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STRICT U-IDEALS AND U-SUMMANDS
IN BANACH SPACES

TROND A. ABRAHAMSEN

Abstract
For a strict u-ideal X in a Banach space Y we show that the set of points in the dual unit ball
BX∗ , strongly exposed by points in the range TY of the unconditional extension operator T from
Y into the bidual X∗∗ of X, is contained in the weak∗ denting points in BX∗ . We also prove that
a u-embedded space is a u-summand if and only if it contains no copy of c0 if and only if it is
weakly sequentially complete.

1. Introduction

The concepts of a u-ideal and a u-summand were introduced and deeply studied
by Godefroy, Kalton, and Saphar in their seminal paper [7]. These structures
have also been further studied in later papers (cf. e.g. [2], [3], [12], and [1]).

Let X be a closed subspace of a Banach space Y . If the annihilator X⊥ of
X is the kernel of a norm one projection P on the dual Y ∗ of Y , X is said to be
an ideal in Y . If X is an ideal in Y and P an associated projection on Y ∗ with
kernel X⊥, we can, following [7], define an operator T from Y to X∗∗ by

(1) (iX)∗y∗(Ty) = Py∗(y) for every y ∈ Y, y∗ ∈ Y ∗.

(Here iX denotes the canonical embedding of X into Y .) It is straightforward
to show that this T is in E (Y, X∗∗), the set of all bounded linear operators of
norm one from Y into X∗∗ being the identity on X. (We will refer to E (Y, X∗∗)
as the set of extension operators from Y into X∗∗). Vice versa if we start with
some T in E (Y, X∗∗), then (1) defines a norm one projection P on Y ∗ with
kernel X⊥. Thus X is an ideal in Y exactly when E (Y, X∗∗) is non-empty. An
ideal X in Y is said to be a strict ideal if there is an isometric T ∈ E (Y, X∗∗).

A space X is called a u-summand in Y if X is complemented in Y by a
projection P with ‖IY − 2P ‖ = 1. (Here IY denotes the identity operator on
Y ). It is useful to note that X is a u-summand in Y if and only if there is a
subspace Z of Y so that X ⊕ Z = Y and ‖x + z‖ = ‖x − z‖ for every x ∈ X

and z ∈ Z. When X⊥ is a u-summand in Y ∗, we say that X is a u-ideal in Y .
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The associated projection P on Y ∗ with kernel X⊥ and with ‖IY ∗ −2P ‖ = 1, is
called a u-projection on Y ∗. The T in (1) corresponding to this u-projection P

is called an unconditional extension operator. There is only one u-projection on
Y ∗ with kernel X⊥ or equivalently only one unconditional extension operator
T ∈ E (Y, X∗∗) (see [7, Lemma 3.1] or [2, Proposition 2.2]). A strict u-ideal
X in Y is a u-ideal where the unconditional extension operator T ∈ E (Y, X∗∗)
is isometric. In the important case when X is a u-ideal in X∗∗, we simply say
that X is u-embedded.

Let X be a strict u-ideal in Y with (isometric) unconditional extension
operator T ∈ E (Y, X∗∗). In Section 2 we show that the set T − str.exp.BX∗ of
points in BX∗ , strongly exposed by some Ty where ‖y‖ = 1, is contained in the
weak∗ denting points in BX∗ . See Section 2 for definitions of weak∗ denting
and strongly exposed points.

In Section 3 we show that if X is a strict ideal in Y and we assume that the
associated projection P on Y ∗ with kernel X⊥ satisfies ‖IY ∗ −λP ‖ = a < λ for
1 < λ ≤ 2, then the characteristic r(ker Ty) (see Section 3 for the definition)
of the kernel ker Ty of Ty is ≤ 1/2 when y ∈ Y \ {0}. As a consequence of
this we obtain that r(Z) ≤ 1/2 for every proper closed subspace of the dual
of a strictly u-embedded space X.

