ON FIXED DIVISORS OF FORMS IN MANY VARIABLES, I

A. SCHINZEL

(In memory of Trygve Nagell)

Abstract

Let $D_{d,r}$ be the maximal fixed divisor of a primitive form of degree d in r variables over Z. A formula is given for $D_{d,2}$ and estimates for $D_{d,r}$ for r > 2. As a consequence, a question of Nagell raised in 1919 is completely answered.

Let K be a finite extension of Q and for $f \in K[x_1, ..., x_r]$ let C(f) and D(f) be the highest common ideal factor of the coefficients of f and of the values of f for $\mathbf{x} \in \mathbf{Z}^r$, respectively. Polynomials f with C(f) = 1 are called primitive. For a prime ideal \mathfrak{p} and an ideal \mathfrak{q} of K, let $\mathrm{ord}_{\mathfrak{p}} \mathfrak{q}$ be the exponent with which \mathfrak{p} occurs in the factorization of \mathfrak{q} . T. Nagell has proved ([5], \mathfrak{p} . 16) that for every $f \in \mathbf{Z}[x_1, ..., x_r]$ of degree d

$$(1) D(f) \mid d!C(f).$$

This result is implicit in [4]. An easy generalization is contained in

THEOREM 1. For every finite extension K of Q and for every $f \in K[x_1, ..., x_r]$ of degree d (1) holds.

Put

 $S_{d,r} = \{F \in \mathsf{Z}[x_1, \dots, x_r], \text{ of degree } d, \text{ homogeneous and primitive}\},$ $S_{d,r}^0 = \{F \in S_{d,r}, \text{ splitting over C}\},$ $S_{d,r}^1 = \{F \in S_{d,r}, \text{ splitting over Z}\}.$

It follows from (1) that the following definitions are correct:

$$D_{d,r} = \max_{f \in S_{d,r}} D(f), \qquad D_{d,r}^1 = \max_{f \in S_{d,r}^1} D(f).$$

For K = Q, D(F) is identified with its positive generator. We shall prove

Received 14 October 2011, in final form 20 August 2012.

THEOREM 2. For all $F \in S_{d,r}^0$ and for all primes p

$$\operatorname{ord}_p D(F) \leq \operatorname{ord}_p \left(\left(p \left| \frac{(p^{r-1} - 1)d}{p^r - 1} \right| \right)! \right).$$

THEOREM 3. For all positive integers d and r > 1 and for all primes p

$$\operatorname{ord}_p D^1_{d,2} \geq \operatorname{ord}_p \bigg(\bigg(p \bigg\lfloor \frac{d}{p+1} \bigg\rfloor \bigg)! \bigg),$$

$$\operatorname{ord}_{p} D_{d,r}^{1} \ge (p^{r-1} - 1)q^{r-1} \operatorname{ord}_{p}((pq)!) + \operatorname{ord}_{p}\left(\left(p \left\lfloor \frac{d - (p^{r} - 1)q^{r}}{p + 1} \right\rfloor\right)!\right),$$

where
$$q = \left| \sqrt[r]{\frac{d}{p^r - 1}} \right|$$
.

COROLLARY 1. For all positive integers d and for all primes p

$$\operatorname{ord}_p D_{d,2} = \operatorname{ord}_p \left(\left(p \left\lfloor \frac{d}{p+1} \right\rfloor \right)! \right) = \operatorname{ord}_p D_{d,2}^1.$$

COROLLARY 2. The least integer d, say $d_2(n)$, such that $n! \mid D_{d,2}$ is 4 for n = 3 and $3 \mid \frac{n}{2} \mid$, otherwise.

The corollary answers a question asked by Nagell [5]. He has proved that $d_2(2) = 3$, $d_2(3) = 4$, $d_2(4) = d_2(5) = 4$, $d_2(n) \le 2n - 1$. The last result has been anticipated by Hermite (see [2], p. 266).

COROLLARY 3. For all integers $d \ge 3$ and $r \ge 2$ and for all primes p < d

$$\operatorname{ord}_{p} D_{d,r}^{1} = d \left(\frac{1}{p-1} - \frac{1}{p^{r}-1} \right) + d^{\frac{r-1}{r}} O \left(\frac{r}{p} + \frac{\log d}{r \log p} + 1 \right),$$

where the constant in the O-symbol is absolute and $d^{\frac{r-1}{r}}$ can be omitted for r=2.

COROLLARY 4. For all integers $r \geq 2$

$$\log D_{d,r} = d \log d + O(d)$$

uniformly in r.

THEOREM 4.

(i) For all positive integers d and r

$$D_{d,r} \mid (d-1)!$$

(ii) For all integers $d \ge 4$, $r_d = d - \operatorname{ord}_2(\left(2 \left\lfloor \frac{d}{3} \right\rfloor\right)!) - 1$ and $r \ge r_d$, $D_{d,r} = D_{d,r_d}.$

COROLLARY 5. For all positive integers $d \le 6$ and $r \ge 2$

$$D_{d,r} = D_{d,2}$$
.

Corollary 6. $D_{9,3}^1 = D_{9,2}^1$.

Corollary 1 suggests the following

Conjecture. For all positive integers d and r

$$D_{d,r} = D_{d,r}^1$$
.

This is true for d < 9 and each r, see Remark after the proof of Corollary 5.

THEOREM 5. Let $d_r(n)$ be the least integer d such that $n! \mid D_{d,r}$. Then for all r the limit $l_r = \lim_{r \to \infty} \frac{d_r(n)}{n}$ exists and satisfies $l_r \leq \frac{2^r-1}{2^r-2}$. If Conjecture is true we have equality.

Theorem 6. For all positive integers $d \ge 3^4 \cdot 2^3 = 648$ and $r = \left\lfloor \frac{-1 + \sqrt{8d+1}}{2} \right\rfloor$

$$D_{d,r} \equiv 0 \mod \lceil d - 3(2d)^{3/4} \rceil!.$$

Corollary 7. For $r \ge \lfloor \frac{-1+\sqrt{8d+1}}{2} \rfloor$ we have

$$\log D_{d,r} = d \log d - d + O(d^{3/4} \log d)$$

uniformly in r.

PROOF OF THEOREM 1. Since x^n is a linear combination of $\binom{x}{j}$ (j = 0, ..., n) with integral coefficients, it follows that

(2)
$$f = \sum_{\mathbf{i} \in \mathbf{I}_r} \alpha_{\mathbf{i}} \binom{x_1}{i_1} \dots \binom{x_r}{i_r},$$

where $\mathbf{I}_d = \{\mathbf{i} = [i_1, \dots, i_r] : i_1 + \dots + i_r \le d \}, \alpha_{\mathbf{i}} \in K$. We shall show by induction on k that

(3)
$$D(f) \mid \alpha_{\mathbf{i}} \quad \text{for } \mathbf{i} \in \mathbf{I}_k.$$

Since $\alpha_0 = f(\mathbf{0})$, (3) holds for k = 0. Assume that it holds for k and let $j_1 + \cdots + j_r = k + 1$. By the inductive assumption

$$D(f) \mid \sum_{\mathbf{i} \in \mathbf{I}_r} \alpha_{\mathbf{i}} {x_1 \choose i_1} \dots {x_r \choose i_r}$$
 for all $\mathbf{x} \in \mathbf{Z}^r$,

hence, by (2),

(4)
$$D(f) \mid \sum_{\mathbf{i} \in \mathbf{L} \setminus \mathbf{L}} \alpha_{\mathbf{i}} {x_1 \choose i_1} \dots {x_r \choose i_r} \quad \text{for all} \quad \mathbf{x} \in \mathbf{Z}^r.$$

