 2ri+1 satisfies the inverse estimate, and thus

(23) μ(B(xt , ri)) ≤ 2μ(B(xt , 2ri+1)) ≤ 2Cμμ(B(xt , ri+1)),

where the second estimate follows by the doubling property.
For the first assertion, we consider two cases: First assume that μ({xt }) = 0.

We may then keep sub-divining infinitely many times, and∫
B

ut dμ =
∞∑
i=0

∫
B(xt ,ri )\B(xt ,ri+1)

dμ(y)

μ(B(xt , ρ(y, xt )))1−t

≤
∞∑
i=0

μ(B(xt , ri))

μ(B(xt , ri+1))1−t
<∼

∞∑
i=0

μ(B(xt , ri+1))
t

≤ μ(B(xt , r0))
t (1 + 2−t + 2−2t + · · ·)

= μ(B(xt , R))t

1 − 2−t
<∼

μ(B)t

t

where we used (23) in the second estimate and (22) in the second-to-last
estimate.

Then assume that μ({xt }) > 0 and let K denote the step when the iteration
ends. Then∫

B

ut dμ =
K−1∑
i=0

∫
B(xt ,ri )\B(xt ,ri+1)

dμ(y)

μ(B(xt , ρ(y, xt )))1−t

+
∫

B(xt ,rK )

dμ(y)

μ(B(xt , ρ(y, xt )))1−t

=: I1 + I2.
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The term I1 is estimated as in the first case only that we now have a finite sum
instead of an infinite one. Recall that the iteration stops when μ(B(xt , rK)) ≤
2μ({xt }), so that the ball B(xt , rK) in the term I2 is in the regime of the Case
1. This completes the proof for the first assertion.

For the second assertion, suppose μ(B(xt , R)) > (2Cμ)3/tμ({xt }). Let K

be an integer such that
K − 1 <

1

t
≤ K.

By iterating (23), we see that

μ(B(xt , rK)) ≥ (2Cμ)−Kμ(B(xt , r0))

≥ (2Cμ)−1(2Cμ)−1/tμ(B(x, R))

> 2μ({xt }),
which shows that the iteration proceeds at least K times. Also note that by
K ≥ 1/t , we have

(24) (2Cμ)−Kt ≤ 2−1.

Thus, ∫
B

ut dμ =
K−1∑
i=0

∫
B(xt ,ri )\B(xt ,ri+1)

dμ(y)

μ(B(xt , ρ(y, xt )))1−t

+
∫

B(xt ,rK )

dμ(y)

μ(B(xt , ρ(y, xt )))1−t

≥
K−1∑
i=0

μ(B(xt , ri)) − μ(B(xt , ri+1))

μ(B(xt , ri))1−t
.

Note that here μ(B(xt , ri))−μ(B(xt , ri+1)) ≥ 2−1μ(B(xt , ri)) by (22). Thus,
by (23) and (24),∫

B

ut dμ ≥ 2−1
K−1∑
i=0

μ(B(xt , ri))
t

≥ 2−1μ(B(xt , r0))
t
(
1 + (2Cμ)−t + · · · + (2Cμ)−(K−1)t

)
= 2−1μ(B(xt , R))t

1 − (2Cμ)−Kt

1 − (2Cμ)−t
>∼

μ(B)t

t
.

Lemma 8.6. Let 0 < t < 1 and suppose that xt is an ε-point with ε =
(2Cμ)−3/t . Then

[ut ]A1 ≈ 1

t
.
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Proof. To show the estimate <∼, it suffices to show that for a.e. x ∈ X and
all balls B � x,

1

μ(B)

∫
B

ut dμ <∼
ut (x)

t
.

To this end, fix x ∈ X and a ball B = B(y, r) � x.
Case 1. First assume that r ≤ (4A2

0)
−1ρ(x, xt ). Note that if xt is not a

point mass, it suffices to consider points x �= xt ; otherwise, for x = xt ,
the restriction on r (formally) reduces to considering only the ball B(xt , 0)

which is interpreted as the singleton {xt }. Then, for z ∈ B we have that
ρ(z, xt ) ≥ (2A0)

−1ρ(x, xt ), and thus

1

μ(B)

∫
B

ut dμ

= 1

μ(B)

∫
B

dμ(z)

μ(B(xt , ρ(z, xt )))1−t
≤ 1

μ(B(xt , (2A0)−1ρ(x, xt )))1−t

=
(

μ(B(xt , ρ(x, xt )))

μ(B(xt , (2A0)−1ρ(x, xt )))

)1−t

ut (x) <∼ ut (x) ≤ ut (x)

t
.