In Section 4 we show that if X contains no copy of �1 then the equality
‖IX∗∗∗ −2πX∗∗∗‖ = 1 holds if and only if the equality ‖IBa(X)∗ −2πBa(X)∗‖ = 1
holds. Here πX∗∗∗ and πBa(X)∗ denote respectively the canonical projections on
X∗∗∗ and Ba(X)∗ where Ba(X) is the Banach space of Baire-one functions in
X∗∗.

In Section 5 we show that a u-embedded space is a u-summand if and only
if it contains no copy of c0 if and only if it is weakly sequentially complete,
hence extending a result only known to hold for order continuous Banach
lattices (being u-embedded spaces) [7, Example (1) p. 26].

The notation is mostly standard. When some notation or term is used which
we do not think is standard or self explanatory, we explain its meaning there
and then.

2. Unique extension and strict u-ideals

Let us first recall some definitions that we need below. A slice of BX is a subset
S(BX, x∗, ε) of BX defined by

S(BX, x∗, ε) =
{
x ∈ BX : x∗(x) > sup

y∈BX

x∗(y) − ε
}
,

where x∗ ∈ X∗ \ {0} and ε > 0. If X is a dual space we can speak of a
weak∗ slice when x∗ is weak∗ continuous. A point x in BX is called a denting
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point, and we write x ∈ dent.BX, if there is a sequence of slices Sn of BX

with x ∈ Sn, for all n, and diam(Sn) → 0 where diam(Sn) is the diameter
of Sn. If we can choose a fixed x∗ ∈ X∗ \ {0} and the slices Sn to be of the
form Sn = S(BX, x∗, 1/n), then x is called a strongly exposed point of BX,
and we write x ∈ str.exp.BX. When X is a dual space, we say that x in BX

is a weak∗ denting (resp. weak∗ strongly exposed) point of BX, and we write
x ∈ w∗ − dent.BX (resp. x ∈ w∗ − str.exp.BX), if the Sn’s are weak∗ slices.
By definition w∗ − str.exp.BX ⊂ w∗ − dent.BX.

Now let us motivate the results of this section. To begin with note that the
class of strictly u-embedded spaces properly contains the much studied class
of M-embedded spaces (cf. e.g. [10, Chapter III] and [7, Example (6) p. 29]).

We know that strictly u-embedded spaces have the unique extension prop-
erty (UEP), i.e., E (X∗∗, X∗∗) = {IX∗∗ } (see [12, Theorem 2.3 and Remark 2.1]).
At the same time the strictly u-embedded spaces are not Hahn-Banach smooth,
i.e., they do not in general have the property that every x∗ ∈ X∗ has a
unique norm-preserving extension to X∗∗ [7, Example (6) p. 29]. (Note that
by (1) Hahn-Banach smoothness implies the UEP) However, recently it was
proved that str.exp.BX∗ ⊂ w∗ − dent.BX∗ [12, Proposition 3.1] for strictly
u-embedded spaces X which implies (2) that every x∗ ∈ str.exp.BX∗ has a
unique norm-preserving extension to X∗∗ since this is well known to hold for
every x∗ ∈ w∗ − dent.BX∗ . Using the proof of [12, Proposition 3.1] almost
verbatim we obtain the following extension.

Proposition 2.1. Let X be a strict u-ideal in Y and let T ∈ E (Y, X∗∗)
be the associated unconditional extension operator. Then T − str.exp.BX∗ ⊂
w∗ − dent.BX∗ . In particular every x∗ ∈ T − str.exp.BX∗ has a unique norm-
preserving extension to X∗∗.

Proof. Let x∗ ∈ T − str.exp.BX∗ and let Ty be a strongly exposing func-
tional for x∗. Let ε > 0 and choose δ0 > 0 such that {u∗ ∈ BX∗ : Ty(u∗) >

1 − √
δ0} ⊂ BX∗(x∗, ε) and 1 + εδ0 > 2

√
δ0(1 + ε).

