STRICT U-IDEALS AND U-SUMMANDS IN BANACH SPACES

TROND A. ABRAHAMSEN

Abstract

For a strict u-ideal X in a Banach space Y we show that the set of points in the dual unit ball B_{X^*} , strongly exposed by points in the range TY of the unconditional extension operator T from Y into the bidual X^{**} of X, is contained in the weak* denting points in B_{X^*} . We also prove that a u-embedded space is a u-summand if and only if it contains no copy of c_0 if and only if it is weakly sequentially complete.

1. Introduction

The concepts of a u-ideal and a u-summand were introduced and deeply studied by Godefroy, Kalton, and Saphar in their seminal paper [7]. These structures have also been further studied in later papers (cf. e.g. [2], [3], [12], and [1]).

Let *X* be a closed subspace of a Banach space *Y*. If the annihilator X^{\perp} of *X* is the kernel of a norm one projection *P* on the dual Y^* of *Y*, *X* is said to be an ideal in *Y*. If *X* is an ideal in *Y* and *P* an associated projection on Y^* with kernel X^{\perp} , we can, following [7], define an operator *T* from *Y* to X^{**} by

(1)
$$(i_X)^* y^* (Ty) = P y^* (y)$$
 for every $y \in Y, y^* \in Y^*$.

(Here i_X denotes the canonical embedding of X into Y.) It is straightforward to show that this T is in $\mathscr{E}(Y, X^{**})$, the set of all bounded linear operators of norm one from Y into X^{**} being the identity on X. (We will refer to $\mathscr{E}(Y, X^{**})$ as the set of extension operators from Y into X^{**}). Vice versa if we start with some T in $\mathscr{E}(Y, X^{**})$, then (1) defines a norm one projection P on Y* with kernel X^{\perp} . Thus X is an ideal in Y exactly when $\mathscr{E}(Y, X^{**})$ is non-empty. An ideal X in Y is said to be a strict ideal if there is an isometric $T \in \mathscr{E}(Y, X^{**})$.

A space X is called a u-summand in Y if X is complemented in Y by a projection P with $||I_Y - 2P|| = 1$. (Here I_Y denotes the identity operator on Y). It is useful to note that X is a u-summand in Y if and only if there is a subspace Z of Y so that $X \oplus Z = Y$ and ||x + z|| = ||x - z|| for every $x \in X$ and $z \in Z$. When X^{\perp} is a u-summand in Y*, we say that X is a u-ideal in Y.

Received 31 January 2012, in final form 6 March 2013.

The associated projection P on Y^* with kernel X^{\perp} and with $||I_{Y^*} - 2P|| = 1$, is called a u-projection on Y^* . The T in (1) corresponding to this u-projection P is called an unconditional extension operator. There is only one u-projection on Y^* with kernel X^{\perp} or equivalently only one unconditional extension operator $T \in \mathscr{E}(Y, X^{**})$ (see [7, Lemma 3.1] or [2, Proposition 2.2]). A strict u-ideal X in Y is a u-ideal where the unconditional extension operator $T \in \mathscr{E}(Y, X^{**})$ is isometric. In the important case when X is a u-ideal in X^{**} , we simply say that X is u-embedded.

Let X be a strict u-ideal in Y with (isometric) unconditional extension operator $T \in \mathscr{C}(Y, X^{**})$. In Section 2 we show that the set $T - str.exp.B_{X^*}$ of points in B_{X^*} , strongly exposed by some Ty where ||y|| = 1, is contained in the weak^{*} denting points in B_{X^*} . See Section 2 for definitions of weak^{*} denting and strongly exposed points.

In Section 3 we show that if *X* is a strict ideal in *Y* and we assume that the associated projection *P* on *Y*^{*} with kernel X^{\perp} satisfies $||I_{Y^*} - \lambda P|| = a < \lambda$ for $1 < \lambda \le 2$, then the characteristic *r*(ker *Ty*) (see Section 3 for the definition) of the kernel ker *Ty* of *Ty* is $\le 1/2$ when $y \in Y \setminus \{0\}$. As a consequence of this we obtain that $r(Z) \le 1/2$ for every proper closed subspace of the dual of a strictly u-embedded space *X*.

