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LOGARITHMIC CONVEXITY OF AREA INTEGRAL
MEANS FOR ANALYTIC FUNCTIONS

CHUNJIE WANG and KEHE ZHU

Abstract
We show that the L2 integral mean on rD of an analytic function in the unit disk D with respect
to the weighted area measure (1 − |z|2)α dA(z), where −3 ≤ α ≤ 0, is a logarithmically convex
function of r on (0, 1). We also show that the range [−3, 0] for α is best possible.

1. Introduction

Let D denote the unit disk in the complex plane C and let H(D) denote the
space of all analytic functions in D. For any real number α let

dAα(z) = (1 − |z|2)α dA(z),

where dA is area measure on D.
For any f ∈ H(D) and 0 < p < ∞ we consider the weighted area integral

means
Mp,α(f, r) =

∫
rD |f (z)|p dAα(z)∫

rD dAα(z)
, 0 < r < 1.

It was proved in [6] that the function r �→ Mp,α(f, r) is strictly increasing for
r ∈ (0, 1), unless f is constant. It was also proved in [6] that for α ≤ −1, the
function r �→ Mp,α(f, r) is bounded on (0, 1) if and only if f belongs to the
Hardy space Hp; and for α > −1, the function r �→ Mp,α(f, r) is bounded
on (0, 1) if and only if f belongs to the weighted Bergman space

Ap
α = H(D) ∩ Lp(D, dAα).

See [1] for the theory of Hardy spaces and [2] for the general theory of Bergman
spaces in the unit disk.

The classical Hardy convexity theorem asserts that the integral means

Mp(f, r) = 1

2π

∫ 2π

0
|f (reit )|p dt,
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as a function of r on [0, 1), is not only increasing but also logarithmically
convex. In other words, the function r �→ log Mp(f, r) is convex in log r . See
[1] again.

Motivated by Hardy’s convexity theorem and by some circumstantial evid-
ence, Xiao and Zhu boldly proposed the following conjecture in [6]: the func-
tion r �→ log Mp,α(f, r) is convex in log r when α ≤ 0 and concave in log r

when α > 0.
In this paper we prove the above conjecture when −3 ≤ α ≤ 0 and p = 2.

The cases α = 0 and α = −1 are direct consequences of Hardy’s convexity
theorem and a theorem of Taylor in [4]; these cases were addressed in [6]. We
also show that the range [−3, 0] for α is best possible.

2. The case of monomials

We first consider the case when f (z) = zk is a monomial. Despite the sim-
plicity of these functions, the verification of the logarithmic convexity of
Mp,α(zk, r) is highly nontrivial. We begin with two lemmas concerning logar-
ithmic convexity of positive functions. The proofs are elementary.

Lemma 2.1. Suppose f is twice differentiable on (0, 1). Then f (x) is convex
in log x if and only if f (x2) is convex in log x.

Lemma 2.2. Suppose f is positive and twice differentiable on (0, 1). Then
the function log f (x) is convex in log x if and only if

D(f (x)) =:
f ′(x)

f (x)
+ x

f ′′(x)

f (x)
− x

(
f ′(x)

f (x)

)2

is nonnegative on (0, 1).

Proposition 2.3. Suppose k ≥ 0, −2 ≤ α ≤ 0, and 0 < p < ∞. Then the
function log Mp,α(zk, r) is convex in log r .

Proof. The case α = 0 follows from the classical Hardy convexity theorem
and a theorem of Taylor in [4]; see [6]. For the rest of the proof we assume
that α < 0.

By polar coordinates and an obvious change of variables, we have

Mp,α(zk, r) =
∫ r2

0 tpk/2(1 − t)α dt∫ r2

0 (1 − t)α dt
.

