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ON FIXED DIVISORS OF FORMS IN
MANY VARIABLES, I

A. SCHINZEL

(In memory of Trygve Nagell)

Abstract

Let Dy, be the maximal fixed divisor of a primitive form of degree d in r variables over Z. A
formula is given for Dy > and estimates for Dy, for r > 2. As a consequence, a question of Nagell
raised in 1919 is completely answered.

Let K be a finite extension of Q and for f € K[xy, ..., x,]let C(f) and D(f)
be the highest common ideal factor of the coefficients of f and of the values of
f forx € Z", respectively. Polynomials f with C(f) = 1 are called primitive.
For a prime ideal p and an ideal a of K, let ord;, a be the exponent with which
p occurs in the factorization of a. T. Nagell has proved ([5], p. 16) that for
every f € Z[xy, ..., x,] of degree d

(D D(f) | d'C(f).
This result is implicit in [4]. An easy generalization is contained in

THEOREM 1. For every finite extension K of Q and forevery f € K[xy, ...
x,] of degree d (1) holds.

Put

Sqr ={F € Z]xy, ..., x,], of degree d, homogeneous and primitive},
SSJ ={F € 8,4, splitting over C},

S;’, ={F € §,,, splitting over Z}.

It follows from (1) that the following definitions are correct:

Dd,r :fmax D(f)v D;’r: malx D(f)
c ,

d.r fesy,
For K = Q, D(F) is identified with its positive generator. We shall prove
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THEOREM 2. For all F € Sg’, and for all primes p

r—1 __
ord, D(F) < ord, <<p\\(ppr—_ll)dJ)')

THEOREM 3. For all positive integers d and v > 1 and for all primes p

d
ord, D}, > ord — | )!),
rrer e ”((phﬂrlD)

Ol'dp D;,r > (pr—l - l)qr—l Ordp((pq)') + Ol'dp ((p\‘wj>|)’

p+1
where g = L’/%J.

COROLLARY 1. For all positive integers d and for all primes p

d
ord, Dy = ord, ((meJ> !) =ord, D:z,z-

COROLLARY 2. The least integer d, say d,(n), such that n! | Dy, is 4 for
n=3and?3 L%J, otherwise.

The corollary answers a question asked by Nagell [5]. He has proved that
dr(2) =3,d>(3) =4,dr(4) = dr(5) = 4, dr(n) <2n — 1. The last result has
been anticipated by Hermite (see [2], p. 266).

COROLLARY 3. For all integers d > 3 and r > 2 and for all primes p < d

1 1 . r logd
d, D! =d|l—— — d7 ol - 1),
o Zar (p—l p’—1)+ (p+r10gp+)

where the constant in the O-symbol is absolute and d7 can be omitted for
r=2.

COROLLARY 4. For all integersr > 2
log Dy, = dlogd + O(d)
uniformly inr.

THEOREM 4.
(1) For all positive integers d and r

Dy, | (d—1)!
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(i1) For all integersd > 4, r; =d — ordg((Zl_%J)!) —landr > ry,

Dg, = Dd,rd'

COROLLARY 5. For all positive integers d < 6 andr > 2

Dy, =Dy».

COROLLARY 6. D§ 5 = D ,.
Corollary 1 suggests the following

CONJECTURE. For all positive integers d and r

1
Dd,r = Dd,r‘

This is true for d < 9 and each r, see Remark after the proof of Corollary 5.

THEOREM 5. Let d, (n) be the least integer d such that n! | Dy ,. Then for
all r the limit [, = lim,_, « d”(l”) exists and satisfies [, < g::é If Conjecture is
true we have equality.

THEOREM 6. For all positive integers d > 3*-2° = 648 andr = L_H— ESHIJ

Dy, =0 mod[d —3Q2d)¥*]!.

COROLLARY 7. Forr > L_H— ‘zgdHJ we have

log Dy, = dlogd —d + O(d**logd)
uniformly in r.