In Section 4 we show that if *X* contains no copy of ℓ_1 then the equality $||I_{X^{***}} - 2\pi_{X^{***}}|| = 1$ holds if and only if the equality $||I_{Ba(X)^*} - 2\pi_{Ba(X)^*}|| = 1$ holds. Here $\pi_{X^{***}}$ and $\pi_{Ba(X)^*}$ denote respectively the canonical projections on X^{***} and $Ba(X)^*$ where Ba(X) is the Banach space of Baire-one functions in X^{**} .

In Section 5 we show that a u-embedded space is a u-summand if and only if it contains no copy of c_0 if and only if it is weakly sequentially complete, hence extending a result only known to hold for order continuous Banach lattices (being u-embedded spaces) [7, Example (1) p. 26].

The notation is mostly standard. When some notation or term is used which we do not think is standard or self explanatory, we explain its meaning there and then.

2. Unique extension and strict u-ideals

Let us first recall some definitions that we need below. A slice of B_X is a subset $S(B_X, x^*, \varepsilon)$ of B_X defined by

$$S(B_X, x^*, \varepsilon) = \left\{ x \in B_X : x^*(x) > \sup_{y \in B_X} x^*(y) - \varepsilon \right\},\$$

where $x^* \in X^* \setminus \{0\}$ and $\varepsilon > 0$. If X is a dual space we can speak of a weak* slice when x^* is weak* continuous. A point x in B_X is called a denting

point, and we write $x \in dent.B_X$, if there is a sequence of slices S_n of B_X with $x \in S_n$, for all n, and diam $(S_n) \to 0$ where diam (S_n) is the diameter of S_n . If we can choose a fixed $x^* \in X^* \setminus \{0\}$ and the slices S_n to be of the form $S_n = S(B_X, x^*, 1/n)$, then x is called a strongly exposed point of B_X , and we write $x \in str.exp.B_X$. When X is a dual space, we say that x in B_X is a weak^{*} denting (resp. weak^{*} strongly exposed) point of B_X , and we write $x \in w^* - dent.B_X$ (resp. $x \in w^* - str.exp.B_X$), if the S_n 's are weak^{*} slices. By definition $w^* - str.exp.B_X \subset w^* - dent.B_X$.

Now let us motivate the results of this section. To begin with note that the class of strictly u-embedded spaces properly contains the much studied class of M-embedded spaces (cf. e.g. [10, Chapter III] and [7, Example (6) p. 29]).

We know that strictly u-embedded spaces have the unique extension property (*UEP*), i.e., $\mathscr{C}(X^{**}, X^{**}) = \{I_{X^{**}}\}$ (see [12, Theorem 2.3 and Remark 2.1]). At the same time the strictly u-embedded spaces are not Hahn-Banach smooth, i.e., they do not in general have the property that every $x^* \in X^*$ has a unique norm-preserving extension to X^{**} [7, Example (6) p. 29]. (Note that by (1) Hahn-Banach smoothness implies the *UEP*) However, recently it was proved that *str.exp.B*_{X*} $\subset w^* - dent.B_{X^*}$ [12, Proposition 3.1] for strictly u-embedded spaces X which implies (2) that every $x^* \in str.exp.B_{X^*}$ has a unique norm-preserving extension to X^{**} since this is well known to hold for every $x^* \in w^* - dent.B_{X^*}$. Using the proof of [12, Proposition 3.1] almost verbatim we obtain the following extension.

PROPOSITION 2.1. Let X be a strict u-ideal in Y and let $T \in \mathscr{C}(Y, X^{**})$ be the associated unconditional extension operator. Then $T - str.exp.B_{X^*} \subset w^* - dent.B_{X^*}$. In particular every $x^* \in T - str.exp.B_{X^*}$ has a unique normpreserving extension to X^{**} .

PROOF. Let $x^* \in T - str.exp.B_{X^*}$ and let Ty be a strongly exposing functional for x^* . Let $\varepsilon > 0$ and choose $\delta_0 > 0$ such that $\{u^* \in B_{X^*} : Ty(u^*) > 1 - \sqrt{\delta_0}\} \subset B_{X^*}(x^*, \varepsilon)$ and $1 + \varepsilon \delta_0 > 2\sqrt{\delta_0}(1 + \varepsilon)$.