For any nonnegative parameter λ we define

(1) fλ(x) =
∫ x

0
tλ(1 − t)α dt, 0 < x < 1.
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To prove Proposition 2.3, by Lemmas 2.1 and 2.2, we need only to show

(2) �(λ, x) =:
f ′

λ

fλ

+ x
f ′′

λ

fλ

− x

(
f ′

λ

fλ

)2

−
[
f ′

0

f0
+ x

f ′′
0

f0
− x

(
f ′

0

f0

)2]
≥ 0

for any λ ∈ [0, ∞) and x ∈ (0, 1). Here and throughout the paper, the deriv-
atives f ′

λ(x) and f ′′
λ (x) are taken with respect to x. Since �(0, x) = 0, the

desired result will follow if we can show that for any fixed x ∈ (0, 1), the
function λ �→ �(λ, x) is increasing on [0, ∞).

To simplify notation, we are going to write h = fλ(x) and use h′, h′′, h′′′ to
denote the various derivatives of fλ(x) with respect to x. On the other hand,
the derivative of various functions with respect to λ will be written as ∂/∂λ.

Since

(3) h =
∫ x

0
tλ(1 − t)α dt,

we immediately obtain

(4) h′ = xλ(1 − x)α, h′′ = (λ − λx − αx)xλ−1(1 − x)α−1.

We also have

h′′′ = xλ−2(1 − x)α−2
[
(−λ + 2λα − α + α2 + λ2)x2

+ (−2λα + 2λ − 2λ2)x + (λ2 − λ)
]
.

On the other hand, it is easy to check that

∂h

∂λ
=

∫ x

0
tλ(1 − t)α log t dt,

and
∂h′

∂λ
= ∂

∂x

(
∂h

∂λ

)
= h′ log x,

and
∂h′′

∂λ
= h′

x
+ h′′ log x.

In what follows we will use the notation A ∼ B to denote that A and B

have the same sign. This differs from the customary meaning of ∼ but will
make our presentation much easier.

Rewrite

�(λ, x) = h′

h
+ x

h′′

h
− x

(
h′

h

)2

−
[
f ′

0

f0
+ x

f ′′
0

f0
− x

(
f ′

0

f0

)2 ]
.
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Since the function inside the brackets is independent of λ, we have

∂�

∂λ
= 1

h2

(
h

∂h′

∂λ
+ xh

∂h′′

∂λ
− 2xh′ ∂h′

∂λ

)
− 1

h3

∂h

∂λ
(hh′ + xhh′′ − 2x(h′)2)

= 1

h2
(hh′ log x + hh′ + xhh′′ log x − 2x(h′)2 log x)

− 1

h3

∂h

∂λ
(hh′ + xhh′′ − 2x(h′)2)

= h′

h
+ 1

h3

(
h log x − ∂h

∂λ

)
(hh′ + xhh′′ − 2x(h′)2).

We proceed to show that ∂�(λ, x)/∂λ > 0 for λ > 0, x ∈ (0, 1), and
−2 ≤ α < 0. To this end, we fix λ > 0 and regard the expression

∂�

∂λ
= h′

h
+ 1

h3

(
h log x − ∂h

∂λ

)
(h′ + xh′′)

(
h − 2x(h′)2

h′ + xh′′

)

as a function of x. It is clear that α < 0 and λ > 0 imply that

h′ + xh′′ ∼ λ + 1 − (λ + 1 + α)x > 0

for all x ∈ (0, 1).
Let us consider the following two functions (with λ fixed again):

d1(x) = h log x − ∂h

∂λ
,

and
d2(x) = h − 2x(h′)2

h′ + xh′′ = h − 2xλ+1(1 − x)α+1

λ + 1 − (λ + 1 + α)x
.

Since d ′
1(x) = h/x > 0, we have d1(x) ≥ d1(0) = 0. By direct computa-

tions,

d ′
2(x) = xλ(1 − x)α − 2xλ(1 − x)α(λ + 1 − (λ + 2 + α)x)

λ + 1 − (λ + 1 + α)x

− 2(λ + 1 + α)xλ+1(1 − x)α+1

(λ + 1 − (λ + 1 + α)x)2

∼ −(λ + 1)2 + 2(λ2 + 2λ + 1 + λα)x − (λ + 1 + α)2x2

=: e2(x).