Let δ ∈ (0, δ0). Then 1 + εδ > 2
√

δ(1 + ε), which is equivalent to 2(1 −
δ)/(1 + εδ) − 2 + √

δ > 0. Choose η > 0 with 0 < η < 2(1 − δ)/(1 + εδ) −
2 + √

δ and {u∗ ∈ BX∗ : Ty(u∗) > 1 − η} ⊂ BX∗(x∗, εδ/(1 + εδ)).
Since X is a strict u-ideal in Y we have 1 = infx∈SX

‖y − 2x‖ [12, The-
orem 2.4]. Choose x ∈ SX such that ‖y − 2x‖ < 1 + η. Choose u∗ ∈ BX∗

such that u∗(x) = 1. Then

1 + η > ‖y − 2x‖ = ‖Ty − 2x‖ ≥ u∗(2x − Ty) = 2 − Ty(u∗).

Thus Ty(u∗) > 1 − η. It follows that ‖u∗ − x∗‖ < εδ/(1 + εδ).
Let u = x/x∗(x). Then x∗(x) ≥ u∗(x) − ‖x∗ − u∗‖ > 1/(1 + εδ) so

‖u‖ = 1/x∗(x) ≤ 1 + εδ. If z∗ ∈ BX∗ and z∗(u) > 1 − δ, then z∗(x) =
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z∗(u)x∗(x) > (1 − δ)x∗(x). Hence

1 + η > ‖Ty − 2x‖ ≥ z∗(2x − Ty) ≥ 2(1 − δ)x∗(x) − Ty(z∗),

and Ty(z∗) > 2(1−δ)x∗(x)−1−η ≥ 2(1−δ)

1+εδ
−1−η. But then Ty(z∗) > 1−√

δ,
from which it follows that ‖z∗ − x∗‖ < ε. Thus x∗ is contained in the weak∗
slices of arbitrarily small diameter, i.e. x∗ is weak∗ denting.

The last part follows from (2).

Recall that the space Ba(X) of Baire-one functions in X∗∗ consists of mem-
bers x∗∗ ∈ X∗∗ which are weak∗ limits of sequences in X. If X is a strict u-
ideal in Y , X∗ need not have the Radon-Nikodým property (RNP) unlike when
Y = X∗∗ [13, Proposition 4.1]). For example if we put X = c0 ⊕∞ �1, then
X is a strict u-ideal in Ba(X) [1, Remark 4.5], but of course X∗ = �1 ⊕1 �∞
does not have the RNP. But

Corollary 2.2. Let X be a strict u-ideal in Y and let T ∈ E (Y, X∗∗) be
the associated unconditional extension operator. If X∗ has the RNP, then

conv‖·‖(w∗ − str.exp.BX∗) = conv‖·‖(T − str.exp.BX∗)

= conv‖·‖(w∗ − dent.BX∗).

Proof. Choose x∗ ∈ w∗ − dent.BX∗ . Since convw∗
(w∗ − str.exp.BX∗) =

BX∗ [5], we can find a net (xα) in conv‖·‖(w∗ −str.exp.BX∗) such that x∗
α → x∗

weak∗. Since x∗ is a weak∗ denting point we get that ‖x∗ − x∗
α‖ → 0.

Thus conv‖·‖(w∗ − str.exp.BX∗) = conv‖·‖(w∗ − dent.BX∗). Since w∗ −
str.exp.BX∗ ⊂ T − str.exp.BX∗ ⊂ w∗ − dent.BX∗ the result follows.

Remark 2.3. Note that if the conditions in Corollary 2.2 hold and
conv‖·‖(w∗ − str.exp.BX∗) = BX∗ , then X has the unique ideal property in Y .
This is e.g. the case when X is strictly u-embedded (see [13, Proposition 4.1]).

In the general case when X is a strict u-ideal in Y , far less is known than
in the special case when Y = X∗∗. For example it is not known whether a
strict u-ideal X in Y has the unique ideal property, i.e., E (Y, X∗∗) consists of
a singleton. In some special cases one can however prove that a strict u-ideal
has the unique ideal property.