PrROOF OF THEOREM 1. Since x" is a linear combination of (’j‘) ( =

0, ..., n) with integral coefficients, it follows that
X1 Xr
2 = i . ,
@ r=xa(;)-- ()
1ely

where I, = {i = [iy,..., i ]:i14+---+i, <d}, o € K. We shall show by
induction on k that

3) D(f) | o for iel.
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Since og = f(0), (3) holds for k& = 0. Assume that it holds for k and let
j1+ -+ j- = k+ 1. By the inductive assumption

Zozi<),€1)...<),cr> forall xeZ,
1 1y

iEIk

D(f)

hence, by (2),

“4) D(f)

E ai<)_cl> . (x,) forall xeZ.
. 3 ly
icl/\Ix

Since fori € I; \ Iy wehavei; +---4+i, >k+ 1= j; +---+ j, we obtain
either iy = j; forall s < r ori; > j, for at least one s < r. Therefore,

Z <j1> (jr) .
ol . R = 0j
e, N Ir

and, by (4), D(f) | «j, which completes the inductive proof of (3). Now,

d
g.c.d. ( ,)ai
iel, Iy ooy Iy

REMARK. In the same way one can prove that all values of a polynomial
f € K[xy,...x,] at x € Z" belong to an ideal a of K, if and only if f =
Yo ai(’i‘l‘) ...(}"), where g; € aforalli € L.

D(f)gcd o

iEId

diged ——— | dIC(f).

i
. i Ml
iely Ieeeebr:

For the proof of Theorem 2 we need two lemmas.

LEMMA 1. For every prime p and positive integer n

ord,(n!) = n—spn)
p—1

’

where s,(n) is the sum of digits of n in the base p.
Proor. See [1], pp. 54-55.

LEMMA 2. For every finite field F,, where q = p’ (p prime) and every
vector v € F; \ {0} there exist at most p"~' — 1 vectors x € F}; \ {0} such that

) vx = 0.

Proor. Let wy, ..., ws be a basis of F, over F, and let v = Zile Vi Wi,
v; € F,. Since v # 0 we have v; # 0 for at least one j < f. Moreover, the
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equation (5) gives v;x = 0 for all i < f, hence the number in question does
not exceed the number of non-zero solutions of v;x = 0, whichis p"~! — 1.

PrOOF OF THEOREM 2. Let K be a splitting field of F' and

d
F = ]—[ L.,
i=1
where L; € K[xy, ..., x,] are linear forms. Let p be a prime ideal of K and

let 7w be an element of K such that ord, # = 1. Since C(F) = 1, multiplying
L; by a suitable power of 7 we may achieve

Letnorm p = g and for v € F; \ {0}
Ny={i<d: L;=vix;+ -+ v.x, modp}.

By Lemma 2
2. 2 M= D Ml )
xeF\{0} veF)\{0} veF \{0} xeF,\{0}
vx=0 vx=0
<P =D ) M= - Dd.
veF\(0)

It follows that there exists x° € Z”, x° % 0 mod p such that denoting by X" the
residue class of x” mod p we have

(pr~' =
(7) s = Y |Nv|s{—, :
pr—1
veF,\{0}
vx'=0

However, fori ¢ (Uycp \ 0).vx0=0 Nv We have L;(x%) % 0 mod p, hence
7\ (0),

ordy, D(F(px + x%)) = ord, D( 1_[ l_[ L;(px + XO)).
veF;\{O} ieNy
vx'=0

Now for i in question, by (6), ord, C(L;(px + x’)) < ord, p. Hence by
Theorem 1
ord, D(F) < ord, D(F (px 4+ x")) < s(x°) ord, p + ord, ((s(x"))!)
= ord, ((ps(x))!)
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and the inequality

r—1 __
OI'dp((p\‘(l?p”—_ll)ClJ)‘) = Ordp D(F)

follows from (7).

For the proof of Theorem 3 we need again two lemmas

LEMMA 3. For all d and r and all primitive forms F € Z[xy,...,x,] of

degree d
D(F) | Dg,r.

If, moreover, F splits over Z, then

D(F) | D,,.

ProoF. We shall prove the first part of the lemma; the proof of the second
part is analogous. Assuming the contrary we infer the existence of a prime p

such that
ord, D(F) > ord, Dy ,.

Let Dy, = D(Fy), where Fy € Z[xy, ..., x,] is a primitive form of degree d.
By the Chinese remainder theorem there exists a form F; € Z[xy, ..., x,] of
degree d satisfying the congruences

Fi=F modp‘“d/’ b#)
F) = Fymod Dy ./ p®% Par,

We have F| = cF,, where F, is primitive and (c, pD;,) = 1. Now, by the
congruences above

Dd,rpord[} D(F)—ord, Dg,, | D(Fz),

hence D(F;) > Dy, contrary to the definition of Dy ;.
LEMMA 4. For all primes p and positive integers d the form of degree d
gl sk
Fu,y)= ] @«=in [] 0—ijpo

i=0 j=0

is primitive and satisfies

d
S e (=)
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ProOF. The form F), is primitive, since each factor is primitive. We con-
sider three cases

) y # 0 mod p,
(10) y=0#ux,
(11) y=0=x modp.