Note that e2(0) = −(λ + 1)2 < 0, e2(1) = −α(2 + α) ≥ 0, d2(0) = 0, and
d2(1) > 0. Here d2(1) = +∞ when −2 < α ≤ −1. It is easy to check that
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e′
2(x) > 0 on (0, 1). In the case when α = −2, we have e2(x) < e2(1) = 0 on

(0, 1). Thus d2(x) is decreasing on (0, 1), so that d2(x) < d2(0) = 0 on (0, 1).
In the other case, e2(x) has exactly one zero in (0, 1), say c, so that e2(x) < 0
for x ∈ (0, c) and e2(x) > 0 for x ∈ (c, 1). Thus d2(x) is decreasing on (0, c)

and increasing on (c, 1). This implies that d2(x) has exactly one zero in (0, 1).
Either way, there exists x∗ ∈ (0, 1] such that d2(x) > 0 when x∗ ≤ x < 1 and
d2(x) < 0 when 0 < x < x∗.

If x∗ ≤ x < 1, the condition d2(x) > 0 implies that ∂�/∂λ > 0. If
0 < x < x∗, the condition d2(x) < 0 implies that hh′ + xhh′′ − 2x(h′)2 < 0,
from which we deduce that

∂�

∂λ
∼ − h2h′

hh′ + xhh′′ − 2x(h′)2
− h log x + ∂h

∂λ
=: δ(x).

Again, it follows from direct computations that

δ′(x) = − 2h(h′)2 + h2h′′

hh′ + xhh′′ − 2x(h′)2

+ h2h′(2hh′′ + xhh′′′ − 3xh′h′′ − (h′)2)

(hh′ + xhh′′ − 2x(h′)2)2
− h

x

= h2

x(hh′ + xhh′′ − 2x(h′)2)2

· [−(
(h′)2 + xh′h′′ + 2x2(h′′)2 − x2h′h′′′)h + x(h′)2(h′ + xh′′)

]

∼ (−(λ + 1)2 + (2λ2 + 4λ + 2 + 2λα + α)x − (λ + 1 + α)2x2
)
h

+ xλ+1(1 − x)α+1(λ + 1 − (λ + 1 + α)x)

=: δ1(x).

Here

(5) δ′(x) =
(

hh′

hh′ + xhh′′ − 2x(h′)2

)2

· δ1(x)

x(1 − x)2
.

Continuing the computations, we have

δ′
1(x) = [2λ2 + 4λ + 2 + 2λα + α − 2(λ + 1 + α)2x]h

− 2(λ + 1 + α)xλ+1(1 − x)α+1,

δ′′
1 (x) = −2(λ + 1 + α)2h + [−α + 2(λ + 1 + α)x]xλ(1 − x)α,

δ′′′
1 (x) = −α(λ + (λ + 2 + α)x)xλ−1(1 − x)α−1.
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Since α < 0, λ > 0, and λ+ 2 +α > 0, we have δ′′′
1 (x) > 0 for all x ∈ (0, 1).

It is easy to see that δ′′
1 (0) = δ′

1(0) = δ1(0) = 0. With details deferred
to after the proof, we also have δ′(0) = 0. It then follows from elementary
calculus that the functions δ′′

1 (x), δ′
1(x), δ1(x), and δ′(x) are all positive on

(0, x∗). This shows that ∂�(λ, x)/∂λ > 0 for 0 < x < x∗. Combining
this with our earlier conclusion on [x∗, 1), we obtain ∂�(λ, x)/∂λ > 0 for
x ∈ (0, 1). In particular, for any fixed x ∈ (0, 1), the function λ �→ �(λ, x) is
increasing for λ ∈ [0, ∞). This completes the proof of the proposition.

