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OPTIMAL EMBEDDINGS OF CALDERÓN SPACES
IN HÖLDER-ZYGMUND SPACES

ZIA BASHIR, FERNANDO COBOS and GEORGI E. KARADZHOV∗

Abstract
We prove optimal embeddings of Calderón spaces built-up over function spaces defined in Rn with
the Lebesgue measure into generalized Hölder-Zygmund spaces in the super-critical and critical
cases.

1. Introduction

During the last thirty years many authors have investigated the problem of
optimal embeddings of Sobolev type spaces and of Besov type spaces. We
refer, for example, to the monograph by Nikol’skij [38] and the papers by
Hansson [24], Netrusov [37], Goldman [20], Kolyada [27], Edmunds and
Triebel [16], Cwikel and Pustylnik [12], [13], Edmunds, Kerman and Pick
[15], Maly and Pick [30], Milman and Pustylnik [35], Cianchi [9] or the more
recent papers [23], [31], [26], [32], [18], [34], [33] and [1].

Goldman and Kerman established in [22] optimal embeddings of Calderón
spaces �(E,F) in rearrangement-invariant spaces (see also [19]). Precise
definitions of these spaces and related terminology is given in Sections 2 and
3 below. Spaces �(E,F) include, among others, classical Besov spaces Bsp,q
with s > 0 and Besov spaces with generalized smoothness (see [40] and
[10], [11]). Results of Goldman and Kerman refer to the sub-critical and crit-
ical cases. Here we continue their investigation dealing with the super-critical
case. In our setting, the natural target space is not a rearrangement-invariant
space but a generalized Hölder-Zygmund space CH . Given a quasi-concave
function ϕ with αϕ = βϕ > 0, we consider any rearrangement-invariant space
E whose fundamental function ϕE satisfies ϕE(t) ≈ ϕ(t), 0 < t < 2. Among
other results, we characterize the embedding �(E,F) ↪→ CH by means of
boundedness of the operator of Hardy type Rϕg(t) = ∫ t

0
g(u)

ϕ(u)
du
u

.
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Previous results on this problem are due to Gogatishvili, Neves and Opic
[17] and Bashir and Karadzhov [3]. Paper [17] deals with optimal embeddings
of Bessel potential spaces, while paper [3] with embeddings of generalized
(inhomogeneous) Besov spacesBk(E, F ). Although spacesBk(E, F ) include
Calderón spaces, results of [3] require more conditions on the spaces involved
than those we need here. In fact, spaces Bk(E, F ) are defined by using the
modulus of continuity of order k and conditions on this parameter appear in
the results of [3]. However, in our approach, the modulus of continuity is
just a tool. In each case, we can choose k sufficiently large so that no extra
assumption is needed. Besides, even though we use some ideas originated in
[22], [18] and [3], our techniques are different from those papers and also from
[17].

The plan of the paper is as follows. In Section 2 we review some basic
notions on function spaces. Calderón spaces and Hölder-Zygmund spaces are
introduced in Section 3. Section 4 is devoted to embeddings between those
spaces in the super-critical and critical cases. Finally, in Section 5, working
in an ample class of quasi-norms, given a domain (respectively, target) quasi-
norm, we show the optimal target (respectively, domain) quasi-norm. We also
show there some concrete examples where the optimal quasi-norms can be
computed easily.

Results of this paper have been announced without proofs in [2].

2. Preliminaries

We use the notations a1 <∼ a2 or a2 >∼ a1 for nonnegative functions or func-
tionals to mean that the quotient a1/a2 is bounded; also, a1 ≈ a2 means that
a1 <∼ a2 and a1 >∼ a2.We say that a1 is equivalent to a2 if a1 ≈ a2.

Let ϕ be a nonnegative function defined on [0,∞)which is quasi-concave.
This means that ϕ(t) is increasing (i.e. non decreasing) and ϕ(t)/t is decreas-
ing. Clearly, ϕ(t) ≤ ϕ(2t) ≤ 2ϕ(t), t > 0. The dilation function hϕ generated
by ϕ is defined by

hϕ(u) = sup
0<t<∞

ϕ(tu)

ϕ(t)
.

The function hϕ is quasi-concave, sub-multiplicative and satisfies that

hϕ(1) = 1, 1 ≤ hϕ(u)hϕ(1/u), hϕ(u) ≤ max(1, u).

Therefore the lower and upper Boyd indices αϕ, βϕ , defined by

αϕ = sup
0<t<1

loghϕ(t)

log t
and βϕ = inf

1<t<∞
loghϕ(t)

log t
,
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satisfy that 0 ≤ αϕ ≤ βϕ ≤ 1. As is well-known certain integrability properties
of ϕ can be expressed through inequalities using the indices (see [4], p. 147).

We denote byLloc the space of all locally integrable functions f on Rn with
the Lebesgue n-measure | · |n. Given f ∈ Lloc, we write f ∗ for its decreasing
rearrangement

f ∗(t) = inf{λ > 0 : |{x ∈ Rn : |f (x)| > λ}|n ≤ t}, t > 0.

By M+ we designate the space of all nonnegative functions g which are
locally integrable on (0,∞) with the Lebesgue measure. A positive function
b ∈ M+ is said to be slowly varying on (1,∞) if for all ε > 0 the function t εb(t)
is equivalent to an increasing function, and the function t−εb(t) is equivalent to
a decreasing function. By symmetry, we say that b is slowly varying on (0, 1)
if the function t 	→ b

(
1
t

)
is slowly varying on (1,∞). Finally, b is slowly

varying if it is slowly varying on (0, 1) and (1,∞).We refer to [14] for details
on slowly varying functions. As in the case of a quasi-concave function, we
put

hb(u) = sup
0<t<∞

b(tu)

b(t)
.

Using that b is slowly varying, it is easy to check that

(2.1) αb = sup
0<t<1

loghb(t)

log t
= 0 = inf

1<t<∞
loghb(t)

log t
= βb.

Let ρF be a quasi-norm defined on M+ with values in [0,∞] and which is
monotone, in the sense that g1 ≤ g2 implies ρF (g1) ≤ ρF (g2). Denote by F
the quasi-normed space consisting of all locally integrable functions in (0,∞)

with the Lebesgue measure such that ‖g‖F = ρF (|g|) < ∞.

There is an equivalent quasi-norm ρp, called a p-norm, which depends
only on the space F and which satisfies the triangle inequality ρpp (g1 + g2) ≤
ρ
p
p (g1)+ρpp (g2) for some p ∈ (0, 1] (see [28] and [5]). Subsequently, we shall

denote the equivalent p-norm also by ρ. This, however, will not produce any
confusion.

