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TORIC IDEALS OF FINITE GRAPHS AND
ADJACENT 2-MINORS
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Abstract
We study the problem when an ideal generated by adjacent 2-minors is the toric ideal of a finite
graph.

Let X = (xij )i=1,...,m,j=1,...,n be a matrix of mn indeterminates, and let A =
K[{xij }i=1,...,m,j=1,...,n] be the polynomial ring in mn variables over a field K .
Given 1 ≤ a1 < a2 ≤ m and 1 ≤ b1 < b2 ≤ n, the symbol [a1, a2|b1, b2]
denotes the 2-minor xa1b1xa2b2 − xa1b2xa2b1 of X. In particular [a1, a2|b1, b2] is
a binomial of A. A 2-minor [a1, a2|b1, b2] of X is adjacent ([4]) if a2 = a1 +1
and b2 = b1 + 1. Following [2], we say that a set M of adjacent 2-minors of
X is of chessboard type if the following conditions are satisfied:

• if [a, a + 1|b, b + 1] and [a, a + 1|b′, b′ + 1] with b < b′ belong to M,
then b + 1 < b′;

• if [a, a + 1|b, b + 1] and [a′, a′ + 1|b, b + 1] with a < a′ belong to M,
then a + 1 < a′.

Given a set M of adjacent 2-minors of X of chessboard type, we introduce
the finite graph �M on the vertex set M, whose edges are {[a, a + 1|b, b +
1], [a′, a′ + 1|b′, b′ + 1]} such that

• [a, a + 1|b, b + 1] �= [a′, a′ + 1|b′, b′ + 1],
• {a, a + 1} ∩ {a′, a′ + 1} �= ∅,
• {b, b + 1} ∩ {b′, b′ + 1} �= ∅.

For example, if M = {[1, 2|2, 3], [2, 3|3, 4], [3, 4|2, 3], [2, 3|1, 2]}, then �M

is a cycle of length 4. The ideal IM is generated by x12x23 − x13x22, x23x34 −
x24x33, x32x43 − x33x42 and x21x32 − x22x31. The binomial x32(x13x21x34x42 −
x12x24x31x43) belongs to IM but neither x32 nor x13x21x34x42 − x12x24x31x43

belongs to IM . Thus IM is not prime.
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A fundamental fact regarding ideals generated by adjacent 2-minors is

Lemma 1 ([2]). Let M be a set of adjacent 2-minors of X, and let IM be the
ideal of A generated by all 2-minors belonging to M. Then, IM is a prime ideal
if and only if M is of chessboard type, and �M possesses no cycle of length 4.

A finite graph G is said to be simple if G has no loop and no multiple
edge. Let G be a finite simple graph on the vertex set [d] = {1, . . . , d},
and let E(G) = {e1, . . . , en} be its set of edges. Let K[t] = K[t1, . . . , td ]
denote the polynomial ring in d variables over K , and let K[G] denote the
subring of K[t] generated by the squarefree quadratic monomials te = ti tj
with e = {i, j} ∈ E(G). The semigroup ring K[G] is called the edge ring
of G. Let K[y] = K[y1, . . . , yn] denote the polynomial ring in n variables
over K . The kernel IG of the surjective homomorphism π : K[y] → K[G]
defined by setting π(yi) = tei for i = 1, . . . , n is called the toric ideal of G.
Clearly, IG is a prime ideal. It is known that IG is generated by the binomials
corresponding to even closed walks of G. See [7] , [6, Chapter 9] and [5,
Lemma 1.1] for details.

Example 2. Let G be a complete bipartite graph with the edge set E(G) =
{{i, p + j} | 1 ≤ i ≤ p, 1 ≤ j ≤ q}. Let X = (xij )i=1,...,p,j=1,...,q be a matrix
of pq indeterminates and K[x] = K[{xij }i=1,...,p,j=1,...,q]. Then, IG is the
kernel of the surjective homomorphism π : K[x] → K[G] defined by setting
π(xij ) = ti tp+j for 1 ≤ i ≤ p, 1 ≤ j ≤ q. It is known [6, Proposition 5.4] that
IG is generated by the set of all 2-minors of X. Note that each 2-minor xij xi ′j ′ −
xij ′xi ′j corresponds to the cycle {{i, p+j}, {p+j, i ′}, {i ′, p+j ′}, {p+j ′, i}}
of G.

In general, a toric ideal is the defining ideal of a homogeneous semigroup
ring. We refer the reader to [6] for detailed information on toric ideals. It is
known [1] that a binomial ideal I , i.e., an ideal generated by binomials, is a
prime ideal if and only if I is a toric ideal. An interesting research problem on
toric ideals is to determine when a binomial ideal is the toric ideal of a finite
graph.