Let $\delta \in (0, \delta_0)$. Then $1 + \varepsilon \delta > 2\sqrt{\delta}(1 + \varepsilon)$, which is equivalent to $2(1 - \delta)/(1 + \varepsilon \delta) - 2 + \sqrt{\delta} > 0$. Choose $\eta > 0$ with $0 < \eta < 2(1 - \delta)/(1 + \varepsilon \delta) - 2 + \sqrt{\delta}$ and $\{u^* \in B_{X^*} : Ty(u^*) > 1 - \eta\} \subset B_{X^*}(x^*, \varepsilon \delta/(1 + \varepsilon \delta))$.

Since X is a strict u-ideal in Y we have $1 = \inf_{x \in S_X} ||y - 2x||$ [12, Theorem 2.4]. Choose $x \in S_X$ such that $||y - 2x|| < 1 + \eta$. Choose $u^* \in B_{X^*}$ such that $u^*(x) = 1$. Then

$$1 + \eta > ||y - 2x|| = ||Ty - 2x|| \ge u^*(2x - Ty) = 2 - Ty(u^*).$$

Thus $Ty(u^*) > 1 - \eta$. It follows that $||u^* - x^*|| < \varepsilon \delta/(1 + \varepsilon \delta)$.

Let $u = x/x^*(x)$. Then $x^*(x) \ge u^*(x) - ||x^* - u^*|| > 1/(1 + \varepsilon\delta)$ so $||u|| = 1/x^*(x) \le 1 + \varepsilon\delta$. If $z^* \in B_{X^*}$ and $z^*(u) > 1 - \delta$, then $z^*(x) =$

 $z^*(u)x^*(x) > (1 - \delta)x^*(x)$. Hence

$$1 + \eta > ||Ty - 2x|| \ge z^* (2x - Ty) \ge 2(1 - \delta)x^*(x) - Ty(z^*),$$

and $Ty(z^*) > 2(1-\delta)x^*(x) - 1 - \eta \ge \frac{2(1-\delta)}{1+\varepsilon\delta} - 1 - \eta$. But then $Ty(z^*) > 1 - \sqrt{\delta}$, from which it follows that $||z^* - x^*|| < \varepsilon$. Thus x^* is contained in the weak* slices of arbitrarily small diameter, i.e. x^* is weak* denting.

The last part follows from (2).

Recall that the space Ba(X) of Baire-one functions in X^{**} consists of members $x^{**} \in X^{**}$ which are weak* limits of sequences in X. If X is a strict uideal in Y, X^* need not have the Radon-Nikodým property (*RNP*) unlike when $Y = X^{**}$ [13, Proposition 4.1]). For example if we put $X = c_0 \bigoplus_{\infty} \ell_1$, then X is a strict u-ideal in Ba(X) [1, Remark 4.5], but of course $X^* = \ell_1 \bigoplus_1 \ell_{\infty}$ does not have the *RNP*. But

COROLLARY 2.2. Let X be a strict u-ideal in Y and let $T \in \mathscr{E}(Y, X^{**})$ be the associated unconditional extension operator. If X^* has the RNP, then

$$\overline{\operatorname{conv}}^{\|\cdot\|}(w^* - str.exp.B_{X^*}) = \overline{\operatorname{conv}}^{\|\cdot\|}(T - str.exp.B_{X^*})$$
$$= \overline{\operatorname{conv}}^{\|\cdot\|}(w^* - dent.B_{X^*}).$$

PROOF. Choose $x^* \in w^* - dent.B_{X^*}$. Since $\overline{\operatorname{conv}}^{w^*}(w^* - str.exp.B_{X^*}) = B_{X^*}$ [5], we can find a net (x_{α}) in $\overline{\operatorname{conv}}^{\|\cdot\|}(w^* - str.exp.B_{X^*})$ such that $x_{\alpha}^* \to x^*$ weak^{*}. Since x^* is a weak^{*} denting point we get that $\|x^* - x_{\alpha}^*\| \to 0$. Thus $\overline{\operatorname{conv}}^{\|\cdot\|}(w^* - str.exp.B_{X^*}) = \overline{\operatorname{conv}}^{\|\cdot\|}(w^* - dent.B_{X^*})$. Since $w^* - str.exp.B_{X^*} \subset T - str.exp.B_{X^*} \subset w^* - dent.B_{X^*}$ the result follows.