In the previous paragraph, we claimed that δ′(0) = 0. We deferred the
details to here. L’Hopital’s rule gives us

lim
x→0

h

x
= 0, lim

x→0

xh′

h
= lim

x→0

h′ + xh′′

h′ = λ + 1.

Consequently,

lim
x→0

hh′

hh′ + xhh′′ − 2x(h′)2
= lim

x→0

1
h′+xh′′

h′ − 2 xh′
h

= − 1

λ + 1
.

It follows from the definition of δ1(x) that δ1(x)/x → 0 as x → 0. Therefore,
by (5)) we have δ′(0) = 0.

Proposition 2.4. Suppose k ≥ 0, −3 ≤ α ≤ 0, and p = 2. Then the
function log M2,α(zk, r) is convex in log r .

Proof. By Proposition 2.3, the result already holds in the case −2 ≤ α ≤ 0.
So for the rest of the proof we assume that −3 ≤ α < −2.

We still consider the functions �(λ, x) and ∂�/∂λ. But this time we restrict
our attention to 0 < x < 1 and λ0 ≤ λ < ∞, where λ0 = −(α + 2) > 0. Our
strategy is to show that �(λ0, x) > 0 and ∂�(λ, x)/∂λ > 0 for all x ∈ (0, 1)

and λ ∈ (λ0, ∞). This will then imply that �(λ, x) ≥ �(λ0, x) > 0 for all
λ ≥ λ0 and x ∈ (0, 1). In particular, we will have �(pk/2, x) > 0 for all
k ≥ 1 and x ∈ (0, 1), because in this case p = 2 and λ0 ∈ (0, 1].

For λ = λ0, we have

h = h(x) =
∫ x

0
t−2−α(1 − t)α dt.

Changing variables from t to 1/s, we easily obtain

h(x) = − 1

α + 1

(
1

x
− 1

)α+1

.
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Using the D-notation from Lemma 2.2 we get D(h(x)) = −(α + 1)/(1 − x)2

and

D(f0(x)) = (α + 1)(1 − x)α−1 1 − x − αx − (1 − x)α+1

[1 − (1 − x)α+1]2
.

It follows that

�(λ0, x) = D(h(x)) − D(f0(x))

∼ [1 − (1 − x)α+1]2 + (1 − x)α+1[1 − x − αx − (1 − x)α+1]

= 1 − (1 + x + αx)(1 − x)α+1

=: δ3(x).

It is easy to check that δ′
3(x) > 0 for 0 < x < 1. Thus δ3(x) > δ3(0) = 0 and

hence �(λ0, x) > 0 for 0 < x < 1.
To finish the proof of the proposition, we indicate how to adapt the proof

of Proposition 2.3 to show that ∂�(λ, x)/∂λ > 0 for λ0 < λ < ∞ and
0 < x < 1. So for the rest of this proof, we are going to use the notation from
the proof of Proposition 2.3.

First, observe that the assumptions λ > λ0 and −3 ≤ α < −2 give e′
2(x) >

0 on (0, 1), so that e2(x) ≤ e2(1) = −α(2 + α) < 0 on (0, 1). Thus d2(x)

is decreasing on (0, 1). But d2(0) = 0, so d2(x) is always negative on (0, 1).
Use x∗ = 1 in the proof of Proposition 2.3 and continue from there until the
equation

δ′′′
1 (x) = −α [λ + (λ + 2 + α)x] xλ−1(1 − x)α−1.

The assumptions −3 ≤ α < −2 and λ > λ0 imply that δ′′′
1 (x) > 0 for all

x ∈ (0, 1). The rest of the proof of Proposition 2.3 remains valid here. This
completes the proof of Proposition 2.4.

Finally in this section we show that the range −3 ≤ α ≤ 0 in the case
p = 2 is best possible.

Proposition 2.5. Suppose α �∈ [−3, 0] and p = 2. Then there exist positive
integers k such that the function log M2,α(zk, r) is not convex in log r for
r ∈ (0, 1).