We say that the quasi-norm ρF satisfies Minkowski’s inequality if (for the
equivalent p-norm) it holds

ρ
p

F

(∑
gj

)
<∼

∑
ρ
p

F (gj ), gj ∈ M+.

If this is the case and g, f, h ∈ M+ with f (2u) ≈ f (u) and h increases, then

ρ
p

F

(∫ ∞

1
g(t)h(ut)f (u)

du

u

)
<∼

∫ ∞

1
ρ
p

F

(
g(t)h(ut)f (u)

)du
u
.
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Indeed,

ρ
p

F

(∫ ∞

1
g(t)h(ut)f (u)

du

u

)
= ρ

p

F

( ∞∑
m=0

∫ 2m+1

2m
g(t)h(ut)f (u)

du

u

)

<∼ ρ
p

F

( ∞∑
m=0

g(t)h(2m+1t)

∫ 2m+1

2m
f (u)

du

u

)

<∼
∞∑
m=0

ρ
p

F

(
g(t)h(2m+1t)

) ∫ 2m+2

2m+1
f (u)

du

u

≤
∞∑
m=0

∫ 2m+2

2m+1
ρ
p

F

(
g(t)h(ut)f (u)

)du
u

≤
∫ ∞

1
ρ
p

F

(
g(t)h(ut)f (u)

)du
u
.

Similarly,

ρ
p

F

(∫ 1

0
g(t)h(ut)f (u)

du

u

)
<∼ ρ

p

F

(
g(t)h(t)

) ∫ 1

1/2
f (u)

du

u

+
∫ 1

0
ρ
p

F

(
g(t)h(ut)f (u)

)du
u
.

We shall work with the classes of functions

N1 := {g ∈ M+ : tg(t) is increasing},
N0 := {g ∈ M+ : g(t) is increasing}.

The dilation function generated by ρF is given by

hF (u) = sup

{
ρF (gu)

ρF (g)
: g ∈ N1

}
.

Here gu(t) = g(tu).
The function hF (u) is sub-multiplicative with

hF (1) = 1 and hF (u)hF (1/u) ≥ 1.

We assume that hF (u) is always finite. The function hF (u) does not need
to be increasing but uhF (u) does, being also sub-multiplicative. So, we can
proceed with uhF (u) to define the the Boyd indices of F similarly as it is done
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in the case of a rearrangement-invariant space (see [4, Definition 3.5.2]). The
resulting numbers can then be expressed only in terms of hF . Namely, we put

αF = sup
0<t<1

loghF (t)

log t
and βF = inf

1<t<∞
loghF (t)

log t
.

These numbers satisfy that −1 ≤ αF ≤ βF . In what follows, we suppose that
αF = βF .

In our further considerations, an important role will be played be the quasi-
normed function space F = L

q
∗
(
b(t)t−s/n

)
. Here s ≥ 0 and b is a slowly

varying function, andLq∗(w), or simplyLq∗ ifw = 1, is the weighted Lebesgue
space with a quasi-norm

‖g‖Lq∗(w) =
(∫ ∞

0

[
w(t)|g(t)|]q dt

t

)1/q

, 0 < q ≤ ∞, w > 0, w ∈ M+.

The space F = L
q
∗
(
b(t)t−s/n

)
is p-normed for p = min(q, 1).As for its Boyd

indices, we have that

‖gu‖F =
(∫ ∞

0

[
b(t)t−s/n|g(ut)|]q dt

t

)1/q

=
(∫ ∞

0

[
b(u−1s)(u−1s)−s/n|g(s)|]q ds

s

)1/q

≤ hb(u
−1)us/n‖g‖F .

Hence, hF (u) ≤ hb(u
−1)us/n. It follows that

βF ≤ inf
1<u<∞

loghb(u−1)

log u
+ s

n
= s

n

and
αF ≥ sup

0<u<1

loghb(u−1)

log u
+ s

n
= s

n

where we have used (2.1) in the last two equalities. Since always αF ≤ βF ,
we conclude that αF = βF = s/n.

We shall also work with rearrangement-invariant Banach function spacesE
on Rn as defined in [4]. In particular, ‖f ‖E = ρE(f

∗),whereρE is a monotone
norm satisfying Minkowski’s inequality. The fundamental function ϕE of E is
given by ϕE(t) = ρE(χ(0,t)). The function ϕE is quasi-concave (see [4], [29]).
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3. Calderón spaces and Hölder-Zygmund spaces

Subsequently, let ϕ be a quasi-concave function with αϕ = βϕ > 0 and let E
be any rearrangement-invariant space whose fundamental function ϕE satisfies
that ϕE(t) ≈ ϕ(t), 0 < t < 2. For example,E can be the Marcinkiewicz space
Mϕ , normed by

‖f ‖Mϕ
= sup

0<t<∞
ϕ(t)

t

∫ t

0
f ∗(s) ds,

(see [4], [29]). If ϕ(t) = t1/p with 1 ≤ p < ∞ then we can also choose Lp. If
1 < p < ∞, another possible choice for E is the Lorentz space Lp,q . We can
even choose spaces with αE �= βE . This is the case of E = Lp,q +L∞ whose
fundamental function is ϕE(t) = min{t1/p, 1}. Note that

(3.1) E ↪→ E + L∞ ↪→ MϕE + L∞ = Mϕ + L∞.

The last equality in (3.1) holds becauseK(1, f ;E,L∞) ≈ ρE(χ(0,1)f
∗). Here

K is the Peetre’s functional (see [5], [7]). Hence

‖f ‖MϕE
+L∞ ≈ sup

0<t<1

ϕE(t)

t

∫ t

0
f ∗(s) ds ≈ sup

0<t<1

ϕ(t)

t

∫ t

0
f ∗(s) ds

≈ ‖f ‖Mϕ+L∞ .

More examples for E can be given by using the spaces

�q(ω) =
{
f : ‖f ‖�q(ω) =

(∫ ∞

0

(
ω(t)

t

∫ t

0
f ∗(s) ds

)q
dt

t

)1/q

< ∞
}
,

where 1 ≤ q < ∞.
Here the positive weight ω satisfies that ω(t) ∈ Lq∗(min(1, 1/t)). Note that

ϕ�q(ω) =
(∫ ∞

0

[
ω(u)min(1, t/u)

]q du
u

)1/q

.