Proposition 2.4. If X is a strict ideal in Y with corresponding T ∈
E (Y, X∗∗) and the norm on X is Fréchet differentiable on X \ {0}, then X

has the unique ideal property in Y .

Proof. Suppose X is a strict ideal in Y with corresponding T ∈ E (Y, X∗∗)
and the norm on X is Fréchet differentiable on X\{0}. Then by the smoothness
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condition it follows that X is nicely smooth, i.e. for every x∗∗ ∈ X∗∗ we have
∩x∈XBX∗∗(x, ‖x∗∗−x‖) = {x∗∗} [9, Examples p. 118]. SinceT is isometric, we
have for every y ∈ Y that {Ty} = ∩x∈XBX∗∗(x, ‖Ty−x‖) = ∩x∈XBX∗∗(x, ‖y−
x‖). Now if S ∈ E (Y, X∗∗) we get that ‖Sy − x‖ ≤ ‖y − x‖ for every x ∈ X

and y ∈ Y . Thus Sy = Ty, as wanted.

3. Norming subspaces and strict (u-)ideals

Recall that a subspace Z of the dual X∗ of X is r-norming for X if
supx∗∈SX∗ ∩Z |x∗(x)| ≥ r‖x‖ for every x ∈ X. The characteristic r(Z) of Z

is defined to be the greatest such constant r . In [7, Propositions 2.7 and 5.2]
Godefroy et al. showed that the characteristic of every proper closed subspace
of the dual of a strictly u-embedded space X is ≤ 1/2 when X does not contain
�1 (See also [8, Lemma 4.1] for M-embedded spaces). This result, but with
no restrictions on X, follows from the proof of Proposition 3.1 below. The
proposition is inspired by [7, Proposition 2.7].

Proposition 3.1. Let X be a strict ideal in Y with corresponding ideal pro-
jection P on Y ∗ and associated isometric extension operator T ∈ E (Y, X∗∗).
Suppose 1 < λ ≤ 2 and that ‖IY ∗ − λP ‖ = a < λ. Then r(ker Ty) ≤ aλ−1

for every y ∈ Y \ {0}.
Proof. Let ε > 0, y ∈ SY , and put M = ker Ty ⊂ X∗. From [7,

Lemma 2.2] there is a net (xα) in BX which tends to Ty weak∗ in X∗∗ and
with lim supα ‖y − λxα‖ ≤ a. We have

λ sup
x∗∈SM

|x∗(xα)| ≤ ‖Ty − λxα‖ ≤ ‖y − λxα‖.

Since ‖Ty‖ = ‖y‖ = 1, there is an α1 such that 1 ≥ ‖xα1‖ > 1 − ε and
‖y − λxα1‖ < a + ε. Thus supx∗∈SM

∣∣x∗( xα1
‖xα1 ‖

)∣∣ ≤ a+ε
λ(1−ε)

. Since ε is arbitrary
we are done.

Corollary 3.2. Let X be a strict ideal in X∗∗ with corresponding ideal
projection P on X∗∗∗. Suppose 1 < λ ≤ 2 and that ‖IX∗∗∗ − λP ‖ = a < λ.
Then for every proper closed subspace Z of X∗ we have r(Z) ≤ aλ−1.

Proof. Since every proper closed subspace of X∗ is contained in ker x∗∗
for some x∗∗ ∈ X∗∗ \ {0}, it suffices to prove that for every x∗∗ ∈ X∗∗ \ {0}
we have r(ker x∗∗) ≤ aλ−1. But this follows by arguing as in the proof of
Proposition 3.1.

Corollary 3.3. Let X be strictly u-embedded. Then for every proper closed
subspace Z of X∗ we have r(Z) ≤ 1/2.
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Recall from the previous section that strictly u-embedded spaces have the
UEP. Here is an alternative proof of this fact.

Corollary 3.4. Strictly u-embedded spaces have the UEP.

Proof. This follows from [8, Proposition 2.5] since r(Z) ≤ 1/2 for every
proper closed subspace Z of X∗.