Since for $\mathbf{i} \in \mathbf{I}_d \setminus \mathbf{I}_k$ we have $i_1 + \cdots + i_r \ge k + 1 = j_1 + \cdots + j_r$ we obtain either $i_s = j_s$ for all $s \le r$ or $i_s > j_s$ for at least one $s \le r$. Therefore,

$$\sum_{\mathbf{i} \in \mathbf{I}_d \setminus \mathbf{I}_k} \alpha_{\mathbf{i}} \binom{j_1}{i_1} \dots \binom{j_r}{i_r} = \alpha_{\mathbf{j}}$$

and, by (4), $D(f) \mid \alpha_i$, which completes the inductive proof of (3). Now,

$$D(f) \operatorname{g.c.d.} \alpha_{\mathbf{i}} \left| \operatorname{g.c.d.} \binom{d}{i_1, \dots, i_r} \alpha_{\mathbf{i}} \right| d! \operatorname{g.c.d.} \frac{\alpha_{\mathbf{i}}}{i_1! \dots i_r!} \left| d! C(f).$$

REMARK. In the same way one can prove that all values of a polynomial $f \in K[x_1, \ldots x_r]$ at $\mathbf{x} \in \mathsf{Z}^r$ belong to an ideal α of K, if and only if $f = \sum_{i \in \mathbf{I}} a_{\mathbf{i}} \binom{x_1}{i_1} \ldots \binom{x_r}{i_r}$, where $a_{\mathbf{i}} \in \alpha$ for all $i \in \mathbf{I}$.

For the proof of Theorem 2 we need two lemmas.

LEMMA 1. For every prime p and positive integer n

$$\operatorname{ord}_p(n!) = \frac{n - s_p(n)}{p - 1},$$

where $s_n(n)$ is the sum of digits of n in the base p.

Proof. See [1], pp. 54-55.

LEMMA 2. For every finite field F_q , where $q = p^f$ (p prime) and every vector $\mathbf{v} \in F_q^r \setminus \{\mathbf{0}\}$ there exist at most $p^{r-1} - 1$ vectors $\mathbf{x} \in F_p^r \setminus \{\mathbf{0}\}$ such that

$$\mathbf{v}\mathbf{x} = 0.$$

PROOF. Let w_1, \ldots, w_f be a basis of F_q over F_p and let $\mathbf{v} = \sum_{i=1}^f \mathbf{v}_i w_i$, $\mathbf{v}_i \in \mathbf{F}_p^r$. Since $\mathbf{v} \neq \mathbf{0}$ we have $\mathbf{v}_j \neq \mathbf{0}$ for at least one $j \leq f$. Moreover, the

equation (5) gives $\mathbf{v}_i \mathbf{x} = 0$ for all $i \le f$, hence the number in question does not exceed the number of non-zero solutions of $\mathbf{v}_i \mathbf{x} = 0$, which is $p^{r-1} - 1$.

PROOF OF THEOREM 2. Let K be a splitting field of F and

$$F = \prod_{i=1}^{d} L_i,$$

where $L_i \in K[x_1, ..., x_r]$ are linear forms. Let \mathfrak{p} be a prime ideal of K and let π be an element of K such that $\operatorname{ord}_{\mathfrak{p}} \pi = 1$. Since C(F) = 1, multiplying L_i by a suitable power of π we may achieve

(6)
$$\operatorname{ord}_{n} C(L_{i}) = 0 \quad (1 \le i \le d).$$

Let norm $\mathfrak{p} = q$ and for $\mathbf{v} \in \mathsf{F}_a^r \setminus \{\mathbf{0}\}$

$$N_{\mathbf{v}} = \{i \leq d : L_i \equiv v_1 x_1 + \dots + v_r x_r \bmod \mathfrak{p}\}.$$

By Lemma 2

$$\sum_{\mathbf{x}\in\mathsf{F}_p^r\setminus\{\mathbf{0}\}}\sum_{\substack{\mathbf{v}\in\mathsf{F}_p^r\setminus\{\mathbf{0}\}\\\mathbf{v}\mathbf{x}=0}}|N_{\mathbf{v}}|=\sum_{\mathbf{v}\in\mathsf{F}_p^r\setminus\{\mathbf{0}\}}|N_{\mathbf{v}}|\sum_{\substack{\mathbf{x}\in\mathsf{F}_p^r\setminus\{\mathbf{0}\}\\\mathbf{v}\mathbf{x}=0}}1$$

$$\leq (p^{r-1}-1)\sum_{\mathbf{v}\in\mathsf{F}_p^r\setminus\{\mathbf{0}\}}|N_{\mathbf{v}}|=(p^{r-1}-1)d.$$

It follows that there exists $\mathbf{x}^0 \in \mathbf{Z}^r$, $\mathbf{x}^0 \not\equiv \mathbf{0} \mod \mathfrak{p}$ such that denoting by $\overline{\mathbf{x}}^0$ the residue class of $\mathbf{x}^0 \mod p$ we have

(7)
$$s(\mathbf{x}^0) := \sum_{\substack{\mathbf{v} \in \mathbb{F}_q^r \setminus \{\mathbf{0}\}\\ \mathbf{v}\overline{\mathbf{x}}^0 = 0}} |N_{\mathbf{v}}| \le \left\lfloor \frac{(p^{r-1} - 1)d}{p^r - 1} \right\rfloor.$$

However, for $i \notin \bigcup_{\mathbf{v} \in \mathbb{F}_q^r \setminus \{\mathbf{0}\}, \mathbf{v}\bar{\mathbf{x}}^0 = 0} N_{\mathbf{v}}$ we have $L_i(\mathbf{x}^0) \not\equiv 0 \mod \mathfrak{p}$, hence

$$\operatorname{ord}_{\mathfrak{p}} D(F(p\mathbf{x} + \mathbf{x}^{0})) = \operatorname{ord}_{\mathfrak{p}} D\left(\prod_{\substack{\mathbf{v} \in \mathbb{F}_{q}^{r} \setminus \{\mathbf{0}\}\\ \mathbf{v}\overline{\mathbf{v}}^{0} = 0}} \prod_{i \in N_{\mathbf{v}}} L_{i}(p\mathbf{x} + \mathbf{x}^{0})\right).$$

Now for i in question, by (6), $\operatorname{ord}_{\mathfrak{p}} C(L_i(p\mathbf{x} + \mathbf{x}^0)) \leq \operatorname{ord}_{\mathfrak{p}} p$. Hence by Theorem 1

$$\operatorname{ord}_{\mathfrak{p}} D(F) \leq \operatorname{ord}_{\mathfrak{p}} D(F(p\mathbf{x} + \mathbf{x}^{0})) \leq s(\mathbf{x}^{0}) \operatorname{ord}_{\mathfrak{p}} p + \operatorname{ord}_{\mathfrak{p}}((s(\mathbf{x}^{0}))!)$$
$$= \operatorname{ord}_{\mathfrak{p}}((ps(\mathbf{x}^{0}))!)$$

and the inequality

$$\operatorname{ord}_p\left(\left(p\left\lfloor\frac{(p^{r-1}-1)d}{p^r-1}\right\rfloor\right)!\right) \ge \operatorname{ord}_p D(F)$$

follows from (7).