Case 2. Then assume that r > (4A2
0)

−1ρ(x, xt ). (This also includes the
case x = xt if xt is a point mass, and in this case we consider any r > 0.)
Consider the balls B̂ := B(xt , R), R := 6A4

0r , and B̃ := B(y, 2A0R). It is
easy to see that B ⊆ B̂ ⊆ B̃, and the doubling property implies that

(25) μ(B) ≤ μ(B̂) ≤ μ(B̃) ≤ Cμ(B), C = C(A0, μ).

Thus, by Lemma 8.5, we conclude with

1

μ(B)

∫
B

ut dμ ≤ C

μ(B̂)

∫
B̂

ut dμ <∼
1

μ(B̂)

μ(B̂)t

t

= 1

tμ(B(xt , R))1−t
≤ ut (x)

t

since B(xt , R) ⊇ B(xt , ρ(x, xt )) by the choice of R.

We are left to show the estimate >∼, and it suffices to show that there exists
a set E with μ(E) > 0 such that for every x ∈ E and some ball B � x we
have that 1

μ(B)

∫
B

ut dμ >∼
ut (x)

t
.

To see this, recall that xt is a (2Cμ)−3/t -point so that there exists a ball B =
B(xt , R) so that μ(B(xt , R)) > (2Cμ)3/tμ({xt }). Let k ≥ 1 be the first integer
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such that μ(B(xt , 2−kR)) < 2−1μ(B), and set r := 2−kR. Then the ball
B(xt , 2r) satisfies the inverse estimate, i.e.

(26) μ(B) ≤ 2μ(B(xt , 2r)) ≤ 2Cμμ(B(xt , r)).

Set E := B \ B(xt , r). Then μ(E) = μ(B) − μ(B(xt , r)) > 2−1μ(B) > 0,
and for every x ∈ E, the ball B � x satisfies, by Lemma 8.5 and (26), the
estimate

1

μ(B)

∫
B

ut dμ >∼
1

tμ(B)1−t
>∼

1

tμ(B(xt , r))1−t

≥ 1

tμ(B(xt , ρ(x, xt )))1−t
= ut (x)

t
.

Lemma 8.7. Let 0 < t < 1 and suppose that xt is an ε-point with ε =
(2Cμ)−3/t , and let B = B(xt , R) be a ball so that μ(B) > ε−1μ({xt }). Then,
for the function ft = χB ,

‖ft‖Lp(ut ) = ut (B)1/p ≈
(

μ(B)t

t

)1/p

.

Proof. This is a special case of Lemma 8.5.

The proof of Lemma 8.2 is finally completed by the following lemma.

Lemma 8.8. Given 0 < t < 1, suppose xt is an ε-point with ε = (2Cμ)−2 ·
(2Cμ)−4/(tγ ), and let B = B(xt , R) be a ball so that μ(B) > ε−1μ({xt }). Let
ut be a power weight defined in 8.4 and set ft = χB . Then

‖Tγ (ftu
γ
t )‖Lq,∞(ut )

>∼ [ut ]
1−γ

A1
‖ft‖Lp(ut ).

Proof. We pick a decreasing sequence (rk) of radii as in the proof of
Lemma 8.5: Let r0 := R. Then let k1 ≥ 1 be the smallest integer such that
μ(B(xt , 2−k1r0)) < 2−1μ(B(xt , r0)), and set r1 := 2−k1r0. Having chosen
km and rm in this fashion, let km+1 > km be the smallest integer such that
μ(B(xt , 2−km+1r0)) < 2−1μ(B(xt , rm)), and set rm+1 := 2−km+1r0. Again, if
μ({xt }) = 0, we may keep sub-dividing infinitely many times, and other-
wise, we stop at the step K ≥ 1 for which μ(B(xt , rK−1)) > 2μ({xt }) and
μ(B(xt , rK)) ≤ 2μ({xt }).

We have the estimate

(27) μ(B(xt , ri)) ≤ 2Cμμ(B(xt , ri+1));
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cf. (23) (with r0 = R in stead of r0 = r). Let K ≥ 1 be an integer such that

K − 1 <
1

tγ
≤ K.

Let us show that the sub-division into smaller balls by reducing to half the
mass proceeds at least K times. Indeed, by iterating (27) and by the choice of
K , we see that

(28) μ(B(xt , rK)) ≥ (2Cμ)−Kμ(B(xt , r0)) ≥ (2Cμ)−1(2Cμ)−1/(tγ )μ(B).

First, (28) implies that

(29) μ(B(xt , rK)) > 2Cμ(2Cμ)3/(tγ )μ({xt }).