Proof. Once again we consider the function �(λ, x). We are going to show
that if α �∈ [−3, 0] then �(pk/2, x) < 0 for certain positive integers k and x

sufficiently close to 1.
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First consider the case in which α > 0. In this case,

�(λ, x) =
(

h′

h
− f ′

0

f0

)
− x

((
h′

h

)2

−
(

f ′
0

f0

)2)
+ x

(
h′′

h
− f ′′

0

f0

)

∼
[
(1 − x)

(
xλ

h
− 1

f0

)
− x(1 − x)α+1

(
x2λ

h2
− 1

f 2
0

)]

+ x

hf0

[
(λ − λx − αx)xλ−1f0 + αh

]

=: S1(λ, x) + S2(λ, x).

The assumption α > 0 implies that the integrals

h(1) =
∫ 1

0
tλ(1 − t)α dt, f0(1) =

∫ 1

0
(1 − t)α dt,

are finite and positive numbers. It follows that limx→1 S1(λ, x) = 0, and

lim
x→1

[(λ − λx − αx)xλ−1f0 + αh] = −α

∫ 1

0
(1 − tλ)(1 − t)α dt < 0.

We deduce that �(λ, x) < 0 when x is sufficiently close to 1. Consequently,
if α > 0, then for any 0 < p < ∞ and any k > 0, the function log Mp,α(zk, r)

is not convex in log r for r ∈ (0, 1).
Next we consider the case in which α < −3. In this case, we rewrite

�(λ, x) =
(

h′

h
−f ′

0

f0

)
−x

(
h′

h
−f ′

0

f0

)2

+x
(1 − x)3(α+1)

(α + 1)hf 2
0

[
T1(λ, x)+T2(λ, x)

]
,

where

T1(λ, x) = λxλ−1

(1 − x)α+2

f0

(1 − x)α+1
+ α

(1 − x)α+2

h − xλf0

(1 − x)α+2
,

and

T2(λ, x) = (α + 2)h − (λ − λx + αx + 2x)xλ−1f0

(1 − x)α+3
.

Observe that the condition α < −3 implies that

h − xλf0 =
∫ x

0
(tλ − xλ)(1 − t)α dt → −∞
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as x → 1, and we can use L’Hospital’s Rule to obtain the limits

(6) lim
x→1

(1 − x)α+1

h
= lim

x→1

(1 − x)α+1

f0
= −(α + 1),

and

(7) lim
x→1

h − xλf0

(1 − x)α+2
= lim

x→1

−λxλ−1f0

−(α + 2)(1 − x)α+1
= − λ

(α + 1)(α + 2)
,

and

lim
x→1

(
h′

h
− f ′

0

f0

)
= lim

x→1

(1 − x)2α+2

hf0
· xλf0 − h

(1 − x)α+2
= λ

α + 1

α + 2
.

It follows from (6) and (7) that

lim
x→1

(1 − x)3(α+1)

(α + 1)hf 2
0

= −(α + 1)2,

and T1(λ, x) → 0 as x → 1. Since (α + 1)f0 = 1 − (1 − x)α+1 and α < −3,
it follows from L’Hopital’s rule and elementary manipulations that

lim
x→1

T2(λ, x) = − λ(λ − 1)

(α + 1)(α + 3)
.

Therefore,

lim
x→1

�(λ, x) = λ
α + 1

α + 2
−

(
λ

α + 1

α + 2

)2

+ λ(λ − 1)
α + 1

α + 3

= λ(α + 1)(λ + 2 + α)

(α + 2)2(α + 3)
.

If p = 2 and k = 1, then for λ = pk/2 = 1 we have

lim
x→1

�(λ, x) = α + 1

(α + 2)2
< 0.

This shows that �(λ, x) < 0 for x sufficiently close to 1. Thus the function
log M2,α(z, r) is not convex in log r .