For the proof of Theorem 3 we need again two lemmas

LEMMA 3. For all d and r and all primitive forms $F \in \mathbf{Z}[x_1, \dots, x_r]$ of degree d

 $D(F) \mid D_{d,r}$.

If, moreover, F splits over Z, then

$$D(F) \mid D_{d,r}^1$$
.

PROOF. We shall prove the first part of the lemma; the proof of the second part is analogous. Assuming the contrary we infer the existence of a prime p such that

$$\operatorname{ord}_p D(F) > \operatorname{ord}_p D_{d,r}$$
.

Let $D_{d,r} = D(F_0)$, where $F_0 \in \mathsf{Z}[x_1, \dots, x_r]$ is a primitive form of degree d. By the Chinese remainder theorem there exists a form $F_1 \in \mathsf{Z}[x_1, \dots, x_r]$ of degree d satisfying the congruences

$$F_1 \equiv F \mod p^{\operatorname{ord}_p D(F)},$$

$$F_1 \equiv F_0 \mod D_{d,r} / p^{\operatorname{ord}_p D_{d,r}}.$$

We have $F_1 = cF_2$, where F_2 is primitive and $(c, pD_{d,r}) = 1$. Now, by the congruences above

$$D_{d,r} p^{\operatorname{ord}_p D(F) - \operatorname{ord}_p D_{d,r}} \mid D(F_2),$$

hence $D(F_2) > D_{d,r}$, contrary to the definition of $D_{d,r}$.

LEMMA 4. For all primes p and positive integers d the form of degree d

$$F_{pd}(x, y) = \prod_{i=0}^{d - \left\lfloor \frac{d}{p+1} \right\rfloor - 1} (x - iy) \prod_{j=0}^{\left\lfloor \frac{d}{p+1} \right\rfloor - 1} (y - jpx)$$

is primitive and satisfies

(8)
$$\operatorname{ord}_{p} D(F_{pd}) \ge e_{p} = \operatorname{ord}_{p} \left(\left(p \left| \frac{d}{p+1} \right| \right)! \right).$$

PROOF. The form F_{pd} is primitive, since each factor is primitive. We consider three cases

$$(9) y \not\equiv 0 \bmod p,$$

$$(10) y \equiv 0 \not\equiv x,$$

$$(11) y \equiv 0 \equiv x \bmod p.$$

In the case (9) there exists an integer z such that

$$x \equiv zy \mod p^{e_p}$$
.

Hence

$$\begin{split} & \prod_{i=0}^{d-\left \lfloor \frac{d}{p+1} \right \rfloor -1} (x-iy) \equiv y^{d-\left \lfloor \frac{d}{p+1} \right \rfloor} \prod_{i=0}^{d-\left \lfloor \frac{d}{p+1} \right \rfloor -1} (z-i) \\ & \equiv y^{d-\left \lfloor \frac{d}{p+1} \right \rfloor} \left(d - \left \lfloor \frac{d}{p+1} \right \rfloor \right)! \binom{z}{d-\left \lfloor \frac{d}{p+1} \right \rfloor} \bmod p^{e_p}. \end{split}$$

Now,

$$d - \left\lfloor \frac{d}{p+1} \right\rfloor \ge p \left\lfloor \frac{d}{p+1} \right\rfloor,$$

hence

$$\operatorname{ord}_{p} F_{pd}(x, y) \ge \min \left(\operatorname{ord}_{p} \left(\left(d - \left| \frac{d}{p+1} \right| \right) ! \right), e_{p} \right) \ge e_{p}.$$

In the case (10) we have y = pt, $t \in Z$ and there exists an integer u such that

$$t \equiv ux \bmod p^{e_p - \left\lfloor \frac{d}{p+1} \right\rfloor}.$$

Hence

$$\prod_{j=0}^{\left\lfloor \frac{d}{p+1} \right\rfloor - 1} (y - jpx) = p^{\left\lfloor \frac{d}{p+1} \right\rfloor} \prod_{j=0}^{\left\lfloor \frac{d}{p+1} \right\rfloor - 1} (t - jx)$$

$$\equiv p^{\left\lfloor \frac{d}{p+1} \right\rfloor} \left\lfloor \frac{d}{p+1} \right\rfloor ! \binom{u}{\left\lfloor \frac{d}{p+1} \right\rfloor} \mod p^{e_p}$$

and

$$\operatorname{ord}_{p} F_{pd}(x, y) \geq \left\lfloor \frac{d}{p+1} \right\rfloor + \min \left(\operatorname{ord}_{p} \left(\left\lfloor \frac{d}{p+1} \right\rfloor ! \right), e_{p} - \left\lfloor \frac{d}{p+1} \right\rfloor \right).$$

Since $p \lfloor \frac{d}{p+1} \rfloor$ and $\lfloor \frac{d}{p+1} \rfloor$ have the same sum of digits in the base p, by Lemma 1 the right-hand side equals e_p .

In the case (11) we have

$$\operatorname{ord}_{p} F_{pd}(x, y) \ge d > \frac{d-1}{p-1} \ge \operatorname{ord}_{p}(d!) \ge \operatorname{ord}_{p}\left(\left(p \left\lfloor \frac{d}{p+1} \right\rfloor\right)!\right) = e_{p}.$$

Thus in each case (8) holds.

PROOF OF THEOREM 3. For r=2 the theorem is contained in Lemma 4. For $r\geq 2$ consider the form splitting over Z

$$F_0 = \prod_{\substack{a_1 = 0 \\ p \nmid (a_1, \dots, a_r)}}^{pq-1} \dots \prod_{\substack{a_r = 0 \\ p \nmid (a_1, \dots, a_r)}}^{pq-1} (a_1 x_1 + \dots + a_r x_r).$$

The number of factors in the product is $(p^r-1)q^r$, hence deg $F_0F_{p,d-(p^r-1)q^r}=d$. We have $F_0F_{p,d-(p^r-1)q^r}=cF_1$, where $c\not\equiv 0$ mod p and F_1 is primitive, thus $F_1\in S^1_{d,r}$ and by Lemma 4

$$\operatorname{ord}_{p} D_{d,r}^{1} \ge \operatorname{ord}_{p} D(F_{0}) + \operatorname{ord}_{p} \left(\left(p \left| \frac{d - (p^{r} - 1)q^{r}}{p + 1} \right| \right)! \right).$$

In order to prove that

(12)
$$\operatorname{ord}_{p} D(F_{0}) \geq (p^{r-1} - 1)q^{r-1} \operatorname{ord}_{p}((pq)!)$$

we distinguish two cases:

(13)
$$x_i \not\equiv 0 \bmod p$$
 for at least one $j \leq r$

and

(14)
$$x_1 \equiv \cdots \equiv x_r \equiv 0 \bmod p.$$

In the case (13) we may assume in view of symmetry between x_j that $x_r \not\equiv 0 \mod p$. Then there exist integers y_j such that $x_j \equiv y_j x_r \mod p^d$ (j < r) and

we obtain

$$F_{0}(x_{1},...,x_{r})$$

$$\equiv x_{r}^{(p^{r}-1)q^{r}} \prod_{\substack{a_{1}=0 \\ p\nmid (a_{1},...,a_{r})}}^{pq-1} ... \prod_{\substack{a_{r}=0 \\ p\nmid (a_{1},...,a_{r})}}^{pq-1} (a_{1}y_{1}+...+a_{r-1}y_{r-1}+a_{r})$$

$$= x_{r}^{(p^{r}-1)q^{r}} \prod_{\substack{a_{1}=0 \\ p\nmid (a_{1},...,a_{r-1})}}^{pq-1} ... \prod_{\substack{a_{r}=0 \\ p\nmid (a_{1},...,a_{r-1})}}^{pq-1} (pq)! \binom{a_{1}y_{1}+...+a_{r-1}y_{r-1}+pq-1}{pq}$$

$$\cdot \prod_{\substack{a_{1}=0 \\ p\mid (a_{1},...,a_{r-1}) \\ p\nmid a_{r}}}^{pq-1} ... \prod_{\substack{pq-1 \\ p\nmid a_{r}}}^{pq-1} (a_{1}y_{1}+...+a_{r-1}y_{r-1}+a_{r}) \bmod p^{d}.$$

Since there are $(p^{r-1}-1)q^{r-1}$ vectors $[a_1,\ldots,a_{r-1}] \in \{0,\ldots,pq-1\}^r$ such that $p \nmid (a_1,\ldots,a_{r-1})$ we obtain

$$\operatorname{ord}_{p} F_{0}(x_{1}, \dots, x_{r}) \geq \min\{d, (p^{r-1} - 1)q^{r-1} \operatorname{ord}_{p}((pq)!)\}\$$

$$= (p^{r-1} - 1)q^{r-1} \operatorname{ord}_{p}((pq)!),$$

hence (12) follows.

or to

In the case (14) the same inequality is obvious.

PROOF OF COROLLARY 1. For r=2 we have $S_{d,r}=S_{d,r}^0$. The upper estimate for ord_p D(F) given in Theorem 2 and the lower estimate for ord_p $D_{d,2}^1$ given in Theorem 3 coincide.

REMARK. There exists a more direct proof of Corollary 1 using a factorization of F over the p-adic field instead of a factorization over C.

PROOF OF COROLLARY 2. $d_2(n)$ is the least non-negative integer such that $n! \mid D_{d,2}$. By Corollary 1 this divisibility is equivalent to

$$\operatorname{ord}_{p}(n!) \leq \operatorname{ord}_{p}\left(\left(p \left\lfloor \frac{d}{p+1} \right\rfloor\right)!\right)$$
 for all primes $p < d$,
$$\left|\frac{n}{p}\right| \leq \left|\frac{d}{p+1}\right|.$$

The least d satisfying this inequality for all primes p < d is

$$\max_{p} \left((p+1) \left| \frac{n}{p} \right| \right) \ge 3 \left\lfloor \frac{n}{2} \right\rfloor$$

Except for n = 3 we have the equality.

PROOF OF COROLLARY 3. We have by Lemma 1

$$\operatorname{ord}_{p}\left(\left(p\left\lfloor \frac{(p^{r-1}-1)d}{p^{r}-1}\right\rfloor\right)!\right) < \frac{p(p^{r-1}-1)d}{(p^{r}-1)(p-1)} = \left(\frac{1}{p-1} - \frac{1}{p^{r}-1}\right)d.$$

On the other hand, for $d \ge p^r - 1$

$$q^r > \left(\sqrt[r]{\frac{d}{p^r-1}}-1\right)^r > \frac{d}{p^r-1}-r\left(\frac{d}{p^r-1}\right)^{\frac{r-1}{r}}$$

and for $d < p^r - 1$

$$0 > \frac{d}{p^r - 1} - r \left(\frac{d}{p^r - 1}\right)^{\frac{r-1}{r}},$$

thus by Lemma 1

$$\begin{split} &(p^{r-1}-1)q^{r-1}\operatorname{ord}_{p}((pq)!) + \operatorname{ord}_{p}\left(\left(p \left\lfloor \frac{d-(p^{r}-1)q^{r}}{p+1} \right\rfloor\right)!\right) \\ & \geq (p^{r-1}-1)\frac{pq^{r}}{p-1} - (p^{r-1}-1)q^{r-1}\left(\frac{\log d}{\log p} + 1\right) \\ & + \frac{p}{p-1} \cdot \frac{d-(p^{r}-1)q^{r}}{p+1} - \frac{\log d}{\log p} \\ & \geq \frac{pd}{p^{2}-1} + \frac{(p^{r}-p^{2})q^{r}}{p^{2}-1} + d^{\frac{r-1}{r}}O\left(\frac{\log d}{r\log p} + 1\right) \\ & > d\left(\frac{1}{p-1} - \frac{1}{p^{r}-1}\right) + d^{\frac{r-1}{r}}O\left(\frac{r}{p} + \frac{\log d}{r\log p} + 1\right). \end{split}$$

It is easy to see that for r = 2 the factor $d^{\frac{r-1}{r}}$ can be omitted.

PROOF OF COROLLARY 4. By (1) we have

$$\log D_{d,r} \le \log d! = d \log d + O(d),$$

on the other hand, by Corollary 1,

$$\log D_{d,r} \ge \log D_{d,2} \ge \sum_{\substack{p < d \\ p \text{ prime}}} \left\lfloor \frac{d}{p+1} \right\rfloor \log p$$

$$\ge d \sum_{\substack{p < d \\ p \text{ prime}}} \frac{\log p}{p+1} - \sum_{\substack{p < d \\ p \text{ prime}}} \log p = d \log d + O(d).$$

For the proof of Theorem 4 we need three lemmas.

LEMMA 5. If, for a prime p,

$$\operatorname{ord}_{p} D_{d,r+1} > \operatorname{ord}_{p} D_{d,r},$$

then there exists a form $F \in S_{d,r+1}$ such that

(16)
$$\operatorname{ord}_{p} D(F) = \operatorname{ord}_{p} D_{d,r+1}$$

and

$$x_1 x_2 \dots x_{r+1} | F$$
.

Proof. Let

(17)
$$D_{d,r+1} = D(F_0), \quad \text{when} \quad F_0 \in S_{d,r+1}.$$

We have

$$F_0 = \sum_{S \subset \{1,\dots,r+1\}} F_S,$$

where F_S consists of those monomials of F in which occur just the variables with indices belonging to S, $F_{\emptyset} = 0$. It follows by induction on $s \le r + 1$ that

$$p^{\operatorname{ord}_{p} D_{d,r+1}} \mid D(F_{s})$$

and

$$(19) p \nmid C(F_s),$$

where $F_s = \sum_{\{1,...,s\} \subset S \subset \{1,...,r+1\}} F_S$. Indeed, for s = 0, (18) and (19) follow from (17). Assuming that (18) holds for an $s \le r$ and putting $x_{s+1} = 0$ we find that

(20)
$$p^{\operatorname{ord}_{p} D_{d,r+1}} \mid D(F_{s} - F_{s+1}),$$

hence by (18)
$$p^{\text{ord}_p D_{d,r+1}} \mid D(F_{s+1}).$$

Since the form $F_s - F_{s+1}$ depends only on the variables $x_1, \ldots, x_s, x_{s+2}, \ldots, x_{r+1}$ it follows from (15) and (20) that

$$p \mid C(F_s - F_{s+1}),$$

hence by (19)

$$p \nmid C(F_{s+1}),$$

which completes the inductive proof of (18) and (19). Applying these formulae for s = r + 1 we infer that

$$p^{\operatorname{ord}_{p} D_{d,r+1}} \mid D(F_{r+1}), \qquad p \nmid C(F_{r+1}).$$

The form $F = F_{r+1}C(F_{r+1})^{-1}$ satisfies the conditions of the lemma.