Definition 3.1. We denote by �(E,F) the (inhomogeneous) Calderón
space, formed by all functions f ∈ E having a finite quasi-norm

‖f ‖�(E,F) = ρF (dE(t, f ))+ ‖f ‖E.
Here

dE(t, f ) = inf
{‖f − e‖E : e ∈ M(t−1/n)

}
, t > 0,

is the best approximation of f by the subset M(t−1/n) ⊂ E, consisting of all
functions in E, such that the support of their Fourier transform is containing
in the cube centered at the origin and with side length 2t−1/n.
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The Calderón spaces have been studied in [8], [22], [21], [19] and the papers
mentioned in these references.

We note that if

(3.2) ρF (χ(1,∞)) < ∞,

then

(3.3) ‖f ‖�(E,F) ≈ ρF (χ(0,1)(t)dE(t, f ))+ ‖f ‖E,
andM(1) ⊂ �(E,F).We suppose thatρF (χ(0,1)) = ∞ otherwise�(E,F) =
E.

Calderón spaces include classical Besov spaces Bsr,q with s > 0. Namely,
Bsr,q = �(Lr, L

q
∗(t−s/n)). It is well-known that the embedding properties of

Besov spaces depend on the relationship between s and n/r . Three different
cases can be considered: s < n/r (sub-critical case), s = n/r (critical case)
and s > n/r (super-critical case). Next we extend two of these concepts to our
setting.

Definition 3.2. A property on Calderón spaces �(E,F) with ϕE(t) ≈
ϕ(t), 0 < t < 2, is said to refer to the super-critical (respectively, critical)
case provided that αF > αϕ (respectively, αF = αϕ).

As we said in the Introduction, our aim is to establish optimal embeddings
of Calderón spaces into generalized Hölder-Zygmund spaces CH . In order to
introduce this class of spaces, we denote the modulus of continuity of order k
by

ωk(t, f ) = sup
|h|≤t

sup
x∈Rn

|
k
hf (x)|,

where 
k
hf are the usual iterated differences of f . When k = 1 we simply

write ω(t, f ).
Let ρH be a monotone quasi-norm which satisfies Minkowski’s inequality.

We define the dilation function hH (u) associated to ρH by

hH (u) = sup

{
ρH (gu)

ρH (g)
: g ∈ N0

}
.

Using the function hH , Boyd indices of H are defined as for the case of F .
They are always non negative. We assume that αH = βH . Sometimes it will
be useful to suppose that

(3.4) ρH (χ(2,∞)) < ∞.
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Definition 3.3. Let j = 0, 1, . . . and let C j stand for the space of all
functions f , defined in Rn, that have bounded and uniformly continuous de-
rivatives up to the order j , normed by ‖f ‖C j = sup

∑j

l=0 |P lf (x)|, where
P lf (x) = ∑

|ν|=l Dνf (x).

• If j/n < αH < (j + 1)/n for j ≥ 1 or 0 ≤ αH < 1/n for j = 0, then
CH is formed by all functions f in C j having a finite quasi-norm

‖f ‖CH =
j∑
l=0

‖P lf ‖L∞ + ρH
(
t j/nω(t1/n, P jf )

)
.

• If αH = (j + 1)/n, then CH consists of all functions f in C j having a
finite quasi-norm

‖f ‖CH =
j∑
l=0

‖P lf ‖L∞ + ρH
(
t j/nω2(t1/n, P jf )

)
.

The following result was established in [3]. It shows an equivalent quasi-
norm in the Hölder-Zygmund space, which does not involve the derivatives of
the function but the modulus of continuity of order k. We give a more direct
proof than the one provided in [3].

Theorem 3.4. Assume that ρH satisfies (3.4) and let k ∈ N such that
0 ≤ αH = βH < k/n. Then

(3.5) ‖f ‖CH ≈ ‖f ‖C 0 + ρH
(
ωk(t1/n, f )

)
.

Proof. The right-hand term in (3.5) is bounded by the left-hand term be-
cause ωk(t1/n, f ) <∼ t j/nω(t1/n, P jf ). With the aim of checking the converse
inequality, let f ∈ C 0 and let j > 0 with αH > j/n.We have

∫ ∞

0
u−j/nωk(u1/n, f )

du

u
<∼

∫ 1

0
u−j/nωk(u1/n, f )

du

u
+ ‖f ‖C 0 .

For g ∈ N0, we get g(t)ρH (χ(2,∞)) ≤ ρH (g(ut)) ≤ hH (t)ρH (g). Using that
αH > j/n, we obtain

∫ 1

0
u−j/nωk(u1/n, f )

du

u
<∼

∫ 1

0
u−j/nhH (u)

du

u
ρH

(
ωk(t1/n, f )

)

<∼ ρH
(
ωk(t1/n, f )

)
.
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Hence the integral
∫ ∞

0 u−j/nωk(u1/n, f ) du/u is convergent and then with the
same arguments as in [4, Thm. 5.4.14], it follows that f has derivatives up to
order j , and moreover,

‖P jf ‖L∞ <∼ ρH
(
ωk(u1/n, f )

) + ‖f ‖C 0 .

Analogously for P lf , l < j .
Let ν be any multi-index of nonnegative integers such that |ν| ≤ j . Next

we show thatDνf is uniformly continuous. We consider the case |ν| = j , the
others being similar. By Marchaud’s inequality (see [4, Thm. 5.4.4]), we have

ω(t1/n,Dνf ) <∼ t1/n
∫ ∞

t

u−1/nωk(u1/n,Dνf )
du

u
.

Using also the estimate (cf. [4], p. 342)

ωk(t1/n,Dνf ) <∼
∫ t

0
u−j/nωk(u1/n, f )

du

u
,

and Fubini’s theorem, we get ω(t1/n,Dαf ) <∼ A(t), where

A(t) = t1/n
∫ ∞

t

u−(j+1)/nωk(u1/n, f )
du

u
+

∫ t

0
u−j/nωk(u1/n, f )

du

u
.

Note that
∫ ∞

1 u−(j+1)/nωk(u1/n, f ) du
u
<∼ ‖f ‖C 0 < ∞. Let 0 < t < 1 and put

h(t) = t1/n
∫ 1

t

u−(j+1)/nωk(u1/n, f )
du

u
.

Since
∫ 1

0 h(t)
dt
t
<∼

∫ 1
0 u

−j/nωk(u1/n, f ) du
u
< ∞, it follows limt→0 h(t) = 0.

This yields that limt→0 A(t) = 0, and therefore it establishes the uniform
continuity of Dνf . Hence f ∈ C j .

It remains to estimate ‖f ‖CH . Assume that j/n < αH < (j + 1)/n. The
other cases are analogous. Relationship between αH and j gives that

(3.6)
∫ 1

0
h
p

H (u)u
−pj/n du

u
+

∫ ∞

1
h
p

H (u)u
−p(j+1)/n du

u
< ∞.