REMARK 2.3. Note that if the conditions in Corollary 2.2 hold and $\overline{\text{conv}}^{\|\cdot\|}(w^* - str.exp.B_{X^*}) = B_{X^*}$, then X has the unique ideal property in Y. This is e.g. the case when X is strictly u-embedded (see [13, Proposition 4.1]).

In the general case when X is a strict u-ideal in Y, far less is known than in the special case when $Y = X^{**}$. For example it is not known whether a strict u-ideal X in Y has the unique ideal property, i.e., $\mathscr{E}(Y, X^{**})$ consists of a singleton. In some special cases one can however prove that a strict u-ideal has the unique ideal property.

PROPOSITION 2.4. If X is a strict ideal in Y with corresponding $T \in \mathscr{E}(Y, X^{**})$ and the norm on X is Fréchet differentiable on $X \setminus \{0\}$, then X has the unique ideal property in Y.

PROOF. Suppose X is a strict ideal in Y with corresponding $T \in \mathscr{E}(Y, X^{**})$ and the norm on X is Fréchet differentiable on $X \setminus \{0\}$. Then by the smoothness

condition it follows that *X* is nicely smooth, i.e. for every $x^{**} \in X^{**}$ we have $\bigcap_{x \in X} B_{X^{**}}(x, ||x^{**}-x||) = \{x^{**}\}$ [9, Examples p. 118]. Since *T* is isometric, we have for every $y \in Y$ that $\{Ty\} = \bigcap_{x \in X} B_{X^{**}}(x, ||Ty-x||) = \bigcap_{x \in X} B_{X^{**}}(x, ||y-x||)$. Now if $S \in \mathscr{C}(Y, X^{**})$ we get that $||Sy - x|| \le ||y - x||$ for every $x \in X$ and $y \in Y$. Thus Sy = Ty, as wanted.

3. Norming subspaces and strict (u-)ideals

Recall that a subspace Z of the dual X^* of X is *r*-norming for X if $\sup_{x^* \in S_{X^*} \cap Z} |x^*(x)| \ge r ||x||$ for every $x \in X$. The characteristic r(Z) of Z is defined to be the greatest such constant *r*. In [7, Propositions 2.7 and 5.2] Godefroy et al. showed that the characteristic of every proper closed subspace of the dual of a strictly u-embedded space X is $\le 1/2$ when X does not contain ℓ_1 (See also [8, Lemma 4.1] for M-embedded spaces). This result, but with no restrictions on X, follows from the proof of Proposition 3.1 below. The proposition is inspired by [7, Proposition 2.7].

PROPOSITION 3.1. Let X be a strict ideal in Y with corresponding ideal projection P on Y* and associated isometric extension operator $T \in \mathscr{C}(Y, X^{**})$. Suppose $1 < \lambda \leq 2$ and that $||I_{Y^*} - \lambda P|| = a < \lambda$. Then $r(\ker Ty) \leq a\lambda^{-1}$ for every $y \in Y \setminus \{0\}$.

PROOF. Let $\varepsilon > 0$, $y \in S_Y$, and put $M = \ker Ty \subset X^*$. From [7, Lemma 2.2] there is a net (x_α) in B_X which tends to Ty weak* in X^{**} and with $\limsup_{\alpha} ||y - \lambda x_\alpha|| \le a$. We have

$$\lambda \sup_{x^* \in S_M} |x^*(x_\alpha)| \le ||Ty - \lambda x_\alpha|| \le ||y - \lambda x_\alpha||.$$

Since ||Ty|| = ||y|| = 1, there is an α_1 such that $1 \ge ||x_{\alpha_1}|| > 1 - \varepsilon$ and $||y - \lambda x_{\alpha_1}|| < a + \varepsilon$. Thus $\sup_{x^* \in S_M} |x^*(\frac{x_{\alpha_1}}{||x_{\alpha_1}||})| \le \frac{a+\varepsilon}{\lambda(1-\varepsilon)}$. Since ε is arbitrary we are done.