In the case (9) there exists an integer z such that

x = zy mod p.

Hence
|zt |zt
[T o-in=y"ll @—1i)
i=0 i=0
S )
=y d ! mod p
P+ 1 d— Lpi]J
Now, J J
i)l
p+1 p+1
hence

d
ord, Fps(x,y) > min (ord,, ((d — Lﬁj)) ,e,,) > ep.

In the case (10) we have y = pt, t € Z and there exists an integer u such

that
[ =ux modpe”{ﬁj.

Hence
L% 71 LpilJ 1
]_[ (y — jpx) = ]_[ (t — jx)
A
=p mod pr
p+l Lp+l
and

ord, F,u( ) > L-}min ord L! _L
p Lpd\X,Y) = p+1 p p+1 ).ep p+1 .
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Since pL#J and I_#J have the same sum of digits in the base p, by

Lemma 1 the right-hand side equals e,,.
In the case (11) we have

—1 d
— > ord,(d!) > ord, ((p Lﬁj)) =e,.

Thus in each case (8) holds.

d
ord, Fpe(x,y) >d >
p

PrOOF OF THEOREM 3. For r = 2 the theorem is contained in Lemma 4.
For r > 2 consider the form splitting over Z

rq—1 rq—1

F()= l_[ l_[(alx1+‘--+arx,).

a;=0 a,=0
piay,....ar)

The number of factors in the productis (p" —1)q", hence deg Fo F), 4—(pr—1)g- =

d. We have FoF), 4_(pr—1)¢» = cFy, where ¢ # 0 mod p and F) is primitive,
thus F; € S, and by Lemma 4

d—(p"—Dq"
ord, Dy, > ord, D(Fp) + ord, ((p LT ')

In order to prove that
(12) ord, D(Fo) = (p'~" — )¢’ ord, ((pg)")

we distinguish two cases:

(13) xj #0modp for at leastone j < r
and
(14) Xy =---=x, =0mod p.

In the case (13) we may assume in view of symmetry between x; that x, #
0 mod p. Then there exist integers y; such that x; = y;x, mod p? (j < r) and
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we obtain

Fo(xlv"-vxr)

rq—1

— e

.....

pq—1

rq—1
a1:0 a,_1:0

pl(ai,....ar—1)

Since there are (p"~! —
such that p 1 (ay, ..., ar—1)

ordp Fo(xl, vy Xp

hence (12) follows.

1 wa!
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rg—1
1_[ (alyl + - "Jl_ar—lyr—l +ar)

a,=0

ar)

pg—1

l_[ (ayy1+---+a—1y—1+a,) modpd.

a,=0
pla,

-1
g aiyyi+-+a—1yr—1+pqg—1

pPq

)

ayr—1 =0

seeeslr—1)

1)g"~! vectors [ay, ...,a,_1]1 € {0, ..., pg — 1}

we obtain

) > min{d, (p"~" — Dg" " ord,((pg))}
= (p"' = g " " ord, ((pg))),

In the case (14) the same inequality is obvious.

PROOF OF COROLLARY 1. For r = 2 we have S;, = ng. The upper

estimate forord, D(F) give
given in Theorem 3 coincid

REMARK. There exists a

nin Theorem 2 and the lower estimate for ord,, D [11 2
e.

more direct proof of Corollary 1 using a factoriz-

ation of F over the p-adic field instead of a factorization over C.

PrOOF OF COROLLARY 2

. dy(n) is the least non-negative integer such that

n! | Dgo. By Corollary 1 this divisibility is equivalent to

ord,(n!) < ord, ((

or to

|

p+1

|

d
L

) for all primes p < d,

J)
d J

Lp+1

n

p

<

The least d satisfying this inequality for all primes p < d is

max
p

n n

2

L P

J

((p +1)

[)=:1
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Except for n = 3 we have the equality.