Example 3. The ideal I = 〈x1x2 − x3x4, x1x2 − x5x6, x1x2 − x7x8〉 is the
toric ideal of the semigroup ring K[t1t5, t2t3t4t5, t1t2t5, t3t4t5, t2t3t5, t1t4t5,
t1t3t5, t2t4t5]. If there exists a graph G such that I = IG, then three quad-
ratic binomials correspond to cycles of length 4. However, this is impossible
since these three cycles must have common two edges e1 and e2 such that
e1 ∩ e2 = ∅. Thus, I cannot be the toric ideal of a finite graph. This observa-
tion implies that the toric ideal of a finite distributive lattice L (see [3]) is the
toric ideal of a finite graph if and only if L is planar. In fact, if L is planar,
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then it is easy to see that the toric ideal of L is the toric ideal of a bipartite
graph. If L is not planar, then L contains a sublattice that is isomorphic to
the Boolean lattice B3 of rank 3. Since the toric ideal of B3 has three binomials
above, the toric ideal of L cannot be the toric ideal of a finite graph.

Let M be a set of adjacent 2-minors. Now, we determine when a binomial
ideal IM generated by M is the toric ideal IG of a finite graph G. Since IG

is a prime ideal, according to Lemma 1, if there exists a finite graph G with
IM = IG, then M must be of chessboard type and �M possesses no cycle of
length 4.

Theorem 4. Let M be a set of adjacent 2-minors. Then, there exists a finite
graph G such that IM = IG if and only if M is of chessboard type, �M possesses
no cycle of length 4, and each connected component of �M possesses at most
one cycle.

Proof. We may assume that M is of chessboard type and �M possesses no
cycle of length 4. Let M = M1 ∪ · · · ∪ Ms , where �M1 , . . . , �Ms

is the set of
connected components of �M . If i �= j , then f ∈ Mi and g ∈ Mj have no
common variable. Hence, there exists a finite graph G such that IM = IG if and
only if for each 1 ≤ i ≤ s, there exists a finite graph Gi such that IMi

= IGi
.

Thus, we may assume that �M is connected. Let p be the number of vertices of
�M , and let q be the number of edges of �M . Since �M is connected, we have
p ≤ q + 1.

Only if. Suppose that there exists a finite graph G with IM = IG. From [2,
Theorem 2.3], the codimension of IM is equal to p. Let d be the number of
vertices of G, and let n be the number of edges of G. Then, we have d ≤ 4p−2q

and n = 4p − q. The height of IG is given in [7]. If G is bipartite, then the
codimension of IG satisfies p ≥ n−d+1 ≥ (4p−q)−(4p−2q)+1 = q+1.
Hence, we have p = q + 1 and �M is a tree. On the other hand, if G is not
bipartite, then the codimension of IG satisfies p ≥ n− d ≥ (4p − q)− (4p −
2q) = q. Hence, we have p ∈ {q, q + 1} and �M has at most one cycle.

If. Suppose that �M has at most one cycle. Then, we have p ∈ {q, q + 1}.
Case 1. p = q + 1, i.e., �M is a tree.
Through induction on p, we will show that there exists a connected bipartite

graph G such that IM = IG. If p = 1, then IM = IG where G is a cycle of
length 4. Let k > 1, and suppose that the assertion holds for p = k−1. Suppose
that �M has k vertices. Since �M is a tree, �M has a vertex v = [a, a+1|b, b+1]
of degree 1. Let M ′ = M \ {v}. Since �M ′ is a tree, there exists a connected
bipartite graph G′ such that IM ′ = IG′ by the hypothesis of induction. From [5,
Theorem 1.2], since IG′ is generated by quadratic binomials, any cycle of G′
of length ≥ 6 has a chord. Let v′ = [a′, a′ + 1|b′, b′ + 1] denote the vertex of
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�M that is incident with v. Let e = {i, j} be the edge of G′ corresponding to the
common variable of v and v′. Let {1, 2, . . . , d} be the vertex set of G′. We now
define the connected bipartite graph G on the vertex set {1, 2, . . . , d, d+1, d+
2} with the edge set E(G′)∪{{i, d + 1}, {d + 1, d + 2}, {d + 2, j}}. Then, any
cycle of G of length ≥ 6 has a chord, and hence, IG is generated by quadratic
binomials. Thus, IG is generated by the quadratic binomials of IG′ together
with v corresponding to the cycle {{i, d +1}, {d +1, d +2}, {d +2, j}, {j, i}}.
Therefore, IM = IG.

Case 2. p = q, i.e., �M has exactly one cycle.
Then, we have p ≥ 8. Through induction on p, we will show that there

exists a graph G such that IM = IG. If p = 8, then �M is a cycle of length 8.
Then, IM = IG where G is the graph shown in Figure 1.

Figure 1. Graph for M such that �M is a cycle of length 8.