COROLLARY 3.2. Let X be a strict ideal in X^{**} with corresponding ideal projection P on X^{***} . Suppose $1 < \lambda \leq 2$ and that $||I_{X^{***}} - \lambda P|| = a < \lambda$. Then for every proper closed subspace Z of X^* we have $r(Z) \leq a\lambda^{-1}$.

PROOF. Since every proper closed subspace of X^* is contained in ker x^{**} for some $x^{**} \in X^{**} \setminus \{0\}$, it suffices to prove that for every $x^{**} \in X^{**} \setminus \{0\}$ we have $r(\ker x^{**}) \leq a\lambda^{-1}$. But this follows by arguing as in the proof of Proposition 3.1.

COROLLARY 3.3. Let X be strictly u-embedded. Then for every proper closed subspace Z of X^* we have $r(Z) \le 1/2$.

Recall from the previous section that strictly u-embedded spaces have the *UEP*. Here is an alternative proof of this fact.

COROLLARY 3.4. Strictly u-embedded spaces have the UEP.

PROOF. This follows from [8, Proposition 2.5] since $r(Z) \le 1/2$ for every proper closed subspace Z of X^* .

4. Strict u-ideals in the space of Baire-one functions

In [12] Lima and Lima characterized when a Banach space X is strictly uembedded both in terms of the canonical projection $\pi_{X^{***}}$ on X^{***} onto X^* and in terms of subspaces of X. (Note that $\pi_{X^{***}} = k_{X^*}(k_X)^*$ where k_X is the canonical embedding of X into X^{**} defined by $k_X x(x^*) = x^*(x)$.)

THEOREM 4.1 ([12, Theorems 2.8 and 2.9]). Let X be a Banach space. Then the following statements are equivalent.

- a) $||I_{X^{***}} 2\pi_{X^{***}}|| = 1.$
- b) X is strictly u-embedded.
- c) For every separable subspace Z in X, Z is strictly u-embedded.

The aim of this section is to show that when *X* does not contain a copy of ℓ_1 , then we can add to this theorem the statement that $||I_{Ba(X)^*} - 2\pi_{Ba(X)^*}|| =$ 1. Here $\pi_{Ba(X)^*}$ is the canonical projection on $Ba(X)^*$ defined by $\pi_{Ba(X)^*} = i_{X^*}(i_X)^*$ where $i_X : X \to Ba(X)$ and $i_{X^*} : X^* \to Ba(X)^*$ denote the canonical embeddings. Note that $i_{X^*}x^*(x^{**}) = x^{**}(x^*)$ for every $x^* \in X^*$ and $x^{**} \in Ba(X)$. In the proof of Proposition 4.2 we will use that the *T* in $\mathscr{E}(Ba(X), X^{**})$ associated with $\pi_{Ba(X)^*}$ is just the canonical embedding $i_{Ba(X)}$ of Ba(X) into X^{**} .

Note that the statement $||I_{Ba(X)^*} - 2\pi_{Ba(X)^*}|| = 1$ implies that X is a strict u-ideal in Ba(X) [7, Lemma 2.2]. If X is separable also the converse of this holds [1].

We need a preliminary result inspired by [7, Proposition 2.3].

PROPOSITION 4.2. Let X be a Banach space and suppose K is a compact subset of R and a > 0. Then the following conditions are equivalent.

- a) $||I_{Ba(X)^*} \lambda \pi_{Ba(X)^*}|| \le a \text{ for every } \lambda \in K.$
- b) Whenever $\varepsilon > 0$, $x^{**} \in Ba(X)$ and (x_n) is a sequence in X such that $x_n \to x^{**}$ weak* in X** then there exists $u \in \operatorname{conv}(x_n)_{n\geq 1}$ with $||x^{**} \lambda u|| < a ||x^{**}|| + \varepsilon$ for every $\lambda \in K$.
- c) For every $x^{**} \in Ba(X)$, there is a sequence (x_n) in X such that $x_n \to x^{**}$ weak* in X** and with $\limsup_n ||x^{**} - \lambda x_n|| \le a ||x^{**}||$ for every $\lambda \in K$.