4. Strict u-ideals in the space of Baire-one functions

In [12] Lima and Lima characterized when a Banach space X is strictly u-
embedded both in terms of the canonical projection πX∗∗∗ on X∗∗∗ onto X∗
and in terms of subspaces of X. (Note that πX∗∗∗ = kX∗(kX)∗ where kX is the
canonical embedding of X into X∗∗ defined by kXx(x∗) = x∗(x).)

Theorem 4.1 ([12, Theorems 2.8 and 2.9]). Let X be a Banach space. Then
the following statements are equivalent.

a) ‖IX∗∗∗ − 2πX∗∗∗‖ = 1.

b) X is strictly u-embedded.

c) For every separable subspace Z in X, Z is strictly u-embedded.

The aim of this section is to show that when X does not contain a copy of
�1, then we can add to this theorem the statement that ‖IBa(X)∗ − 2πBa(X)∗‖ =
1. Here πBa(X)∗ is the canonical projection on Ba(X)∗ defined by πBa(X)∗ =
iX∗(iX)∗ where iX : X → Ba(X) and iX∗ : X∗ → Ba(X)∗ denote the canonical
embeddings. Note that iX∗x∗(x∗∗) = x∗∗(x∗) for every x∗ ∈ X∗ and x∗∗ ∈
Ba(X). In the proof of Proposition 4.2 we will use that the T in E (Ba(X), X∗∗)
associated with πBa(X)∗ is just the canonical embedding iBa(X) of Ba(X) into
X∗∗.

Note that the statement ‖IBa(X)∗ − 2πBa(X)∗‖ = 1 implies that X is a strict
u-ideal in Ba(X) [7, Lemma 2.2]. If X is separable also the converse of this
holds [1].

We need a preliminary result inspired by [7, Proposition 2.3].

Proposition 4.2. Let X be a Banach space and suppose K is a compact
subset of R and a > 0. Then the following conditions are equivalent.

a) ‖IBa(X)∗ − λπBa(X)∗‖ ≤ a for every λ ∈ K .

b) Whenever ε > 0, x∗∗ ∈ Ba(X) and (xn) is a sequence in X such that
xn → x∗∗ weak∗ in X∗∗ then there exists u ∈ conv(xn)n≥1 with ‖x∗∗ −
λu‖ < a‖x∗∗‖ + ε for every λ ∈ K .

c) For every x∗∗ ∈ Ba(X), there is a sequence (xn) in X such that xn → x∗∗
weak∗ in X∗∗ and with lim supn ‖x∗∗ −λxn‖ ≤ a‖x∗∗‖ for every λ ∈ K .
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Proof. a) ⇒ b) follows from [7, Lemma 2.2 (1) ⇒ (2)] by putting A =
conv(xn)n≥1 since T ∈ E (Ba(X), X∗∗) associated with πBa(X)∗ is iBa(X).

b) ⇒ c). Let x∗∗ ∈ Ba(X), remember that iBa(X)(x
∗∗) = x∗∗, and choose

a sequence (xn) in X such that xn tends to x∗∗ weak∗ in X∗∗. Put A1 =
conv(xn)n≥1. Then x∗∗ is in the weak∗ closure of A1 and by [7, Lemma 2.2 (2)]
we can find u1 ∈ A1 such that ‖x∗∗ − λu1‖ < a‖x∗∗‖ + 2−1 for every λ ∈ K .
Now, let A2 = conv(xk)k≥N2 where N2 is the largest index of xk where xk is in
the convex combination of u1. Still x∗∗ is in the weak∗ closure of A2 and by [7,
Lemma 2.2 (2)] we can find u2 ∈ A2 such that ‖x∗∗ − λu2‖ < a‖x∗∗‖ + 2−2

for every λ ∈ K . By repeating this process, we obtain a sequence (un) in X

such that un → x∗∗ weak∗ in X∗∗ with lim supn ‖x∗∗ − λun‖ ≤ a‖x∗∗‖ for
every λ ∈ K .

c) ⇒ a) follows from [7, Lemma 2.2 (3) ⇒ (1)].