In particular, μ(B(xt , rK)) > 2μ({xt }) and thus, we may sub-divide K times,
as claimed. Set rt := 2−1rK . Then μ(B(xt , rt )) = μ(B(xt , 2−1rK))

≥ (Cμ)−1μ(B(xt , rK)), and by (29) we have that

(30) μ(B(xt , rt )) ≥ (2Cμ)3/(tγ )μ({xt }) > (2Cμ)3/tμ({xt }).

Second, (28) implies that

(31) μ(B(xt , rt ))
t ≥ Cμ(B)t , C = C(μ, γ ).

We then estimate

‖Tγ (ftu
γ
t )‖Lq,∞(ut ) = sup

λ>0
λut

({x ∈ X: Tγ (ftu
γ
t )(x) > λ})1/q

≥ sup
λ>0

λut

({x ∈ B(xt , rt ): Tγ (ftu
γ
t )(x) > λ})1/q

.

Let x ∈ B(xt , rt ). Then

Tγ (ftu
γ
t )(x) ≥

∫
X\{x}

χB(y)u
γ
t (y)dμ(y)

μ(B(x, ρ(x, y)))1−γ

≥
∫

B(xt ,R)\B(xt ,2ρ(xt ,x))

u
γ
t (y)dμ(y)

μ(B(x, ρ(x, y)))1−γ
.

Observe that for y /∈ B(xt , 2ρ(x, xt )), we have B(x, ρ(x, y)) ⊆ B(xt ,

2A2
0ρ(xt , y)), and the doubling property implies that μ(B(x, ρ(x, y))) ≤
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μ(B(xt , 2A2
0ρ(xt , y))) <∼ μ(B(xt , ρ(xt , y))). Thus,

Tγ (ftu
γ
t )(x) >∼

∫
B(xt ,R)\B(xt ,2ρ(xt ,x))

u
γ
t (y)dμ(y)

μ(B(xt , ρ(xt , y)))1−γ

=
∫

B(xt ,R)\B(xt ,2ρ(xt ,x))

dμ(y)

μ(B(xt , ρ(xt , y)))1−tγ

≥
K−1∑
i=0

∫
B(xt ,ri )\B(xt ,ri+1)

dμ(y)

μ(B(xt , ρ(xt , y)))1−tγ

since x ∈ B(xt , rt ) and thereby, 2ρ(xt , x) < 2rt = rK by the choice of rt so
that B(xt , 2ρ(xt , x)) ⊆ B(xt , rK). From now on the estimates are very similar
to the ones performed when proving the estimate >∼ of Lemma 8.5 with the
only deviation that here the exponent of the quantities μ(B(xt , ri)) is tγ in
place of t . We may conclude with

Tγ (ftu
γ
t )(x) >∼ μ(B(xt , R))tγ

1 − (2Cμ)−Ktγ

1 − (2Cμ)−tγ
.

Recall from the beginning of the proof that K is chosen to satisfy K ≥ 1/(tγ ).
Thus, (2Cμ)−Ktγ < (2Cμ)−1 < 1/2, so that

Tγ (ftu
γ
t )(x) >∼

μ(B(xt , R))tγ

1 − (2Cμ)−tγ
>∼

μ(B)tγ

tγ

for 0 < tγ < 1 and x ∈ B(xt , rt ).
We have shown that

‖Tγ (ftu
γ
t )‖Lq,∞(ut )

>∼ sup
λ>0

λut

({x ∈ B(xt , rt ): Tγ (ftu
γ
t )(x) > λ})1/q

>∼
μ(B)tγ

2tγ
ut

({
x ∈ B(xt , rt ): Tγ (ftu

γ
t )(x) >

μ(B)tγ

2tγ

})1/q

= μ(B)tγ

2tγ
ut (B(xt , rt ))

1/q .

By (30), we may use Lemma 8.5 to estimate ut (B(xt , rt )) from below. Recall-
ing (31), we see that

ut (B(xt , rt )) >∼
μ(B(xt , rt ))

t

t
>∼

μ(B)t

t
.
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Thus,

‖Tγ (ftu
γ
t )‖Lq,∞(ut ) ≥ C

1

t

(
1

t

)1/q

μ(B)tγ μ(B)t/q

≈ C

(
1

t

)1−γ (
1

t

)1/p

μ(B)t/p

=
(

1

t

)1−γ (
μ(B)t

t

)1/p

, C = C(A0, Cμ, γ ),

where we used the identity 1/p − 1/q = γ . Lemma 8.6 and Lemma 8.7 now
complete the proof.
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