PROOF. a) \Rightarrow b) follows from [7, Lemma 2.2 (1) \Rightarrow (2)] by putting $A = \operatorname{conv}(x_n)_{n\geq 1}$ since $T \in \mathscr{E}(Ba(X), X^{**})$ associated with $\pi_{Ba(X)^*}$ is $i_{Ba(X)}$.

b) \Rightarrow c). Let $x^{**} \in Ba(X)$, remember that $i_{Ba(X)}(x^{**}) = x^{**}$, and choose a sequence (x_n) in X such that x_n tends to x^{**} weak* in X^{**}. Put $A_1 = \operatorname{conv}(x_n)_{n\geq 1}$. Then x^{**} is in the weak* closure of A_1 and by [7, Lemma 2.2 (2)] we can find $u_1 \in A_1$ such that $||x^{**} - \lambda u_1|| < a ||x^{**}|| + 2^{-1}$ for every $\lambda \in K$. Now, let $A_2 = \operatorname{conv}(x_k)_{k\geq N_2}$ where N_2 is the largest index of x_k where x_k is in the convex combination of u_1 . Still x^{**} is in the weak* closure of A_2 and by [7, Lemma 2.2 (2)] we can find $u_2 \in A_2$ such that $||x^{**} - \lambda u_2|| < a ||x^{**}|| + 2^{-2}$ for every $\lambda \in K$. By repeating this process, we obtain a sequence (u_n) in X such that $u_n \to x^{**}$ weak* in X^{**} with $\limsup_n ||x^{**} - \lambda u_n|| \leq a ||x^{**}||$ for every $\lambda \in K$.

c) \Rightarrow a) follows from [7, Lemma 2.2 (3) \Rightarrow (1)].

Let us now state and prove our result.

PROPOSITION 4.3. Let X be a Banach space not containing ℓ_1 . Then the following are equivalent.

- a) $||I_{X^{***}} 2\pi_{X^{***}}|| = 1.$
- b) $||I_{Ba(X)^*} 2\pi_{Ba(X)^*}|| = 1.$

PROOF. a) \Rightarrow b). This is immediate from [7, Proposition 2.3 (1) \Rightarrow (2)] and Proposition 4.2 b) \Rightarrow a).

b) \Rightarrow a). By Theorem 4.1 it suffices to prove that every separable subspace Z in X is strictly u-embedded. To this end let $z^{**} \in Ba(Z)$ and choose a sequence (z_n) in Z such that $z_n \to z^{**}$ weak* in Z**. Note that $x^{**} = (i_Z)^{**}z^{**} \in Ba(X)$ $(i_Z : Z \to X$ is the embedding of Z into X) and $z_n \to x^{**}$ weak* in X** by the weak* continuity of $(i_Z)^{**}$. Now using the assumption and Proposition 4.2 there is some $u \in \text{conv}(z_n)_{n\geq 1}$ such that $||z^{**} - 2u|| = ||x^{**} - 2u|| < ||x^{**}|| + \varepsilon =$ $||z^{**}|| + \varepsilon$. Again by Proposition 4.2 it follows that $||I_{Ba(Z)^*} - 2\pi_{Ba(Z)^*}|| = 1$. Finally, since Z is separable and does not contain ℓ_1 , we have $Ba(Z) = Z^{**}$ by a result of Odell and Rosenthal [15] so $\pi_{Ba(Z)^*} = \pi_{Z^{***}}$ and we are done.

5. U-ideals which are u-summands

In [7] the following important result about u-ideals was proved.

THEOREM 5.1. Let X be a u-ideal in Y. If X contains no copy of c_0 , then X is a u-summand in Y.

The projection P on $c_0 \oplus_1 \mathbb{R}$ defined by P(x, y) = x makes c_0 a u-summand (in particular a u-ideal) in $c_0 \oplus_1 \mathbb{R}$. Thus the converse of Theorem 5.1 is not true. However, if we put $Y = X^{**}$, one can still ask if the converse holds.

Actually Godefroy et al. pointed out [7, Example (1) p. 26] that the converse in fact holds for order-continuous Banach lattices (being u-embedded spaces). The next result shows that this is indeed true for all Banach spaces.

THEOREM 5.2. Let X be a u-ideal in X^{**} . Then the following statements are equivalent.