Let us now state and prove our result.

Proposition 4.3. Let X be a Banach space not containing �1. Then the
following are equivalent.

a) ‖IX∗∗∗ − 2πX∗∗∗‖ = 1.

b) ‖IBa(X)∗ − 2πBa(X)∗‖ = 1.

Proof. a) ⇒ b). This is immediate from [7, Proposition 2.3 (1) ⇒ (2)] and
Proposition 4.2 b) ⇒ a).

b) ⇒ a). By Theorem 4.1 it suffices to prove that every separable subspace Z

in X is strictly u-embedded. To this end let z∗∗ ∈ Ba(Z) and choose a sequence
(zn) in Z such that zn → z∗∗ weak∗ in Z∗∗. Note that x∗∗ = (iZ)∗∗z∗∗ ∈ Ba(X)

(iZ : Z → X is the embedding of Z into X) and zn → x∗∗ weak∗ in X∗∗ by the
weak∗ continuity of (iZ)∗∗. Now using the assumption and Proposition 4.2 there
is some u ∈ conv(zn)n≥1 such that ‖z∗∗ − 2u‖ = ‖x∗∗ − 2u‖ < ‖x∗∗‖ + ε =
‖z∗∗‖ + ε. Again by Proposition 4.2 it follows that ‖IBa(Z)∗ − 2πBa(Z)∗‖ = 1.
Finally, since Z is separable and does not contain �1, we have Ba(Z) = Z∗∗
by a result of Odell and Rosenthal [15] so πBa(Z)∗ = πZ∗∗∗ and we are done.

5. U-ideals which are u-summands

In [7] the following important result about u-ideals was proved.

Theorem 5.1. Let X be a u-ideal in Y . If X contains no copy of c0, then X

is a u-summand in Y .

The projection P on c0 ⊕1 R defined by P(x, y) = x makes c0 a u-summand
(in particular a u-ideal) in c0 ⊕1 R. Thus the converse of Theorem 5.1 is not
true. However, if we put Y = X∗∗, one can still ask if the converse holds.
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Actually Godefroy et al. pointed out [7, Example (1) p. 26] that the converse
in fact holds for order-continuous Banach lattices (being u-embedded spaces).
The next result shows that this is indeed true for all Banach spaces.

Theorem 5.2. Let X be a u-ideal in X∗∗. Then the following statements are
equivalent.

a) X is a u-summand in X∗∗.

b) X contains no copy of c0.

c) X is weakly sequentially complete.

Proof. a) ⇒ c). Let P : X∗∗ → X∗∗ be the u-projection onto X and
note that J = 2P − IX∗∗ is an isometry onto X∗∗ such that JX = X.
By [6, Proposition 9] J is a homeomorphism from (Ba(X), weak∗) onto
(Ba(X), weak∗). Thus, if x∗∗ ∈ Ba(X) and x∗∗ = weak∗ − lim xn, then
2Px∗∗ − x∗∗ = weak∗ − lim(2Pxn − xn) = weak∗ − lim xn = x∗∗. Hence
x∗∗ = Px∗∗ ∈ X.

c) ⇒ b) follows since weak sequential completeness is inherited by sub-
spaces and c0 is not weakly sequentially complete.

b) ⇒ a) is Theorem 5.1.

Remark 5.3. In the more general case when X∗∗ is replaced by Y in The-
orem 5.2, the implications c) ⇒ b) ⇒ a) follow from Theorem 5.1. However,
none of the reverse implications hold. For a) �⇒ b) we have already given a
counterexample. For b) �⇒ c) put e.g. X = �1 ⊕1 J where J is the space of
James [11]. Then X contains no copy of c0 and is certainly not weakly sequen-
tially complete since J is not. Moreover, by a result of Maurey [14], there is
an x∗∗ ∈ X∗∗ such that ‖x∗∗ − x‖ = ‖x∗∗ + x‖ for all x ∈ X. It follows that
X is a u-summand in Z = span(X, {x∗∗}).