PrOOF OF COROLLARY 3. We have by Lemma 1

1

(( L(p"‘—l)dDO p(p~' = 1d _( 1
ordp{ |\ p| —— | )!) < = - —
pr—1 (pr—=D(p—-1 p—1 p—1

On the other hand, ford > p” — 1

thus by Lemma 1

_ N d—(p"—1q"
r—1 r—1
—1 ord ) 4+ ord _—
(p )q »((p)!) p((p{ P
r— p i r— r— logd
> -2 m g (22 4
p—1 log p
4P d—(p"—Dgq" logd
p—1 p+1 log p
d " — pHg" . logd
S P P =pIa" g (Jogd
pr—1 pr—1 rlogp
1 1 . logd
sd— — +d7o(l + ==
p—1 p -1 p rlogp

PrROOF OF COROLLARY 4. By (1) we have

log Dy, <logd! = dlogd + O(d),

+1).

It is easy to see that for r = 2 the factor d 7 can be omitted.

)

)a
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on the other hand, by Corollary 1,

d
log Dy, > logDy» > Z \‘—IJ log p

p<d P+
p prime
log p
>d — log p =dlogd + O(d).
> o > logp g (d)
p<d p<d
p prime p prime

For the proof of Theorem 4 we need three lemmas.

LEMMA 5. If, for a prime p,
(15) ord, Dy ;41 > ord, Dy ,,
then there exists a form F € S; .11 such that
(16) ord, D(F) = ord, Dy ,41

and
X1X2 .o Xpt1 | F.

PRrROOF. Let
(17) Dy ry1 = D(Fp), when  Fy € Sg,41.
We have
Fy = Z Fg,
Sc{l,...r+1}

where Fs consists of those monomials of F in which occur just the variables
with indices belonging to S, Fyy = 0. It follows by induction on s < r 4 1 that

(18) p°d Part | D(Fy)
and
(19) p1C(Fy),

where Fy = Z{l ,,,,, sjescilort1) Fs-
Indeed, for s = 0, (18) and (19) follow from (17). Assuming that (18) holds

for an s < r and putting x,; = 0 we find that

(20) podr Pars | D(Fy — Fip),
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hence by (18) ol D
pr P | D(Fyy).

Since the form F; — Fyy; depends only on the variables xi, ..., x;, X512,
., Xy11 it follows from (15) and (20) that

p | C(Fy = Fei1),

hence by (19)
p1C(Fyp),

which completes the inductive proof of (18) and (19). Applying these formulae
for s = r + 1 we infer that

pord,, Dy ri1 |D(Fr+1), p’fC(Fr+])-

The form F = F,,1C(F,,;)~" satisfies the conditions of the lemma.

LEMMA 6. For all positive integers d and r and for all primes p

d—r—1
ord, Dy ;41 < max jord, Dy ,, ——1 I
p —

Proor. If ord, Dy 41 > ord, D, , let F be a form of Lemma 5. We have
F = Za, x”x’z”.. ;’;;,
iel

wherei = [if, ..., i,+1],is (1 <s < r+1) are positive integers, I is a certain
finite setand i; +--- +1i,41 = d, a; € Zforalli € I. We have

xi = l'(f) + fi(x),

where f; € Z[x], deg f; < i, hence

r+1
F = Za,l_[lY ( )—|—f1(x1,...,x,+1)

i€l s=1

where f; € Z[xy, ..., x,41], deg f; < d. It follows now from Nagell’s theorem
[5, p. 15] and (16) that

r+1
1) P Pt | ged.igy (“i [ iS!)'

s=1
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However, by Lemma 1,

r+1 r+1 r+1 .

. . iy —1 d—r—1
ordpl_[zs!=20rdpzs!§zp_1= o1
s=1 s=1 s=1

and since F' € S;,41

r+1 d—r—1
ord, g.c.d.jq (ail_[is!) <,

s=1 p_l

hence we obtain from (21)

4D - d—r—1
or ] < | —mm—1.
p Yd,r+1 p—l

LEMMA 7. For all primes p < d

(22) ord, ((p {%J)g) . L%J .

PRrROOF. In order to diminish the number of parentheses we agree to perform
factorial after multiplication. For p = 2, (22) becomes equality. For p = 3,
d < 12 we verify (22) directly. For p =3,d = 12k+r,0 <r < 12,k > 1
we have

oty (3] 2 - Ld el J _ k- ok +2[5] o (2] )

—

2 2

k—ordy k! — 1
zfzo

Forp=5,d=6k+r,0<r <6,k >1wehave

ords (5 {%J z) _ \jmb 2[5] ')J - k —ordy k! —ord; (2 | 5 ]1)

4 - 4
k—ordy k! — 1
>

> —>0.
il 4 il
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For p = 7, d < 24 we verify (22) directly. For p = 7, d = 24k + r,
0<r <24 k=>1wehave

6

ord7<7L§J!) _ {‘)rdz (26L%1J!)J . 3k+6| %] —ord k! —ordy (2| 5 ]!)