- a) X is a u-summand in X^{**} .
- b) X contains no copy of c_0 .
- c) X is weakly sequentially complete.

PROOF. a) \Rightarrow c). Let $P : X^{**} \rightarrow X^{**}$ be the u-projection onto X and note that $J = 2P - I_{X^{**}}$ is an isometry onto X^{**} such that JX = X. By [6, Proposition 9] J is a homeomorphism from $(Ba(X), \text{weak}^*)$ onto $(Ba(X), \text{weak}^*)$. Thus, if $x^{**} \in Ba(X)$ and $x^{**} = \text{weak}^* - \lim x_n$, then $2Px^{**} - x^{**} = \text{weak}^* - \lim (2Px_n - x_n) = \text{weak}^* - \lim x_n = x^{**}$. Hence $x^{**} = Px^{**} \in X$.

c) \Rightarrow b) follows since weak sequential completeness is inherited by subspaces and c_0 is not weakly sequentially complete.

b) \Rightarrow a) is Theorem 5.1.

REMARK 5.3. In the more general case when X^{**} is replaced by Y in Theorem 5.2, the implications $c) \Rightarrow b \Rightarrow a$ follow from Theorem 5.1. However, none of the reverse implications hold. For $a) \neq b$ we have already given a counterexample. For $b \Rightarrow c$ put e.g. $X = \ell_1 \oplus_1 J$ where J is the space of James [11]. Then X contains no copy of c_0 and is certainly not weakly sequentially complete since J is not. Moreover, by a result of Maurey [14], there is an $x^{**} \in X^{**}$ such that $||x^{**} - x|| = ||x^{**} + x||$ for all $x \in X$. It follows that X is a u-summand in $Z = \text{span}(X, \{x^{**}\})$.

Recall [4] that a closed subspace X of a Banach space Y is said to be very non-constrained (*VNC*) in Y if for all $y \in Y$,

$$\bigcap_{x\in X} B_Y(x, \|y-x\|) = \{y\}.$$

A *VNC* subspace in its bidual is often referred to as a nicely smooth space. Nicely smooth spaces have been studied in e.g. [9] and [8].

The aim of the last part of this section is to prove Proposition 5.5 and thus extend the result [1, Proposition 4.1] that if X is separable and a u-ideal in Ba(X) with unconditional extension operator $T \in \mathscr{C}(Ba(X), X^{**})$, then $T(Ba(X)) \subset Ba(X)$ whenever X is a VNC subspace in Ba(X).

We will use the following result in the proof of Proposition 5.5.

PROPOSITION 5.4 ([4, Lemma 2.10]). Let X be a closed subspace of a Banach space Y. Then the following are equivalent.

- a) X is a VNC subspace in Y.
- b) For every $y \in Y \setminus \{0\}$, ker $(y)|_X \subset X^*$ is not 1-norming for X.

We need to recall also the definition of the number $\kappa_u(X)$ (see [7, pp. 22– 23]); For each $x^{**} \in X^{**}$ define $\kappa_u(x^{**})$ to be the infimum over all a such that if $x^{**} = \sum_n x_n$ in the weak* topology of X^{**} , with $x_n \in X$ and such that for any $n \in \mathbb{N}$ and $\theta_k = \pm 1$ for $1 \le k \le n$, we have $\left\|\sum_{k=1}^n \theta_k x_k\right\| \le a$. Put $\kappa_u(x^{**}) = \infty$ if no such a exists. Recall that X has property (u) if every $x^{**} \in Ba(X)$ has $\kappa_u(x^{**}) < \infty$. In this case it follows from the closed graph theorem that there exists a constant C such that $\kappa_u(x^{**}) \le C \|x^{**}\|$ for all $x^{**} \in Ba(X)$. The least such constant is $\kappa_u(X)$.

PROPOSITION 5.5. Let X be a separable u-ideal in a Banach space Y with unconditional extension operator $T \in \mathscr{E}(Y, X^{**})$ and suppose X is a VNC subspace in Ba(X). Then $T(Y) \subset Ba(X)$ and $\kappa_u(Ty) \leq ||y||$ for every $y \in Y$.