Recall [4] that a closed subspace X of a Banach space Y is said to be very
non-constrained (VNC) in Y if for all y ∈ Y ,

⋂
x∈X

BY (x, ‖y − x‖) = {y}.

A VNC subspace in its bidual is often referred to as a nicely smooth space.
Nicely smooth spaces have been studied in e.g. [9] and [8].

The aim of the last part of this section is to prove Proposition 5.5 and
thus extend the result [1, Proposition 4.1] that if X is separable and a u-ideal
in Ba(X) with unconditional extension operator T ∈ E (Ba(X), X∗∗), then
T (Ba(X)) ⊂ Ba(X) whenever X is a VNC subspace in Ba(X).

We will use the following result in the proof of Proposition 5.5.
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Proposition 5.4 ([4, Lemma 2.10]). Let X be a closed subspace of a Banach
space Y . Then the following are equivalent.

a) X is a VNC subspace in Y .

b) For every y ∈ Y \ {0}, ker(y)|X ⊂ X∗ is not 1-norming for X.

We need to recall also the definition of the number κu(X) (see [7, pp. 22–
23]); For each x∗∗ ∈ X∗∗ define κu(x

∗∗) to be the infimum over all a such
that if x∗∗ = ∑

n xn in the weak∗ topology of X∗∗, with xn ∈ X and such
that for any n ∈ N and θk = ±1 for 1 ≤ k ≤ n, we have

∥∥∑n
k=1 θkxk

∥∥ ≤ a.
Put κu(x

∗∗) = ∞ if no such a exists. Recall that X has property (u) if every
x∗∗ ∈ Ba(X) has κu(x

∗∗) < ∞. In this case it follows from the closed graph
theorem that there exists a constant C such that κu(x

∗∗) ≤ C‖x∗∗‖ for all
x∗∗ ∈ Ba(X). The least such constant is κu(X).

Proposition 5.5. Let X be a separable u-ideal in a Banach space Y with
unconditional extension operator T ∈ E (Y, X∗∗) and suppose X is a VNC
subspace in Ba(X). Then T (Y ) ⊂ Ba(X) and κu(Ty) ≤ ‖y‖ for every y ∈ Y .

Proof. Since X is separable there is a sequence (x∗
i )∞i=1 ⊂ SX∗ such that

M = span{x∗
i } is 1-norming for X. Let y ∈ Y and put

An =
{
x ∈ X : |Ty(x∗

i ) − x(x∗
i )| <

1

n
, i = 1, 2, . . . , n

}
.

Note that An is convex and non-empty and that Ty ∈ Hn, the weak∗ closure
of An in X∗∗, for each n. Since X is a u-ideal in Y , by [7, Lemma 3.4], for
every ε > 0 there exists χ ∈ ∩nHn such that κu(χ) ≤ ‖y‖ + ε. In particular,
χ ∈ Ba(X). Since χ ∈ ∩nHn, χ(f ) = Ty(f ) for all f ∈ M .

Now take an arbitrary x∗ ∈ X∗ and put N = span{M, {x∗}}. The same
argument as above produces a Baire-one member χ1 ∈ ∩nHn with χ1(f ) =
Ty(f ) for all f ∈ M and χ1(x

∗) = Ty(x∗).
We now use that X is a VNC-subspace of Ba(X). By Proposition 5.4 χ1 = χ

since ker(χ − χ1)|X ⊂ X∗ contains the norming subspace M . Since χ(x∗) =
χ1(x

∗) = Ty(x∗), we get that Ty = χ ∈ Ba(X) and κu(Ty) ≤ ‖y‖ + ε. As ε

is arbitrary, we get κu(Ty) ≤ ‖y‖.

Corollary 5.6. Let X be a separable and weakly sequentially complete
Banach space. Then X is a u-summand in a Banach space Y whenever it is a
u-ideal in Y .
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