_ |
> 3k orgzk. 3 > 0.

For p < d < 3p we have
(l55))= 155
ord, — )= — =1,
p+ p+1
ord2< L J <ordy((2p —2)!) <2p —3,

{Ordz (215 J)J

For3p <d < 22=3 \we have
d d
NIRRT
p+ p+1
ordz( L J <ord;(Bp —3)!) <3p —4,

el |,

p

,_;

<d<6p—3wehave

d d
ord,, (p \\—J‘) > \‘—J >3,
p+1 p+1

ord, (2 {gJ !) <ordy((4p —4)!) <4p -5,

For 22=3 2

el |

p—1 -
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For p > 11,d > 6p — 3 we have

Ur=1)R =i

od, [p| —— ! = > ,

p+1 p+1 p+1
d d 2

ord, (2| =) <2|=|—-1<-=d-1,
3 3 3

4| — 24 —
ordp<pL d J') B {ord2(2L3J.)J _d=p_ 2d — 1
p+1 p—1 p+1 p—1

_d(p=5-3(p>=2p-1)

3(p*—1
Qp—D(p—-5—-p*+2p+1
> o
2 _
_p=9%+6 T
pr—1 ~ 30

Proor oF THEOREM 4. (i) We proceed by induction on r. Since D, ; = 1,
for r = 1 the assertion holds. Assume that D, , | (d — 1)!. It for all primes
p:ord, Dy, < max{ord, Dy ,,ord,((d — 1))}, wehave Dy, | (d —1)!.
Otherwise, by Lemma 5, there exists a prime p and a form F € S; 41 such
that

(23) ord, D(F) = ord, Dy 41 > ord,((d — 1))
and
(24) X1X2 oo Xpt1 | F.

Since F € Sg,41, F(x1...x,, 1) is primitive and by (24) of degree at most
d — 1. Hence by (1)

D(F(xy...x,—1, )| (d =1L

contrary to (23).

(i1) We proceed by induction on » > r,. For r = r, the assertion is obvious.
Assume that it is true for the index r. If Dy, > Dy, then there exists a
prime p < d such that

Ol'dp Dd,r+1 > Ol'dp Dd,r



176 A. SCHINZEL
and since for d > 4, r; > 2, by Lemma 6 and Corollary 1

d—r—1
— | >ord, Dy, > ord, Dy,

p—1
- _Y )
>ord, Dgo =ord,| | p 1))
It follows that

[ 2 o (55 ]))

contrary to Lemma 7. Thus D, ,+1 = Dy, and, by the inductive assumption,
D,y =Dy,

PROOF OF COROLLARY 5. Since D;» < D;, < (d — 1)! and for d < 6,
d #5, Dgy = (d — 1)! we infer that Dy, = Dy . It remains to consider
d = 5 and by (ii) r = 3. Since Ds, = 6, (5§ — 1)! = 24 it suffices to prove
that Ds 3 # 0 mod 4. Assuming the contrary, by Lemma 5, there exists a form
Fo € Z[x, y, z] such that xyz | Fj

(25) 4| D(Fo), 21 C(Fo).
We have for some integers a, b, ¢, d, e, f
(26) Fy= xyz(ax2 + bxy + cy2 +dxz+eyz + fzz)
and for x, y, z odd

4| ax* 4+ bxy + cy* + dxz +eyz + fz°.
However for x, y odd
xEyZEI, xy=x-+y—1mod4,
thus

4dla—b+c—d—e+f+b+dx+b+e)y+(d+e)z

and, since this holds for all x, y, z odd we have
27 b=d=emod2
and

(28) a+b+c+d+e+ f=0mod4.
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On the other hand, from (25) and (26) for (x, y, z) = (2,1,1), (1, 2,1), (1,1, 2)
ct+e+ f=0, a+d+ f=0, a+b+c=0mod2.

It follows from (27) thata = ¢ = f mod2,thus b = d = f = 0 mod2 and,
by (28), 3a = 0 mod2, a = ¢ = f = 0 mod?2, contrary to (25).