LEMMA 6. For all positive integers d and r and for all primes p

$$\operatorname{ord}_p D_{d,r+1} \leq \max \left\{ \operatorname{ord}_p D_{d,r}, \left\lfloor \frac{d-r-1}{p-1} \right\rfloor \right\}.$$

PROOF. If ord_p $D_{d,r+1} > \text{ord}_p D_{d,r}$ let F be a form of Lemma 5. We have

$$F = \sum_{\mathbf{i} \in \mathbf{I}} a_{\mathbf{i}} \cdot x_1^{i_1} x_2^{i_2} \dots x_{r+1}^{i_{r+1}},$$

where $\mathbf{i} = [i_1, \dots, i_{r+1}], i_s \ (1 \le s \le r+1)$ are positive integers, **I** is a certain finite set and $i_1 + \dots + i_{r+1} = d, a_i \in \mathbf{Z}$ for all $\mathbf{i} \in \mathbf{I}$. We have

$$x^{i} = i! \binom{x}{i} + f_{i}(x),$$

where $f_i \in \mathsf{Z}[x]$, deg $f_i < i$, hence

$$F = \sum_{\mathbf{i} \in \mathbf{I}} a_{\mathbf{i}} \prod_{s=1}^{r+1} i_{s}! {x_{s} \choose i_{s}} + f_{\mathbf{i}}(x_{1}, \dots, x_{r+1})$$

where $f_i \in \mathsf{Z}[x_1, \dots, x_{r+1}]$, deg $f_i < d$. It follows now from Nagell's theorem [5, p. 15] and (16) that

(21)
$$p^{\operatorname{ord}_{p} D_{d,r+1}} \mid \operatorname{g.c.d.}_{\mathbf{i} \in \mathbf{I}} \left(a_{\mathbf{i}} \prod_{s=1}^{r+1} i_{s}! \right).$$

However, by Lemma 1,

$$\operatorname{ord}_{p} \prod_{s=1}^{r+1} i_{s}! = \sum_{s=1}^{r+1} \operatorname{ord}_{p} i_{s}! \le \sum_{s=1}^{r+1} \frac{i_{s}-1}{p-1} = \frac{d-r-1}{p-1},$$

and since $F \in S_{d,r+1}$

$$\operatorname{ord}_{p} \operatorname{g.c.d.}_{\mathbf{i} \in \mathbf{I}} \left(a_{\mathbf{i}} \prod_{s=1}^{r+1} i_{s}! \right) \leq \frac{d-r-1}{p-1},$$

hence we obtain from (21)

$$\operatorname{ord}_p D_{d,r+1} \leq \left\lfloor \frac{d-r-1}{p-1} \right\rfloor.$$

Lemma 7. For all primes p < d

(22)
$$\operatorname{ord}_{p}\left(\left(p\left\lfloor \frac{d}{p+1}\right\rfloor\right)!\right) \geq \left\lceil \frac{\operatorname{ord}_{2}\left(\left(2\left\lfloor \frac{d}{3}\right\rfloor\right)!\right)}{p-1}\right\rceil.$$

PROOF. In order to diminish the number of parentheses we agree to perform factorial after multiplication. For p=2, (22) becomes equality. For p=3, d<12 we verify (22) directly. For p=3, d=12k+r, $0 \le r < 12$, $k \ge 1$ we have

$$\operatorname{ord}_{3}\left(3\left\lfloor\frac{d}{4}\right\rfloor!\right) - \left\lfloor\frac{\operatorname{ord}_{2}\left(2\left\lfloor\frac{d}{3}\right\rfloor!\right)}{2}\right\rfloor \geq \frac{k - \operatorname{ord}_{2}k! + 2\left\lfloor\frac{r}{4}\right\rfloor - \operatorname{ord}_{2}\left(2\left\lfloor\frac{r}{3}\right\rfloor!\right)}{2}$$
$$\geq \frac{k - \operatorname{ord}_{2}k! - 1}{2} \geq 0.$$

For p = 5, d = 6k + r, $0 \le r < 6$, $k \ge 1$ we have

$$\operatorname{ord}_{5}\left(5\left\lfloor\frac{d}{6}\right\rfloor!\right) - \left\lfloor\frac{\operatorname{ord}_{2}\left(2\left\lfloor\frac{d}{3}\right\rfloor!\right)}{4}\right\rfloor \geq \frac{k - \operatorname{ord}_{2}k! - \operatorname{ord}_{2}\left(2\left\lfloor\frac{r}{3}\right\rfloor!\right)}{4}$$
$$\geq \frac{k - \operatorname{ord}_{2}k! - 1}{4} \geq 0.$$

For p=7, d<24 we verify (22) directly. For $p=7, d=24k+r, 0 \le r < 24, k \ge 1$ we have

$$\operatorname{ord}_{7}\left(7\left\lfloor\frac{d}{8}\right\rfloor!\right) - \left\lfloor\frac{\operatorname{ord}_{2}\left(2\left\lfloor\frac{d}{3}\right\rfloor!\right)}{6}\right\rfloor \geq \frac{3k + 6\left\lfloor\frac{r}{8}\right\rfloor - \operatorname{ord}_{2}k! - \operatorname{ord}_{2}\left(2\left\lfloor\frac{r}{3}\right\rfloor!\right)}{6}$$
$$\geq \frac{3k - \operatorname{ord}_{2}k! - 3}{6} \geq 0.$$

For p < d < 3p we have

$$\operatorname{ord}_{p}\left(p\left\lfloor\frac{d}{p+1}\right\rfloor!\right) \geq \left\lfloor\frac{d}{p+1}\right\rfloor \geq 1,$$

$$\operatorname{ord}_{2}\left(2\left\lfloor\frac{d}{3}\right\rfloor!\right) \leq \operatorname{ord}_{2}((2p-2)!) \leq 2p-3,$$

$$\left\lfloor\frac{\operatorname{ord}_{2}\left(2\left\lfloor\frac{d}{3}\right\rfloor!\right)}{p-1}\right\rfloor \leq 1.$$

For $3p \le d < \frac{9p-3}{2}$ we have

$$\operatorname{ord}_{p}\left(p\left\lfloor\frac{d}{p+1}\right\rfloor!\right) \geq \left\lfloor\frac{d}{p+1}\right\rfloor \geq 2,$$

$$\operatorname{ord}_{2}\left(2\left\lfloor\frac{d}{3}\right\rfloor!\right) \leq \operatorname{ord}_{2}((3p-3)!) \leq 3p-4,$$

$$\left\lfloor\frac{\operatorname{ord}_{2}\left(2\left\lfloor\frac{d}{3}\right\rfloor!\right)}{p-1}\right\rfloor \leq 2.$$

For $\frac{9p-3}{2} \le d < 6p - 3$ we have

$$\operatorname{ord}_{p}\left(p\left\lfloor\frac{d}{p+1}\right\rfloor!\right) \geq \left\lfloor\frac{d}{p+1}\right\rfloor \geq 3,$$

$$\operatorname{ord}_{2}\left(2\left\lfloor\frac{d}{3}\right\rfloor!\right) \leq \operatorname{ord}_{2}((4p-4)!) \leq 4p-5,$$

$$\left\lfloor\frac{\operatorname{ord}_{2}\left(2\left\lfloor\frac{d}{3}\right\rfloor!\right)}{p-1}\right\rfloor \leq 3.$$