Since t j/nω(t1/n,Dνf ) <∼ t j/nA(t), applying Minkowski’s inequality and
using (3.6), we conclude that

ρH (t
j/nω

(
t1/n, P jf )

)
<∼ ρH

(
ωk(t1/n, f )

)
.

This completes the proof.
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Note that Theorem 3.4 yields also that

(3.7) ‖f ‖CH ≈ ‖f ‖C 0 + ρH
(
χ(0,2)(t)ω

k(t1/n, f )
)
.

As an example, let ρH (g) = sup t−γ /nb(t)g(t), where 0 ≤ γ ≤ k, and b is
slowly varying. Then αH = βH = γ /n. If 0 < γ < k and b = 1 then CH

coincide with the usual Hölder-Zygmund space Cγ (see [42], [41]).

4. Embeddings

This section contains the more important results of the paper. We start with a
preliminary lemma.

Lemma 4.1. Let E be a rearrangement-invariant space. If f ∈ E then

(4.1) ‖f ‖L∞ <∼
∫ t

0

dE(u, f )

ϕE(u)

du

u
+ ‖f ‖E
ϕE(t)

, t > 0.

Proof. For integer j we can find ej ∈ M(2−j/n) such that ‖f − ej‖E ≤
2dE(2j , f ). Let uj = ej+1 − ej . Then uj ∈ M(2−j/n) and for k > m we have∑k
j=m uj = ek+1 − em. Using the well-known estimate in different metrics

(see [6]) we have

‖ek+1 − em‖L∞ ≤
k∑

j=m
‖uj‖L∞ <∼

k∑
j=m

‖uj‖E
ϕE(2j )

<∼
k∑

j=m

dE(2j+1, f )

ϕE(2j )
<∼

k+1∑
j=m

dE(2j , f )

ϕE(2j )

where we have used that ϕE(2j+1) ≤ 2ϕE(2j ). On the other hand,

(f − em + ek+1)
∗(2m+1) ≤ (f − em)

∗(2m)+ (ek+1)
∗(2m)

<∼
‖f − em‖E
ϕE(2m)

+ ‖ek+1‖L∞ .

Since
‖ek+1‖L∞ <∼

‖ek+1‖E
ϕE(2k+1)

<∼
‖f − ek+1‖E
ϕE(2k+1)

+ ‖f ‖E
ϕE(2k+1)

,

it follows

f ∗(2m+2) <∼ (f − em + ek+1)
∗(2m+1)+ ‖ek+1 − em‖L∞

<∼
k+1∑
j=m

dE(2j , f )

ϕE(2j )
+ ‖f ‖E
ϕE(2k+1)

.
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Letting m → −∞ we get

(4.2) f ∗(0) <∼
k+1∑

j=−∞

dE(2j , f )

ϕE(2j )
+ ‖f ‖E
ϕE(2k+1)

.

Given any 0 < t < ∞, we can find k ∈ Z such that 2k+2 < t ≤ 2k+3. Then
using monotonicity of dE(t, f ) and the fact that ϕE is quasi-concave, we derive
(4.1) from (4.2).

Next we discuss the embedding of �(E,F) in C 0. For N ⊆ M+, we
consider the condition

(4.3)
∫ 2

0

g(u)

ϕ(u)

du

u
<∼ ρF (g), g ∈ N.

Theorem 4.2. LetE be a rearrangement-invariant space withϕE(t) ≈ ϕ(t)

for 0 < t < 2.
If (4.3) holds with N = N0, then �(E,F) ↪→ C 0. Conversely, if αF > 0

and the embedding�(E,F) ↪→ C 0 holds, then (4.3) is satisfied withN = N1.
Furthermore, if we are in the super-critical case αF > αϕ , then condition

(4.3) is satisfied with N = N1.

Proof. Using (4.1) and (4.3) with N = N0, for any f ∈ �(E,F) we
obtain

‖f ‖L∞ <∼
∫ 2

0

dE(u, f )

ϕE(u)

du

u
+ ‖f ‖E
ϕE(2)

<∼ ρF (dE(u, f ))+ ‖f ‖E = ‖f ‖�(E,F).

In order to check that limt→0 ω(t
1/n, f ) = 0, we first show that for any k ∈ N

(4.4) ωk(t1/n, f ) <∼
∫ t

0

dE(u, f )

ϕE(u)

du

u
+ tk/n

∫ ∞

t

u−k/n dE(u, f )
ϕE(u)

du

u
.

Take any integer m ≥ 1 and let ωmE(t, f ) = sup|h|≤t ‖
m
h f ‖E . Using (4.1)

and dE(u,
m
h f )

<∼ dE(u, f ), we derive for |h| ≤ t1/n,

|
m
h f (x)| <∼

∫ t

0

dE(u, f )

ϕE(u)

du

u
+ ωmE(t

1/n, f )

ϕE(t)
.

Since by the inverse theorem of approximation theory (see [22], [39]),

ωmE(t
1/n, f ) <∼

∫ t

0
dE(u, f )

du

u
+ tm/n

∫ ∞

t

u−m/ndE(u, f )
du

u
,
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we obtain

(4.5) ωm(t1/n, f ) <∼
∫ t

0

dE(u, f )

ϕE(u)

du

u
+ tm/n

ϕE(t)

∫ ∞

t

u−m/ndE(u, f )
du

u
.

By Marchaud’s inequality,

ωk(t1/n, f ) <∼ tk/n
∫ ∞

t

u−k/nωm(u1/n, f )
du

u
, k < m.

Hence using (4.5) and Fubini’s theorem, we have

ωk(t1/n, f ) <∼
∫ t

0

dE(u, f )

ϕE(u)

du

u
+ tk/n

∫ ∞

t

u−k/n dE(u, f )
ϕE(u)

du

u

+ tk/n
∫ ∞

t

u−m/ndE(u, f )
∫ u

0

v(m−k)/n

ϕE(v)

dv

v

du

u
.

The choice of m such that βϕE < (m − k)/n yields
∫ u

0
v(m−k)/n
ϕE(v)

dv
v
<∼ u(m−k)/n

ϕE(u)
,

thus (4.4) is proved.
Now we proceed with the limit of ω(t1/n, f ). Writing down (4.4) with

k = 1, we get

(4.6) ω(t1/n, f ) <∼
∫ t

0

dE(u, f )

ϕE(u)

du

u
+ t1/n

∫ ∞

t

u−1/ndE(u, f )

ϕE(u)

du

u
.

Let 0 < t < 1. By (4.3) we obtain

∫ t

0

dE(u, f )

ϕE(u)

du

u
≤

∫ 1

0

dE(u, f )

ϕE(u)

du

u
<∼ ρF (χ(0,1)(u)dE(u, f )) <∼ ‖f ‖�(E,F).