REMARK. We have (D(xyz(x +y)(x +2)(x +y+2)(y +2)(y — 7)) = 48.
Since Dg, = 2520 it follows by Lemma 3 and Theorem 4 (i) that Dg , = 7!
for all > 3. On the other hand, a complicated computation shows that for all
r>2, D7‘r =5!= D7’2.

PrOOF OF COROLLARY 6. We have by Theorem 2 and Corollary 1

27
ord, Dy 5 < ordy ((2 {7J) !) = ord, 6! =4 = ord, D, ,,

72
ord; Dy 5 < ords ((3 {%D !) = ord; 6! =2 = ord; Dy ,.

For p =5, 7 we have by Corollary 1

ord, Dy, = 1 = ord,, 8!.

For the proof of Theorem 5 we need 5 lemmas.

LEMMA 8. For all primes p and all integers r > 1 and o > 0 let d(r, p%)
and d'(r, p*) be the least d such that p® | Dy, and p® | Dtli’r, respectively.
We have

14

1 2 1 logap )
d(r,p*) <d (r, p) < a+2 +1 if a>p,
P log p

d(r,p*) <d'(r,p) <a(p+1) if a<p.

Moreover,
d(r,p®) > a(p—1) +2.

Proor. By Lemma 1

1
ord, ((pn)1) > 2 08P
p—1 logp

hence by Corollary 1

logd
p_, logd |
p*—1 logp

1
ord, Dy, = ep =
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and if @ > p,

we obtain

log =1 (o + 21z
10g(¥p+1_ g )4 ( logp)_lza‘

log p log p

Thus ord, D;» > o and a fortiori

e, >a+2

ord, Dy, > a.

The same is true for @ < p provided d > (p + 1a.
On the other hand, if p* | D, ,, we have by Theorem 4(i) and by Lemma 1

d—2
a <ord,((d —1!) < —,
p—1
henced > a(p — 1) + 2.
LEMMA 9. Ifc > 1 and p > 8/(c — 1), then p® | n! implies

d(r, p*) <d'(r, p%) < cn.
ProoOF. If ¢ < p, thenn > ap and by Lemma 8

—1
d(r,p)fdl(r,p)fa(p+1)<oz(1—|—CT)p<cn.

If o > p, then again by Lemma 8
21 1
d'r,py <L (a+2fgap+1>.
D

On the other hand, by Lemma 1

n
a=ord,n! < —,
p—1

2 log?2
d'or. p*) < L L) b L
p p—1 log p

hence

and
d'(r, p* p+1 p> —1 log2n p?—1
(r )< 2 g '

n -p p nlogp pn
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2’ awnp®)
n -

The right hand side is a decreasing function of n and since n > p

d'(r,p®) p+1 p*—1 p—1 8
a\np) ~ P - k2
- > +6 3 + > <1+ » <cC.

v

LEMMA 10. The limit £(r, p) = limy_, d(rl’f ") exists and satisfies £(r, p)
p— 1
Proor. By Lemma 8 we have

p*—

1
> [(r, p) = liminf

oa—> 00

d(r, p*
OP)ZP_L
o

For every integer n there exists an integer 8, such that
P 1
d(rvpn)f l(r’p)—l_; ﬂl’l'
If f € Sy, and pP | D(f), then p? | D(f?), where f¢ € S,q4,. Hence

choosing for an arbitrary integer « > 0 an integer g such that (¢ — 1)8, <
o < gB, we infer that

1
d(r, p*) < qd(r, pP) < 12 <l<r, p)+ —)
qg—1 n

dr, p*) < (1 + 1) (l(r, P+ 1) .
n n

Since n is arbitrary, it follows that

d(r, p*
fim 2P 6 ),
o

oa—> 00

and for o > np,

LEMMA 11. The limit I, = lim,,_, o d"r(l") exists.
ProoF. If limsup,_, ., % = 1, then since by Theorem 4(i)
d,
fim inf % >
n—oo n
we have [, = 1. Assume that limsup,,_, ., dri") =c¢ > 1. Since d.(n) <
dr(n) < %n we have ¢ < 0o. We shall prove that
d, I(r,
29) lim e 1P oy
n—oo n p<176l p— 1

—
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In order to prove (29) it suffices to prove that

d,
(30) lim sup (n) <M
n— 00 n
and
d,
31) liminf 2 5 a,
n—o00 n
Clearly,

dr(n) = maﬁxd(n P%).
p¥lin

For p > % we have by Lemma 9

c+1
d(r, p) < n,
and, since % <ec,
. d-(n) . d(r, p*)
lim sup = limsup max ———.
n—00 n n—o0 IJD’H"6 n
<5