Let k > 8 and suppose that the assertion holds for p = k − 1. Suppose that
�M has k vertices. If �M has a vertex v = [a, a + 1|b, b + 1] of degree 1,
then �M ′ where M ′ = M \ {v} has exactly one cycle, and hence, there exists a
graph G′ such that IM ′ = IG′ by the hypothesis of induction. Let v′ = [a′, a′ +
1|b′, b′ + 1] denote the vertex of �M that is incident with v. Let e = {i, j} be
the edge of G′ corresponding to the common variable of v and v′. Suppose
that the vertex set of G′ is {1, 2, . . . , d}. We now define the graph G on the
vertex set {1, 2, . . . , d, d +1, d +2} with the edge set E(G′)∪{{i, d +1}, {d +
1, d + 2}, {d + 2, j}}. Since G′ satisfies the conditions in [5, Theorem 1.2],
it follows that G satisfies the conditions in [5, Theorem 1.2]. Thus, IG is
generated by the quadratic binomials of IG′ together with v corresponding to
the cycle {{i, d + 1}, {d + 1, d + 2}, {d + 2, j}, {j, i}}. Therefore, IM = IG.

Suppose that �M has no vertex of degree 1. Then, �M is a cycle of length k.
A 2-minor ad − bc ∈ M is called free if one of the following holds:

• Neither a nor d appears in other 2-minors of M,
• Neither b nor c appears in other 2-minors of M.

From [2, Lemma 1.6], M has at least two free 2-minors. Let v = [a, a +
1|b, b + 1] be a free 2-minor of M. We may assume that neither xa,b nor
xa+1,b+1 appears in other 2-minors of M. Since �M is a cycle, xa+1,b appears
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in exactly two 2-minors of M and xa,b+1 appears in exactly two 2-minors of
M. Let M ′ = M \ {v}. Since �M ′ is a tree, there exists a connected bipartite
graph G′ such that IM ′ = IG′ by the argument in Case 1. Suppose that the
edge {1, 3} corresponds to the variable xa+1,b and the edge {2, 4} corresponds
to the variable xa,b+1. We now define the graph G as shown in Figure 2, where
vertices 1 and 2 belong to the same part of the bipartite graph G′. Note that G

is not bipartite.
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Figure 2. New graph G arising from G′.

Let e = {1, 2} and e′ = {3, 4}. Since G′ is a bipartite graph, it follows that

(a) If either e or e′ is an edge of an even cycle C of G, then {e, e′} ⊂ E(C).

(b) If C ′ is an odd cycle of G, then {e, e′} ∩ E(C ′) �= ∅.

Let I denote the ideal generated by all quadratic binomials in IG. Since each
quadratic binomial in IG corresponds to a cycle of G of length 4, it follows
that IM = I . Thus, it is sufficient to show that IG = I , i.e., IG is generated
by quadratic binomials. From [5, Theorem 1.2], since G′ is bipartite and since
IG′ is generated by quadratic binomials, all cycles of G′ of length ≥ 6 have a
chord.

Let C be an even cycle of G of length ≥ 6. If E(C) ∩ {e, e′} = ∅, then C

has an even-chord since all cycles of the bipartite graph G′ of length ≥ 6 have
a chord. Suppose that {e, e′} ⊂ E(C) holds. Then, either {1, 3} or {2, 4} is a
chord of C. Moreover, such a chord is an even-chord of C from (b) above.

Let C and C ′ be odd cycles of G having exactly one common vertex. From
(b) above, we may assume that e ∈ E(C) \ E(C ′) and e′ ∈ E(C ′) \ E(C).
If {1, 3} does not belong to E(C) ∪ E(C ′), then {1, 3} satisfies the condition
in [5, Theorem 1.2 (ii)]. If {1, 3} belongs to E(C) ∪ E(C ′), then {2, 4} /∈
E(C)∪E(C ′) since C and C ′ have exactly one common vertex. Hence, {2, 4}
satisfies the condition in [5, Theorem 1.2 (ii)].

Let C and C ′ be odd cycles of G having no common vertex. Then, neither
{1, 3} nor {2, 4} belong to E(C) ∪ E(C ′). Hence, {1, 3} and {2, 4} satisfy the
condition in [5, Theorem 1.2 (iii)].

Thus, from [5, Theorem 1.2], IG is generated by quadratic binomials. There-
fore, IG = IM as desired.
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4. Hoşten, S., and Sullivant, S., Ideals of adjacent minors, J. Algebra 277 (2004), 615–642.
5. Ohsugi, H., and Hibi, T., Toric ideals generated by quadratic binomials, J.Algebra 218 (1999),

509–527.
6. Sturmfels, B., Gröbner bases and convex polytopes, Univ. Lect. Ser. 8, Amer. Math. Soc.,

Providence 1996.
7. Villarreal, R., Rees algebras of edge ideals, Comm. Algebra 23 (1995), 3513–3524.

DEPARTMENT OF MATHEMATICS
COLLEGE OF SCIENCE
RIKKYO UNIVERSITY
TOSHIMA-KU, TOKYO 171-8501
JAPAN
E-mail: ohsugi@rikkyo.ac.jp

DEPARTMENT OF PURE AND APPLIED MATHEMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY
OSAKA UNIVERSITY
TOYONAKA, OSAKA 560-0043
JAPAN
E-mail: hibi@math.sci.osaka-u.ac.jp