3. The case of p = 2 and arbitrary f

In this section we prove the logarithmic convexity of Mp,α(f, r) when p = 2
and −3 ≤ α ≤ 0. Basically, the problem is reduced to the case of monomials
because of the following well-known result; see [3].
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Lemma 3.1. Suppose {hk(x)} is a sequence of positive and twice differen-
tiable functions on (0, 1) such that the function H(x) = ∑∞

k=0 hk(x) is also
twice differentiable on (0, 1). If for each k the function log hk(x) is convex in
log x, then log H(x) is also convex in log x.

We now obtain the main result of the paper.

Theorem 3.2. Suppose f is analytic in D and −3 ≤ α ≤ 0. Then the
function r �→ log M2,α(f, r) is convex in log r . Moreover, the range −3 ≤
α ≤ 0 is best possible.

Proof. Suppose f (z) =
∞∑

k=0

akz
k. It follows from integration in polar co-

ordinates that

M2,α(f, r) =
∞∑

k=0

|ak|2M2,α(zk, r).

By Proposition 2.4, each function hk(r) = |ak|2M2,α(zk, r) has the property
that log hk(r) is convex in log r . So by Lemma 3.1, the function log M2,α(f, r)

is convex in log r .
That the range −3 ≤ α ≤ 0 is best possible follows from Proposition 2.5.

4. Two Examples

It was shown in [6] by an example that when α > 0, log Mp,α(f, r) is not
always convex in log r . Based on this particular example and some circum-
stantial evidence, it was further conjectured in [6] that if α > 0, the function
log Mp,α(f, r) is concave in log r . We show in this section that this is not so.
In fact, when α = 1 or α = −4, we give examples such that the function
log M2,α(f, r) is neither convex nor concave on (0, 1). These examples also
illustrate the somewhat abstract calculations we did in Section 2 with arbitrary
monomials.

First, let p = 2, α = 1, and f (z) = 1 + z. It follows from a direct
computation that

M2,1(1 + z, r) = 2(3 − r4)

3(2 − r2)
.

By Lemma 2.1, we just need to consider the convexity of the following function
in log x:

h(x) = 3 − x2

2 − x
, 0 < x < 1.

Using the D-notation from Lemma 2.2, we have

D(h(x)) = 2g(x)

(2 − x)2(3 − x2)2
,
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where
g(x) = 9 − 24x + 18x2 − 6x3 + x4.

It is easy to check that g′′(x) = 36 − 36x + 12x2 > 0 for all x ∈ (0, 1).
Thus g(x) is convex on [0, 1]. Since g(0) = 9 > 0 and g(1) = −2 < 0, there
exists a point c ∈ (0, 1) such that g(x) > 0 for x ∈ (0, c) and g(x) < 0 for
x ∈ (c, 1). Thus log h(x) is neither convex nor concave in log x.

We note that the functions z+ a have also been considered by Xiao and Xu
[5] in their recent work on weighted area integral means of analytic functions
and other related problems.

Next, consider the case when p = 2, α = −4, and f (z) = √
2 z. It follows

from a direct computation that

M2,−4
(√

2 z, r
) = 3r2 − r4

3 − 3r2 + r4
.

By Lemma 2.1, we just need to consider the convexity of the following function
in log x:

h(x) = 3x − x2

3 − 3x + x2
, 0 < x < 1.

Using the D-notation from Lemma 2.2, we have

D(h(x)) ∼ 18 − 36x + 21x2 − 4x3 =: g(x).

It is easy to check that g′′(x) = 42 − 24x > 0 for all x ∈ (0, 1). Thus g(x)

is convex on [0, 1]. Since g(0) = 18 > 0 and g(1) = −1 < 0, there exists a
point c ∈ (0, 1) such that g(x) > 0 for x ∈ (0, c) and g(x) < 0 for x ∈ (c, 1).
Thus log h(x) is neither convex nor concave in log x.
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