For $p \ge 11$, $d \ge 6p - 3$ we have

$$\operatorname{ord}_{p}\left(p\left\lfloor\frac{d}{p+1}\right\rfloor!\right) \geq \left\lfloor\frac{d}{p+1}\right\rfloor \geq \frac{d-p}{p+1},$$

$$\operatorname{ord}_{2}\left(2\left\lfloor\frac{d}{3}\right\rfloor!\right) \leq 2\left\lfloor\frac{d}{3}\right\rfloor - 1 \leq \frac{2}{3}d - 1,$$

hence

$$\operatorname{ord}_{p}\left(p\left\lfloor \frac{d}{p+1}\right\rfloor!\right) - \left\lfloor \frac{\operatorname{ord}_{2}\left(2\left\lfloor \frac{d}{3}\right\rfloor!\right)}{p-1}\right\rfloor \ge \frac{d-p}{p+1} - \frac{\frac{2}{3}d-1}{p-1}$$

$$= \frac{d(p-5) - 3(p^{2}-2p-1)}{3(p^{2}-1)}$$

$$\ge \frac{(2p-1)(p-5) - p^{2} + 2p + 1}{p^{2}-1}$$

$$= \frac{p^{2}-9p+6}{p^{2}-1} \ge \frac{7}{30}.$$

PROOF OF THEOREM 4. (i) We proceed by induction on r. Since $D_{d,1}=1$, for r=1 the assertion holds. Assume that $D_{d,r}\mid (d-1)!$. It for all primes $p:\operatorname{ord}_p D_{d,r+1}\leq \max\{\operatorname{ord}_p D_{d,r},\operatorname{ord}_p((d-1)!)\}$, we have $D_{d,r+1}\mid (d-1)!$. Otherwise, by Lemma 5, there exists a prime p and a form $F\in S_{d,r+1}$ such that

(23)
$$\operatorname{ord}_{p} D(F) = \operatorname{ord}_{p} D_{d,r+1} > \operatorname{ord}_{p} ((d-1)!)$$

and

$$(24) x_1x_2 \dots x_{r+1} \mid F.$$

Since $F \in S_{d,r+1}$, $F(x_1 ... x_r, 1)$ is primitive and by (24) of degree at most d-1. Hence by (1)

$$D(F(x_1...x_{r-1}, 1) | (d-1)!.$$

contrary to (23).

(ii) We proceed by induction on $r \ge r_d$. For $r = r_d$ the assertion is obvious. Assume that it is true for the index r. If $D_{d,r+1} > D_{d,r}$, then there exists a prime p < d such that

$$\operatorname{ord}_p D_{d,r+1} > \operatorname{ord}_p D_{d,r}$$

and since for $d \ge 4$, $r_d \ge 2$, by Lemma 6 and Corollary 1

$$\left\lfloor \frac{d-r-1}{p-1} \right\rfloor > \operatorname{ord}_{p} D_{d,r} \ge \operatorname{ord}_{p} D_{d,r_{d}}$$

$$\ge \operatorname{ord}_{p} D_{d,2} = \operatorname{ord}_{p} \left(\left(p \left\lfloor \frac{d}{p+1} \right\rfloor \right)! \right).$$

It follows that

$$\left| \frac{\operatorname{ord}_2\left(\left(2\left\lfloor \frac{d}{3}\right\rfloor\right)!\right)}{p-1} \right| > \operatorname{ord}_p\left(\left(p\left\lfloor \frac{d}{p+1}\right\rfloor\right)!\right),\right.$$

contrary to Lemma 7. Thus $D_{d,r+1} = D_{d,r}$ and, by the inductive assumption, $D_{d,r+1} = D_{d,r_d}$.

PROOF OF COROLLARY 5. Since $D_{d,2} \leq D_{d,r} \leq (d-1)!$ and for $d \leq 6$, $d \neq 5$, $D_{d,2} = (d-1)!$ we infer that $D_{d,r} = D_{d,2}$. It remains to consider d = 5 and by (ii) r = 3. Since $D_{5,2} = 6$, (5-1)! = 24 it suffices to prove that $D_{5,3} \not\equiv 0 \mod 4$. Assuming the contrary, by Lemma 5, there exists a form $F_0 \in \mathsf{Z}[x,y,z]$ such that $xyz \mid F_0$

(25)
$$4 \mid D(F_0), \qquad 2 \nmid C(F_0).$$

We have for some integers a, b, c, d, e, f

(26)
$$F_0 = xyz(ax^2 + bxy + cy^2 + dxz + eyz + fz^2)$$

and for x, y, z odd

$$4 | ax^2 + bxy + cy^2 + dxz + eyz + fz^2$$
.

However for x, y odd

$$x^2 \equiv y^2 \equiv 1, \qquad xy \equiv x + y - 1 \mod 4,$$

thus

$$4 \mid a - b + c - d - e + f + (b + d)x + (b + e)y + (d + e)z$$

and, since this holds for all x, y, z odd we have

$$(27) b \equiv d \equiv e \mod 2$$

and

(28)
$$a+b+c+d+e+f \equiv 0 \mod 4.$$

On the other hand, from (25) and (26) for $\langle x, y, z \rangle = \langle 2, 1, 1 \rangle$, $\langle 1, 2, 1 \rangle$, $\langle 1, 1, 2 \rangle$

$$c + e + f \equiv 0$$
, $a + d + f \equiv 0$, $a + b + c \equiv 0 \mod 2$.

It follows from (27) that $a \equiv c \equiv f \mod 2$, thus $b \equiv d \equiv f \equiv 0 \mod 2$ and, by (28), $3a \equiv 0 \mod 2$, $a \equiv c \equiv f \equiv 0 \mod 2$, contrary to (25).

REMARK. We have (D(xyz(x+y)(x+z)(x+y+z)(y+z)(y-z)) = 48. Since $D_{8,2} = 2520$ it follows by Lemma 3 and Theorem 4 (i) that $D_{8,r} = 7$! for all $r \ge 3$. On the other hand, a complicated computation shows that for all $r \ge 2$, $D_{7,r} = 5$! $= D_{7,2}$.

PROOF OF COROLLARY 6. We have by Theorem 2 and Corollary 1

ord₂
$$D_{9,3}^1 \le \text{ord}_2\left(\left(2\left\lfloor \frac{27}{7}\right\rfloor\right)!\right) = \text{ord}_2 6! = 4 = \text{ord}_2 D_{9,2}^1,$$

ord₃ $D_{9,3}^1 \le \text{ord}_3\left(\left(3\left\lfloor \frac{72}{26}\right\rfloor\right)!\right) = \text{ord}_3 6! = 2 = \text{ord}_3 D_{9,2}^1.$

For p = 5, 7 we have by Corollary 1

$$\operatorname{ord}_2 D_{9,2}^1 = 1 = \operatorname{ord}_p 8!.$$

For the proof of Theorem 5 we need 5 lemmas.