Therefore, using the dominated convergence theorem, we conclude that

lim
t→0

∫ t

0

dE(u, f )

ϕE(u)

du

u
= 0.

As for the second term in (4.6), first note that

∫ ∞

1

u−1/ndE(u, f )

ϕE(u)

du

u
<∼ ‖f ‖E

∫ ∞

1
u−1/n du

u
<∼ ‖f ‖E.

If

(4.7)
∫ ∞

0

u−1/ndE(u, f )

ϕE(u)

du

u
< ∞,
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then clearly

lim
t→0

t1/n
∫ ∞

t

u−1/ndE(u, f )

ϕE(u)

du

u
= 0.

If (4.7) does not hold, we proceed as follows. Since
∫ 1

0
dE(u,f )

ϕE(u)
du
u

is convergent,
we have that

∞∑
n=0

dE(2−(n+1), f )

ϕE(2−(n+1))
<∼

∞∑
n=0

dE(2−(n+1), f )

ϕE(2−n)
<∼

∞∑
n=0

∫ 2−n

2−(n+1)

dE(u, f )

ϕE(u)

du

u
< ∞.

Hence limn→∞ dE(2−n,f )
ϕE(2−n) = 0. This implies that limt→0

dE(t,f )

ϕE(t)
= 0. Now, using

l’Hopital’s rule, we derive

lim
t→0

t1/n
∫ ∞

t

u−1/ndE(u, f )

ϕE(u)

du

u
= lim

t→0

∫ ∞
t

u−1/ndE(u,f )

ϕE(u)
du
u

t−1/n

= lim
t→0

dE(t, f )

ϕE(t)
= 0.

Consequently, limt→0 ω(t
1/n, f ) = 0.

Suppose that αF > 0 and that the embedding �(E,F) ↪→ C 0 holds. To
prove the necessity of (4.3) with N = N1, we shall construct a suitable test
function f as follows. Let

ψ(x) =
n∏
j=1

sin2(xj /2)

(xj /2)2
for x = (x1, . . . , xn) �= 0

and ψ(0) = 1. This function satisfies that 0 ≤ ψ(x) ≤ 1 and ψ(x) ≤
22n/(x2

1 · · · x2
n). Moreover, (see [6], [19])

ψ(xu−1/n) ∈ M(u−1/n) and ‖ψ(xu−1/n)‖E <∼ ϕE(u).

Given any g ∈ N1 ∩ F , put

(4.8) f (x) =
∫ 2

0

g(u)

ϕ(u)
ψ(xu−1/n)

du

u
.

We claim that f belongs to �(E,F). Indeed, for g ∈ N1 we have

ρF (g) ≥ ρF
(
χ(t,∞)(u)ug(u)u

−1
) ≥ tg(t)ρF

(
χ(t,∞)(u)u

−1
)

and
ρF

(
χ(1,∞)(u)u

−1
) ≤ thF (t)ρF

(
χ(t,∞)(u)u

−1
)
.
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Hence

(4.9) g(t) <∼ hF (t)ρF (g), g ∈ N1.

Using this inequality and the fact that αF > 0, we derive that

‖f ‖E ≤
∫ 2

0

g(u)

ϕ(u)
‖ψ(xu−1/n)‖E du

u
<∼

∫ 2

0
g(u)

du

u

<∼ ρF (g)

∫ 2

0
hF (u)

du

u
<∼ ρF (g).

It follows that f ∈ E. Next, for 0 < t < 2, write

f0t (x) =
∫ t

0

g(u)

ϕ(u)
ψ(xu−1/n)

du

u
, f1t (x) =

∫ 2

t

g(u)

ϕ(u)
ψ(xu−1/n)

du

u
.

We have f = f0t + f1t with f1t ∈ M(t−1/n). Whence,

dE(t, f ) ≤ ‖f0t‖E ≤
∫ t

0
g(u)

du

u
, 0 < t < 2.

Using Minkowski’s inequality and that αF > 0, we derive

ρ
p

F (χ(0,2)(t)dE(t, f )) ≤ ρ
p

F

(∫ t

0
g(u)

du

u

)
= ρ

p

F

(∫ 1

0
g(vt)

dv

v

)

<∼ ρ
p

F (g)+
∫ 1

0
ρ
p

F (g(vt))
dv

v

≤ ρ
p

F (g)+
(∫ 1

0
h
p

F (v)
dv

v

)
ρ
p

F (g)

<∼ ρ
p

F (g).

Therefore f belongs to �(E,F) and so f ∈ C 0. Moreover, since (3.3)) also
holds replacingχ(0,1) byχ(0,2), we have that ‖f ‖�(E,F) <∼ ρF (g). Finally, since

∫ 2

0

g(u)

ϕ(u)

du

u
= f (0) <∼ ‖f ‖�(E,F) <∼ ρF (g),

inequality (4.3) with N = N1 follows.
Suppose now that we are in the super-critical case. Using (4.9) and that

1/ϕ(u) <∼ hϕ(1/u), we can write

∫ 2

0

g(u)

ϕ(u)

du

u
<∼ ρF (g)

∫ 2

0
hF (u)hϕ(1/u)

du

u
, g ∈ N1.
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Then to derive (4.3) it suffices to notice that the integral in the right-hand side
is convergent because αF > αϕ . This completes the proof.

We use condition (4.3) in the following definition where we introduce some
notation related to embeddings of Calderón spaces in Hölder-Zygmund spaces.
We also introduce a new condition related to boundedness of the operator
Kg = g/ϕ.

Definition 4.3. LetE be a rearrangement-invariant Banach function space
with ϕE(t) ≈ ϕ(t), 0 < t < 2.

• We denote by Nd the collection of all monotone quasi-norms ρF satis-
fying (3.2), Minkowski’s inequality, with βF = αF ≥ βϕ = αϕ > 0 and
such that ∫ 2

0

g(u)

ϕ(u)

du

u
<∼ ρF (g), g ∈ N1.

If ρF ∈ Nd we say that ρF (respectively, F ) is a domain quasi-norm
(respectively, a domain space).

• The set Nt consists of all monotone quasi-norms ρH which satisfy (3.4),
Minkowski’s inequality, and with αH = βH . If ρH ∈ Nt we say that ρH
(respectively, H ) is a target quasi-norm (respectively, a target space).

• For j = 0, 1, we put Nj for the collection of all couples (ρF , ρH ) ∈
Nd × Nt such that

(4.10) ρH

(
χ(0,2)

g

ϕ

)
<∼ ρF (g), g ∈ Nj .