PROOF. Since X is separable there is a sequence $(x_i^*)_{i=1}^{\infty} \subset S_{X^*}$ such that $M = \overline{\text{span}}\{x_i^*\}$ is 1-norming for X. Let $y \in Y$ and put

$$A_n = \left\{ x \in X : |Ty(x_i^*) - x(x_i^*)| < \frac{1}{n}, i = 1, 2, \dots, n \right\}.$$

Note that A_n is convex and non-empty and that $Ty \in H_n$, the weak^{*} closure of A_n in X^{**} , for each n. Since X is a u-ideal in Y, by [7, Lemma 3.4], for every $\varepsilon > 0$ there exists $\chi \in \bigcap_n H_n$ such that $\kappa_u(\chi) \le ||y|| + \varepsilon$. In particular, $\chi \in Ba(X)$. Since $\chi \in \bigcap_n H_n$, $\chi(f) = Ty(f)$ for all $f \in M$.

Now take an arbitrary $x^* \in X^*$ and put $N = \text{span}\{M, \{x^*\}\}$. The same argument as above produces a Baire-one member $\chi_1 \in \bigcap_n H_n$ with $\chi_1(f) = Ty(f)$ for all $f \in M$ and $\chi_1(x^*) = Ty(x^*)$.

We now use that X is a VNC-subspace of Ba(X). By Proposition 5.4 $\chi_1 = \chi$ since ker $(\chi - \chi_1)|_X \subset X^*$ contains the norming subspace M. Since $\chi(x^*) = \chi_1(x^*) = Ty(x^*)$, we get that $Ty = \chi \in Ba(X)$ and $\kappa_u(Ty) \le ||y|| + \varepsilon$. As ε is arbitrary, we get $\kappa_u(Ty) \le ||y||$.

COROLLARY 5.6. Let X be a separable and weakly sequentially complete Banach space. Then X is a u-summand in a Banach space Y whenever it is a u-ideal in Y.

REFERENCES

- Abrahamsen, T. A., and Nygaard, O., On λ-strict ideals in Banach spaces, Bull. Aust. Math. Soc. 83 (2011), 231–240.
- Abrahamsen, T. A., Lima, Å., and Lima, V., Unconditional ideals of finite rank operators, Czechoslovak Math. J. 58 (2008), 1257–1278.
- Abrahamsen, T. A., Lima, V., and Lima, Å., Unconditional ideals of finite rank operators. II, Houston J. Math. 35 (2009), 627–646.
- Bandyopadhyay, P., Basu, S., Dutta, S., and Lin, B.-L., Very non-constrained subspaces of Banach spaces, Extracta Math. 18 (2003), 161–185.
- Bourgin, R. D., Geometric aspects of convex sets with the Radon-Nikodým property, Lect. Notes Math. 993, Springer, Berlin 1983.
- Godefroy, G., Parties admissibles d'un espace de Banach. Applications, Ann. Sci. Éc. Norm. Sup. 16 (1983), 109–122.
- Godefroy, G., Kalton, N. J., and Saphar, P. D., Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13–59.
- Godefroy, G., and Saphar, P., Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672–695.
- Godefroy, G., Nicely smooth Banach spaces, pp. 117–124 in: Texas functional analysis seminar 1984–1985, Longhorn Notes, Univ. Texas Press, Austin 1985.
- Harmand, P., Werner, D., and Werner, W., *M-Ideals in Banach Spaces and Banach Algebras*, Lect. Notes Math. 1547, Springer, Berlin 1993.
- James, R. C., A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 174–177.
- 12. Lima, V., and Lima, Å., Strict u-ideals in Banach spaces, Studia Math. 195 (2009), 275-285.
- Lima, Å., Property (wM*) and the unconditional metric compact approximation property, Studia Math. 113 (1995), 249–263.
- Maurey, B., *Types and l₁-subspaces*, pp. 123–137 in: Texas Functional Analysis Seminar 1982–1983, Longhorn Notes, Univ. Texas Press, Austin 1983.
- Odell, E., and Rosenthal, H. P., A double dual characterization of separable Banach spaces containing l₁, Israel J. Math. 20 (1975), 375–384.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF AGDER P. O. BOX 422 NO-4604 KRISTIANSAND NORWAY *E-mail:* trond.a.abrahamsen@uia.no