LEMMA 8. For all primes p and all integers r > 1 and $\alpha > 0$ let $d(r, p^{\alpha})$ and $d^{1}(r, p^{\alpha})$ be the least d such that $p^{\alpha} \mid D_{d,r}$ and $p^{\alpha} \mid D_{d,r}^{1}$, respectively. We have

$$d(r, p^{\alpha}) \le d^{1}(r, p^{\alpha}) \le \frac{p^{2} - 1}{p} \left(\alpha + 2 \frac{\log \alpha p}{\log p} + 1 \right) \qquad \text{if} \quad \alpha \ge p,$$

$$d(r, p^{\alpha}) \le d^{1}(r, p) \le \alpha (p + 1) \qquad \qquad \text{if} \quad \alpha < p.$$

Moreover.

$$d(r, p^{\alpha}) \ge \alpha(p-1) + 2.$$

Proof. By Lemma 1

$$\operatorname{ord}_p((pn)!) \ge \frac{pn}{p-1} - \frac{\log pn}{\log p},$$

hence by Corollary 1

$$\operatorname{ord}_{p} D_{d,2}^{1} = e_{p} \ge \frac{p}{p^{2} - 1} d - \frac{\log d}{\log p} - 1$$

and if $\alpha \geq p$,

$$d \ge \frac{p^2 - 1}{p} \left(\alpha + 2 \frac{\log \alpha p}{\log p} + 1 \right)$$

we obtain

$$e_p \ge \alpha + 2 \frac{\log \alpha p}{\log p} + 1 - \frac{\log \frac{p^2 - 1}{p} \left(\alpha + 2 \frac{\log \alpha p}{\log p}\right)}{\log p} - 1 \ge \alpha.$$

Thus ord_p $D_{d,2} \ge \alpha$ and a fortiori

$$\operatorname{ord}_{p} D_{d,r} \geq \alpha$$
.

The same is true for $\alpha < p$ provided $d \ge (p+1)\alpha$.

On the other hand, if $p^{\alpha} \mid D_{d,r}$, we have by Theorem 4(i) and by Lemma 1

$$\alpha \le \operatorname{ord}_p((d-1)!) \le \frac{d-2}{p-1},$$

hence $d \ge \alpha(p-1) + 2$.

LEMMA 9. If c > 1 and p > 8/(c-1), then $p^{\alpha} \mid n!$ implies

$$d(r, p^{\alpha}) \le d^{1}(r, p^{\alpha}) < cn.$$

PROOF. If $\alpha < p$, then $n \ge \alpha p$ and by Lemma 8

$$d(r,p) \le d^1(r,p) \le \alpha(p+1) < \alpha\left(1+\frac{c-1}{8}\right)p < cn.$$

If $\alpha \geq p$, then again by Lemma 8

$$d^{1}(r, p^{\alpha}) \leq \frac{p^{2} - 1}{p} \left(\alpha + 2 \frac{\log \alpha p}{\log p} + 1 \right).$$

On the other hand, by Lemma 1

$$\alpha = \operatorname{ord}_p n! < \frac{n}{p-1},$$

hence

$$d^{1}(r, p^{\alpha}) \le \frac{p^{2} - 1}{p} \left(\frac{n}{p - 1} + 2 \frac{\log 2n}{\log p} + 1 \right)$$

and

$$\frac{d^1(r, p^{\alpha})}{n} \leq \frac{p+1}{p} + 2\frac{p^2 - 1}{p} \frac{\log 2n}{n \log p} + \frac{p^2 - 1}{pn}.$$

The right hand side is a decreasing function of n and since $n \ge p^2$, $\frac{d(r,p^\alpha)}{n} \le \frac{d^1(r,p^\alpha)}{n} \le \frac{p+1}{p} + 6\frac{p^2-1}{p^3} + \frac{p^2-1}{p^3} < 1 + \frac{8}{p} < c$.

LEMMA 10. The limit $\ell(r, p) = \lim_{\alpha \to \infty} \frac{d(r, p^{\alpha})}{\alpha}$ exists and satisfies $\ell(r, p) \ge p - 1$.

PROOF. By Lemma 8 we have

$$\frac{p^2 - 1}{p} \ge l(r, p) = \liminf_{\alpha \to \infty} \frac{d(r, p^{\alpha})}{\alpha} \ge p - 1.$$

For every integer n there exists an integer β_n such that

$$d(r, p^{\beta_n}) \le \left(l(r, p) + \frac{1}{n}\right) \beta_n.$$

If $f \in S_{d,r}$ and $p^{\beta_n} \mid D(f)$, then $p^{q\beta_n} \mid D(f^q)$, where $f^q \in S_{qd,r}$. Hence choosing for an arbitrary integer $\alpha > 0$ an integer q such that $(q-1)\beta_n < \alpha \le q\beta_n$ we infer that

$$d(r, p^{\alpha}) \le q d(r, p^{\beta_n}) < \frac{q\alpha}{q-1} \left(l(r, p) + \frac{1}{n} \right)$$

and for $\alpha > n\beta_n$

$$d(r, p^{\alpha}) \le \left(1 + \frac{1}{n}\right) \left(l(r, p) + \frac{1}{n}\right) \alpha.$$

Since *n* is arbitrary, it follows that

$$\lim_{\alpha \to \infty} \frac{d(r, p^{\alpha})}{\alpha} = l(r, p).$$

Lemma 11. The limit $l_r = \lim_{n \to \infty} \frac{d_r(n)}{n}$ exists.

PROOF. If $\limsup_{n\to\infty} \frac{d_r(n)}{n} = 1$, then since by Theorem 4(i)

$$\liminf_{n\to\infty}\frac{d_r(n)}{n}\geq 1$$

we have $l_r = 1$. Assume that $\limsup_{n \to \infty} \frac{d_r(n)}{n} = c > 1$. Since $d_r(n) \le d_2(n) \le \frac{3}{2}n$ we have $c < \infty$. We shall prove that

(29)
$$\lim_{n \to \infty} \frac{d_r(n)}{n} = \max_{p < \frac{16}{10}} \frac{l(r, p)}{p - 1} =: M.$$

In order to prove (29) it suffices to prove that

$$\limsup_{n \to \infty} \frac{d_r(n)}{n} \le M$$

and

(31)
$$\liminf_{n\to\infty} \frac{d_r(n)}{n} \ge M.$$

Clearly,

$$d_r(n) = \max_{p^{\alpha} || n} d(r, p^{\alpha}).$$

For $p > \frac{16}{c-1}$ we have by Lemma 9

$$d(r,p^{\alpha})<\frac{c+1}{2}n,$$

and, since $\frac{c+1}{2} < c$,

$$\limsup_{n\to\infty} \frac{d_r(n)}{n} = \limsup_{n\to\infty} \max_{\substack{p^\alpha \parallel n \\ p < \frac{16}{c-1}}} \frac{d(r, p^\alpha)}{n}.$$

Since for every $p < \frac{16}{c-1}$, $\varepsilon > 0$ and $\alpha > \alpha(\varepsilon)$

$$d(r, p^{\alpha}) < (l(r, p) + \varepsilon)\alpha$$

while, by Lemma 1

(32)
$$\alpha = \frac{n}{p-1} + O(\log n)$$

we obtain for $n > n_0(\varepsilon)$

$$d(r, p^{\alpha}) < (M + \varepsilon)n,$$

which gives (30).

In order to prove (31) let $M = \frac{l(r,p)}{p-1}$ for a prime p. In view of (32) $n! \mid D_{d,r}$ implies for every $\varepsilon > 0$ and $n > n_1(\varepsilon)$

$$d \ge d(r, p^{\alpha}) \ge (l(r, p) - \varepsilon) \left(\frac{n}{p-1} + O(\log n)\right) \ge (M - \varepsilon)n + O(\log n),$$

which proves (31).