• We say that the couple of quasi-norms (ρF , ρH ) is admissible if

�(E,F) ↪→ CH.

Note that N1 ⊆ N0. Next we shall characterize admissible couples (ρF , ρH )
in the super-critical and critical cases. The Hardy type operator

Rϕg(t) =
∫ t

0

g(u)

ϕ(u)

du

u
, t > 0,

will play an outstanding role in our considerations.

Theorem 4.4. Let j = 0, 1. In the super-critical case αF > αϕ , if (ρF , ρH )
∈ Nj then for the operator Rϕ the following estimate holds

(4.11) ρH (χ(0,2)Rϕg) <∼ ρF (g), g ∈ Nj .
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Proof. Using Minkowski’s inequality and (4.10), for any g ∈ Nj we derive

ρ
p

H

(
χ(0,2)(t)

∫ t

0

g(u)

ϕ(u)

du

u

)

= ρ
p

H

(
χ(0,2)(t)

∫ 1

0

g(vt)ϕ(t)

ϕ(vt)ϕ(t)

dv

v

)

≤ ρ
p

H

(∫ 1

0

χ(0,2)(t)

tϕ(t)
vtg(vt)

hϕ(v
−1)

v

dv

v

)

<∼ ρ
p

H

(
χ(0,2)

g

ϕ

)
+

∫ 1

0
ρ
p

H

(
χ(0,2)(t)

g(vt)

ϕ(t)

)
hpϕ(v

−1)
dv

v

<∼ ρ
p

F (g)+
∫ 1

0
ρ
p

F (g(vt))h
p
ϕ(v

−1)
dv

v

= ρ
p

F (g)

[
1 +

∫ 1

0
h
p

F (v)h
p
ϕ(v

−1)
dv

v

]

and the integral is finite because αF > αϕ .

Remark 4.5. Condition (4.10) is weaker than (4.11). Indeed, if g ∈ Nj we
have ∫ t

0

g(2u)

ϕ(u)

du

u
≈

∫ 2t

0

g(u)

ϕ(u)

du

u
>∼

∫ 2t

t

g(u)

ϕ(u)

du

u
>∼
g(t)

ϕ(t)
.

Whence, using (4.11), we derive that

ρH

(
χ(0,2)

g

ϕ

)
<∼ ρF (g(2u)) <∼ ρF (g).

The following result shows that working with quasi-norms in N0, condition
(4.11) is sufficient for the embedding �(E,F) ↪→ CH .

Theorem 4.6. Assume that (ρF , ρH ) ∈ N0 and that (4.11) is satisfied with
j = 0. Then the couple (ρF , ρH ) is admissible.

Proof. Take k ∈ N such that k/n > βF . It follows from (4.4) that

ωk(t1/n, f ) <∼
∫ t

0

dE(u, f )

ϕE(u)

du

u
+ tk/n

ϕE(t)

∫ ∞

t

u−k/ndE(u, f )
du

u
.

Whence

ρ
p

H

(
χ(0,2)(t)ω

k(t1/n, f )
)
<∼ ρ

p

H

(
χ(0,2)(t)RϕdE(f )(t)

)

+ ρ
p

H

(
χ(0,2)(t)

tk/n

ϕ(t)

∫ ∞

t

u−k/ndE(u, f )
du

u

)
.
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Consider the two terms at the right-hand side. By (4.11), the first term is
bounded from above by ρpF (dE(t, f )). As for the second term, using Minkow-
ski’s inequality and (4.10), we derive

ρ
p

H

(
χ(0,2)(t)

tk/n

ϕ(t)

∫ ∞

t

u−k/ndE(u, f )
du

u

)

= ρ
p

H

(
χ(0,2)(t)

1

ϕ(t)

∫ ∞

1
u−k/ndE(tu, f )

du

u

)

<∼
∫ ∞

1
u−kp/nρpH

(
χ(0,2)(t)

dE(tu, f )

ϕ(t)

)
du

u

<∼
∫ ∞

1
u−kp/nρpF (dE(tu, f ))

du

u

≤
(∫ ∞

1
u−kp/nhpF (u)

du

u

)
ρ
p

F (dE(t, f )).

Since k/n > βF , the integral is finite. According to (3.7) and Theorem 4.2, we
conclude

‖f ‖CH ≈ ‖f ‖L∞ + ρH (χ(0,2)(t)ω
k(t1/n, f ))

<∼ ‖f ‖�(E,F) + ρF (dE(t, f )) <∼ ‖f ‖�(E,F).
The proof is finished.

The next result refers to the necessity of (4.11).

Theorem 4.7. Let (ρF , ρH ) ∈ N1. If (ρF , ρH ) is admissible, then the es-
timate (4.11) holds for Rϕ with j = 1.

Proof. Given any g ∈ N1 ∩ F , let f be the function defined in (4.8). As
we have shown in the proof of Theorem 4.2, f belongs to �(E,F) and so to
CH because the couple is admissible. Moreover ‖f ‖�(E,F) <∼ ρF (g). In order
to estimate ρH (χ(0,2)Rϕg), let C > 0 to be determine later and let k ∈ N such
that αF − αϕ < k/n. We have

ωk(t1/n, f ) ≈ ωk(Ct1/n, f ) >∼ ωk(Ct1/n, f0t )− ωk(Ct1/n, f1t ).

Clearly, if |h| ≤ Ct1/n, we have ωk(Ct1/n, f0t ) ≥ |(
k
hf0t )(0)|. Take hj =

Ct1/n/
√
n and h = (h1, . . . hn). For 0 < u < t < 2, since

ψ(jhu−1/n) ≤ 22n

C2n

nn
t2j 2nu−2

≤ 22n

(
n

C2

)n
,
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it is not hard to check that we can choose C large enough such that

|(
k
hf0,t )(0)| ≥ 1

2

∫ t

0

g(u)

ϕ(u)

du

u
.

With this choice of C, we derive

ωk(Ct1/n, f0t ) >∼
1

2

∫ t

0

g(u)

ϕ(u)

du

u
= 1

2
Rϕg(t).

On the other hand,

ωk(Ct1/n, f1t ) ≈ ωk(t1/n, f1t ) <∼ tk/n‖Dkf1t‖L∞ <∼ tk/n
∫ 2

t

g(u)

ϕ(u)
u−k/n du

u
.

It follows that

χ(0,2)(t)Rϕg(t) <∼ χ(0,2)(t)ω
k(t1/n, f )+ χ(0,2)(t)t

k/n

∫ 2

t

g(u)

ϕ(u)
u−k/n du

u
.