16

—.&¢>0anda > a(e)

Since for every p <
d(r, p*) < ((r, p) + &)

while, by Lemma 1
n

(32) a:p_l

+ O(logn)

we obtain for n > ng(g)
d(r, p*) < (M +é)n,

which gives (30).
In order to prove (31) let M = lngl) for a prime p. In view of 32)n! | Dy ,
implies for every ¢ > 0 and n > n;(¢)

n

b1 + O(logn)) > (M — e)n+ O(logn),

d =z d(r, p*) = (I(r, p) — &) (

which proves (31).
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LEMMA 12. Let alr1 (n) be the least d such that n! | D}iyr. Then

Cdm) 2 —1
lim = .
n—oo n 2r — 9

PrOOF. We shall prove the lemma in two steps

@m)<7—1

(33) lim sup

100 n ~ 2r=-2
and
(34) fim inf 9V L2 =1
n—oo 1 2r —2
We have

d}(n) = mﬁugdl(r, pY).
p¥ln!

By Lemma 9 for p > 8(2" — 2) we have
2" -1
2 -2

d'(r, p*) < n.

For p < 8(2" — 2), by Corollary 3 for every ¢ > 0 and n > n(¢), d >
-1
(5= +e)n.

1 1 1
Ordde’er F_pr—l

21, : : +0(n" logn)
> & _— r 10
¥ 2 =1 p—1 nroosn

> L—k O(logn) = a.
p—1

)+0@ngo

This shows (33). In order to prove (34) suppose that for ¢ > 0 and arbitrarily

large n
2r—1
d < —¢|n.
2r =2

Then by Corollary 3

. 2" —1 1 -1
ord D, , < > ¢ 1—2r 7 n+0(n+ logn)

<n— O(logn) =ordy n!.
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PrOOF OF THEOREM 5. The Theorem follows from Lemmas 10 and 11.
For the proof of Theorem 6 we need

LemmA 13. For every positive integer r

r

D(G,) = l_[i!, where G, = lL[x,- l_[ (xj — x;).
i=1

i=1 l<i<j=r

ProOOF. See [4] or [3, Lemma 4.1]. The lemma itself is due to H. W. Segar
(cf. [2], p. 269).

PROOF OF THEOREM 6. We shall show that for all primes p
(35) ord, Dy, > ord,([d — 3(2d)**1").

We distinguish three cases:

(36) p=r'
37) p>r'?  pP4+p=<d,
(38) pPr+p>d.

In the case (36) we have (“2”) <d, hence D(G,) | Dy, and by Lemma 13

,
ord, Dy, > E ord, i!.

i=I

Now, by Lemma 1, fori > 1

ord, i! > i — logi ,
P —p-—1 log p

hence
r+1 r .
-1 i—py1 lOgI
p—1 log p
(r+l)
> 2% — (r — 1)(1 + logr/log p).

= -1

However by the choice of r

1
(r-g)Zd—r, 2<r<+2d,
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while by Lemma 1

d — [3(2d)**

(39) ord, ([d — 3(2d)**!) < o1

and the inequality (35) follows from

132d)**1 —r — (p — )(r — 1)(1 +1logr/log p) > 32d)** —3r32 > 0.

oo (1)

d
ord, Dy, > ord, Dy > > m

In the case (37) we have
hence by Corollary 1

and (35) follows from (39) and the inequality

(p + D[3Q2d)** —2d > r'/* + 1)32d)** — 2d
> (r + D'23d)** — 2d
> 2d)*32d)** —2d = 4d > 0.

In the case (38) we have
p?>d—32d)Y*.

Letd — |3(2d)**] = ap + b, wherea, b € Z;0 < b < p.Clearlya < v/d <
13(2d)%*], thus

d=ap+b+32d)**| >ap +a
and

d
ord, Dgp = LWJ > a = ord,([d — 3(2d)**71).

ProoF oF CorROLLARY 7. Forr > L%J we have by Theorem 6
and the Stirling formula
log Dy, > log[d — 3(2d)*/*1! = dlogd — d + O(d** logd).
On the other hand, by Theorem 4(i)
log Dy, <log(d — 1)! =dlogd —d + O(logd),
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hence the assertion.
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