LEMMA 12. Let $d_r^1(n)$ be the least d such that $n! \mid D_{d,r}^1$. Then

$$\lim_{n \to \infty} \frac{d_r^1(n)}{n} = \frac{2^r - 1}{2^r - 2}.$$

PROOF. We shall prove the lemma in two steps

(33)
$$\limsup_{n \to \infty} \frac{d_r^1(n)}{n} \le \frac{2^r - 1}{2^r - 2}$$

and

(34)
$$\liminf_{n \to \infty} \frac{d_r^1(n)}{n} \ge \frac{2^r - 1}{2^r - 2}.$$

We have

$$d_r^1(n) = \max_{p^{\alpha} || n!} d^1(r, p^{\alpha}).$$

By Lemma 9 for $p > 8(2^n - 2)$ we have

$$d^{1}(r, p^{\alpha}) < \frac{2^{r} - 1}{2^{r} - 2}n.$$

For $p < 8(2^n - 2)$, by Corollary 3 for every $\varepsilon > 0$ and $n > n(\varepsilon)$, $d > (\frac{2^r - 1}{2^r - 2} + \varepsilon)n$.

$$\operatorname{ord}_{p} D_{d,r}^{1} = d \left(\frac{1}{p-1} - \frac{1}{p^{r}-1} \right) + O\left(d^{\frac{r-1}{r}} \log d\right)$$

$$> \left(\frac{2^{r}-1}{2^{r}-2} + \varepsilon \right) \left(\frac{1}{p-1} - \frac{1}{p^{r}-1} \right) + O\left(n^{\frac{r-1}{r}} \log n\right)$$

$$> \frac{n}{p-1} + O(\log n) = \alpha.$$

This shows (33). In order to prove (34) suppose that for $\varepsilon > 0$ and arbitrarily large n

$$d < \left(\frac{2^r - 1}{2^r - 2} - \varepsilon\right)n.$$

Then by Corollary 3

$$\operatorname{ord}_{2} D_{d,r}^{1} < \left(\frac{2^{r} - 1}{2^{r} - 2} - \varepsilon\right) \left(1 - \frac{1}{2^{r} - 1}\right) n + O\left(n^{\frac{r-1}{r}} \log n\right)$$
$$< n - O(\log n) = \operatorname{ord}_{2} n!.$$

PROOF OF THEOREM 5. The Theorem follows from Lemmas 10 and 11.

For the proof of Theorem 6 we need

LEMMA 13. For every positive integer r

$$D(G_r) = \prod_{i=1}^r i!$$
, where $G_r = \prod_{i=1}^r x_i \prod_{1 \le i \le j \le r} (x_j - x_i)$.

PROOF. See [4] or [3, Lemma 4.1]. The lemma itself is due to H. W. Segar (cf. [2], p. 269).

PROOF OF THEOREM 6. We shall show that for all primes p

(35)
$$\operatorname{ord}_{p} D_{d,r} \ge \operatorname{ord}_{p} (\lceil d - 3(2d)^{3/4} \rceil!).$$

We distinguish three cases:

$$(36) p < r^{1/2},$$

(37)
$$p > r^{1/2}, \qquad p^2 + p \le d,$$

$$(38) p^2 + p > d.$$

In the case (36) we have $\binom{r+1}{2} \le d$, hence $D(G_r) \mid D_{d,r}$ and by Lemma 13

$$\operatorname{ord}_p D_{d,r} \ge \sum_{i=1}^r \operatorname{ord}_p i!.$$

Now, by Lemma 1, for i > 1

$$\operatorname{ord}_{p} i! \geq \frac{i}{p-1} - \left\lceil \frac{\log i}{\log p} \right\rceil,$$

hence

$$\operatorname{ord}_{p} D_{d,r} \ge \frac{\binom{r+1}{2} - 1}{p-1} - r + 1 - \frac{\sum_{i=p+1}^{r} \log i}{\log p}$$
$$\ge \frac{\binom{r+1}{2}}{p-1} - (r-1)(1 + \log r/\log p).$$

However by the choice of r

$$\binom{r+1}{2} \ge d-r, \qquad 2 \le r < \sqrt{2d},$$

while by Lemma 1

(39)
$$\operatorname{ord}_{p}(\lceil d - 3(2d)^{3/4} \rceil!) \le \frac{d - \lceil 3(2d)^{3/4} \rceil}{p - 1}$$

and the inequality (35) follows from

$$\lceil 3(2d)^{3/4} \rceil - r - (p-1)(r-1)(1 + \log r/\log p) \ge 3(2d)^{3/4} - 3r^{3/2} > 0.$$

In the case (37) we have

$$\operatorname{ord}_p\left(\left|\frac{d}{p+1}\right|!\right) \geq 1,$$

hence by Corollary 1

$$\operatorname{ord}_p D_{d,r} \ge \operatorname{ord}_p D_{d,2} \ge \frac{d}{p+1}$$

and (35) follows from (39) and the inequality

$$(p+1)\lceil 3(2d)^{3/4} \rceil - 2d > (r^{1/2} + 1)3(2d)^{3/4} - 2d$$
$$> (r+1)^{1/2}3(2d)^{3/4} - 2d$$
$$> (2d)^{1/4}3(2d)^{3/4} - 2d = 4d > 0.$$

In the case (38) we have

$$p^2 > d - 3(2d)^{3/4}.$$

Let $d - \lfloor 3(2d)^{3/4} \rfloor = ap + b$, where $a, b \in \mathbb{Z}; 0 \le b < p$. Clearly $a < \sqrt{d} < \lfloor 3(2d)^{3/4} \rfloor$, thus

$$d = ap + b + \lfloor 3(2d)^{3/4} \rfloor > ap + a$$

and

$$\operatorname{ord}_{p} D_{d,2} = \left| \frac{d}{p+1} \right| \ge a = \operatorname{ord}_{p} \left(\lceil d - 3(2d)^{3/4} \rceil! \right).$$

PROOF OF COROLLARY 7. For $r \ge \left\lfloor \frac{-1+\sqrt{8d+1}}{2} \right\rfloor$ we have by Theorem 6 and the Stirling formula

$$\log D_{d,r} \ge \log \lceil d - 3(2d)^{3/4} \rceil! = d \log d - d + O(d^{3/4} \log d).$$

On the other hand, by Theorem 4(i)

$$\log D_{d,r} \le \log(d-1)! = d \log d - d + O(\log d),$$

184 A. SCHINZEL

hence the assertion.

REFERENCES

- 1. Bachmann, P., Niedere Zahlentheorie I, reprint, Chelsea, New York 1968.
- 2. Dickson, L. E., *History of the theory of numbers 1*, reprint, Chelsea, New York 1952.
- 3. Elsholtz, C., *Additive decomposability of multiplicatively defined sets*, Functiones Approx. Comment. Math. 35 (2006), 61–77.
- Hensel, K., Über den grössten gemeinsamen Theiler aller Zahlen, welche durch eine ganze Function von n Veränderlichen darstellbar sind, J. Reine Angew. Math. 116 (1896), 350– 356.
- 5. Nagell, T., *Über zahlentheoretische Polynome*, Norsk. Mat. Tidsskr. 1 (1919), 14–23, see also The Collected Papers of Trygve Nagell, vol. 1, 29–40, Kingston 2002.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
\$NIADECKICH 8
00-956 WARSAW
POLAND
E-mail: schinzel@impan.pl