Applying ρH , we derive

ρH (χ(0,2)Rϕg) <∼ ‖f ‖�(E,F) + ρH

(
χ(0,2)(t)t

k/n

∫ 2

t

g(u)

ϕ(u)
u−k/n du

u

)

<∼ ρF (g)+ ρH

(
χ(0,2)(t)t

k/n

∫ 2

t

g(u)

ϕ(u)
u−k/n du

u

)
.

We proceed to estimate the last term. For 0 < t < 2, a change of variable,
Minkowski’s inequality and (4.10) yield

ρ
p

H

(
χ(0,2)(t)t

k/n

∫ 2

t

g(u)

ϕ(u)
u−k/n du

u

)

≤ ρ
p

H

(
χ(0,2)(t)

∫ ∞

1

g(vt)

ϕ(vt)
v−k/n dv

v

)

<∼
∫ ∞

1
ρ
p

H

(
χ(0,2)(t)

g(vt)

ϕ(vt)

)
v−pk/n dv

v

<∼
∫ ∞

1
ρ
p

H

(
χ(0,2)(t)

g(vt)

ϕ(t)

)
v−pk/nhpϕ(v

−1)
dv

v

<∼
∫ ∞

1
ρ
p

F (g(vt))v
−pk/nhpϕ(v

−1)
dv

v

<∼ ρ
p

F (g)

∫ ∞

1
h
p

F (v)v
−pk/nhpϕ(v

−1)
dv

v
.
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The integral is finite because αF − αϕ < k/n.
Consequently, ρH (χ(0,2)Rϕg) <∼ ρF (g). The proof is completed.

As a direct consequence of the last three theorems, we obtain the following.

Corollary 4.8. In the super-critical case, if (ρF , ρH ) ∈ N0 then (ρF , ρH )
is admissible.

Corollary 4.9. Assume that we are in the critical case. If (ρF , ρH ) ∈ N0

and (4.11) holds with j = 0, then (ρF , ρH ) is admissible. Conversely, if
(ρF , ρH ) ∈ N1 and it is admissible, then (4.11) is satisfied with j = 1.

5. Optimality and examples

Subsequently, we write for simplicity N instead of N1. Let again E be a
rearrangement-invariant space with ϕE(t) ≈ ϕ(t), 0 < t < 2. We start by dis-
cussing optimality of quasi-norms with respect to the embedding�(E,F) ↪→
CH in the class N . We consider first the super-critical case.

Theorem 5.1. Given any ρF ∈ Nd with αF > βϕ > 0 and ρF (χ(1,∞)ϕ) <

∞, put
ρH(F)(g) = ρF (ϕg), g ∈ M+.

Then ρH(F) ∈ Nt and (ρF , ρH(F)) ∈ N . Moreover ρF and ρH(F) are optimal
in the following sense:

(i) If (ρF , ρH1) belongs to N , then CH(F) ↪→ CH1.

(ii) If (ρF1 , ρH(F)) ∈ N is admissible, then �(E,F1) ↪→ �(E,F).

Proof. Let ρ(g) = ρF (ϕg). Clearly ρ is monotone, satisfies Minkowski’s
inequality and (3.4). Let us check that αρ = βρ = αF − αϕ. For g ∈ N0, we
have

ρ(g(st)) = ρF (ϕ(t)g(st)) ≤ hϕ(s
−1)ρF (ϕ(st)g(st)).

Then hρ(s) ≤ hϕ(s
−1)hF (s) and so

loghρ(s) ≤ loghF (s)+ loghϕ(s
−1).

Using [4, (5.20) in page 147], we derive

βρ = lim
s→∞

loghρ(s)

log s
≤ lim

s→∞
loghF (s)

log s
− lim

t→0

loghϕ(t)

log t
= βF − αϕ.

Similarly, we obtain

αρ = lim
s→0

loghρ(s)

log s
≥ lim

s→0

loghF (s)

log s
− lim

t→∞
loghϕ(t)

log t
= αF − βϕ.
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Since ϕ satisfies that αϕ = βϕ and F that αF = βF , we conclude that

αF − αϕ ≤ αρ ≤ βρ ≤ αF − αϕ

which implies the wanted equality.
We have that (ρF , ρ) ∈ N because

ρ

(
χ(0,2)

g

ϕ

)
= ρF (χ(0,2)g) ≤ ρF (g), g ∈ N1.

Since αF > αϕ , the couple (ρF , ρ) is admissible.
Assume that ρH1 ∈ Nt with (ρF , ρH1) ∈ N . Using (4.10), for any g ∈ N1,

we get

ρH1(χ(0,2)g) = ρH1

(
χ(0,2)

ϕg

ϕ

)
<∼ ρF (ϕg) = ρ(g).

Therefore, by (3.7), we conclude that CH(F) ↪→ CH1.
Finally, if (ρF1 , ρ) ∈ N is an admissible couple then

ρF (χ(0,2)g) = ρ

(
χ(0,2)

g

ϕ

)
<∼ ρF1(g), g ∈ N1.

Since
‖f ‖�(E,F) ≈ ρF

(
χ(0,2)(t)dE(t, f )

) + ‖f ‖E,
we conclude that �(E,F1) ↪→ �(E,F).

Next we deal with the critical case. Now the optimal target quasi-norm is
not of so simple as in the previous case.

Theorem 5.2. Let ρF ∈ Nd . Put

ρH(F)(g) = inf{ρF (h) : g ≤ Rϕh, h ∈ N1}, g ∈ M+.

Then ρH(F) ∈ Nt , the couple (ρF , ρH(F)) belongs to N and it is admissible.
Furthermore, if (ρF , ρH1) ∈ N is an admissible couple, then CH(F) ↪→

CH1.

Proof. It is clear that ρH(F) is monotone and satisfies Minkowski’s in-
equality. For t ≥ 2,

Rϕχ(1,∞)(t) =
∫ t

0

χ(1,∞)(u)

ϕ(u)

du

u
≥

∫ 2

1

1

ϕ(u)

du

u
≥ Cχ(2,∞)(t).

So, ρH(F))(χ(2,∞)) ≤ CρF (χ(1,∞)) < ∞.
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If g ≤ Rϕf , then

g(ts) ≤
∫ t

0

f (us)

ϕ(us)

du

u
≤

∫ t

0
hϕ(s

−1)
f (us)

ϕ(u)

du

u
.

This yields that hH(F)(s) ≤ hF (s)hϕ(1/s). Now proceeding as we did in the
proof of Theorem 5.1 to compute the indices of ρ, it follows that αH(F) =
βH(F) = αF − αϕ .

To check (4.3), take any g ∈ N1. We have

∫ t

0

g(2u)

ϕ(u)

du

u
≈

∫ 2t

0

g(u)

ϕ(u)

du

u
>∼

∫ 2t

t

g(u)

ϕ(u)

du

u
>∼
g(t)

ϕ(t)
.

Therefore
ρH(F)

(
χ(0,2)

g

ϕ

)
<∼ ρF (g(2u)) <∼ ρF (g).

Since (4.11) is clearly satisfied with j = 1, Theorem 4.6 implies that
the couple (ρF , ρH(F)) is admissible. Now suppose that the couple (ρF , ρH1)

belongs to N and it is admissible. We are going to show that

(5.1) ρH1(χ(0,2)g) ≤ ρH(F)(χ(0,2)g), g ∈ N1.

Then, according to (3.7), the embedding CH(F) ↪→ CH1 will follow.
Take any h ∈ N1 such that χ(0,2)g ≤ Rϕh. We have

χ(0,2)(t)g(t) ≤ χ(0,2)(t)

∫ t

0
χ(0,2)(u)

h(u)

ϕ(u)

du

u
+ χ(0,2)(t)

∫ t

0
χ(2,∞)(u)

h(u)

ϕ(u)

du

u
.

The last integral cancels out, so χ(0,2)g ≤ χ(0,2)Rϕ(χ(0,2)h). Using The-
orem 4.7, we obtain ρH1(χ(0,2)g) ≤ ρH1(χ(0,2)Rϕ(χ(0,2)h)) <∼ ρF (h). This
implies (5.1) and completes the proof.

Now we turn our attention to the optimal domain quasi-norm of a given
target quasi-norm.

Theorem 5.3. Let ρH ∈ Nt such that

(5.2) ρH

(
χ(1,∞)(t)

∫ t

1

1

ϕ(u)

du

u

)
< ∞.

Put
ρF(H)(g) = ρH (Rϕg), g ∈ M+.

Then ρF(H) ∈ Nd , (ρF(H), ρH ) ∈ N and it is an admissible couple.
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Furthermore:

(i) If (ρF1 , ρH ) ∈ N and it is admissible, then �(E,F1) ↪→ �(E,F(H)).

(ii) If (ρF(H), ρH1) ∈ N is admissible, then CH ↪→ CH1.

Proof. It is clear thatρF(H) is monotone and satisfies Minkowski’s inequal-
ity. Since hF(H)(u) ≤ hϕ(u)hH (u), it follows that αF(H) = βF(H) = αH +αϕ .
We also have

ρF(H)(χ(1,∞)) = ρH (Rϕχ(1,∞)) = ρH

(
χ(1,∞)(t)

∫ t

1

1

ϕ(u)

du

u

)
< ∞.

For g ∈ N1, we get

ρF(H)(g) = ρH

(∫ t

0

g(u)

ϕ(u)

du

u

)
≥ ρH

(
χ(2,∞)(t)

∫ t

0

g(u)

ϕ(u)

du

u

)

≥ ρH (χ(2,∞))

∫ 2

0

g(u)

ϕ(u)

du

u
>∼

∫ 2

0

g(u)

ϕ(u)

du

u
.

Hence, ρF(H) belongs to Nd .
In order to check (4.10), take any g ∈ N1. We have

ρF(H))(g) ≈ ρF(H))(g(2u)) = ρH

(∫ t

0

g(2u)

ϕ(u)

du

u

)
>∼ ρH

(∫ t

t/2

g(2u)

ϕ(u)

du

u

)

>∼ ρH

(
g(t)

ϕ(t)

∫ t

t/2

du

u

)
>∼ ρH

(
g(t)

ϕ(t)

)
>∼ ρH

(
χ(0,2)

g

ϕ

)
.

The couple (ρF(H), ρH ) is admissible because (4.11) is clearly satisfied with
j = 1. As for the optimality, if (ρF1 , ρH ) belongs to N and it is admissible,
then

ρH

(
χ(0,2)

g

ϕ

)
<∼ ρF1(g) for g ∈ N1,

and Rϕ satisfies the bounded condition (4.11) between ρF1 and ρH . It follows
that

ρF(H)(χ(0,2)g) <∼ ρH (χ(0,2)Rϕ(χ(0,2)g))+ ρH (χ(2,∞)Rϕ(χ(0,2)g))

<∼ ρF1(g)+ ρH (χ(2,∞)Rϕ(χ(0,2)g)).

To estimate the ρH quasi-norm, note that for t > 2, we obtain∫ t

0

χ(0,2)(u)g(u)

ϕ(u)

du

u
=

∫ 2

0

χ(0,2)(u)g(u)

ϕ(u)

du

u
+

∫ ∞

2

χ(0,2)(u)g(u)

ϕ(u)

du

u

=
∫ 2

0

g(u)

ϕ(u)

du

u
<∼ ρF1(g)



142 zia bashir, fernando cobos and georgi e. karadzhov

where we have used (4.3) in the last inequality. Whence,

ρH (χ(2,∞)Rϕ(χ(0,2)g)) <∼ ρH (χ(2,∞))ρF1(g) <∼ ρF1(g).

It follows that
ρF(H)(χ(0,2)g) <∼ ρF1(g), g ∈ N1.

Since (3.3) still holds replacing χ(0,1) by χ(0,2), we derive the continuous em-
bedding �(E,F1) ↪→ �(E,F(H)).

Finally, assume that (ρF(H), ρH1) ∈ N is an admissible couple and let
us show that CH ↪→ CH1. First note that if f ∈ CH then ωk(t1/n, f ) is
increasing, with ωk((2t)1/n, f ) ≤ 2kωk(t1/n, f ) and limt→0 ω

k(t1/n, f ) = 0.
Let g be any function in N0 such that g(2t) ≤ 2kg(t) and limt→0 g(t) = 0.
According to (3.7), to establish the embedding between the Hölder-Zygmund
spaces, it suffices to show that there is C > 0 independent of g such that

(5.3) ρH1(χ(0,2)g) ≤ CρH(g).

Put
h(t) = 1

t

∫ t

0
g(u) du =

∫ 1

0
g(tv) dv.

The function h is increasing, with

h(t) ≤ g(t) ≤ 2k+1 1

t
g

(
t

2

)
t

2
≤ 2k+1 1

t

∫ t

t/2
g(u) du ≤ 2k+1h(t).

Hence, (5.3) follows if

(5.4) ρH1(χ(0,2)h) ≤ ρH (h)

holds. Moreover, in view of (5.1), to prove (5.4) it is enough to check that

(5.5) ρH(F(H))(χ(0,2)h) ≤ ρH (h).

Let h1(t) = th′(t) = g(t)− h(t) ≥ 0. Since

th1(t) = tg(t)−
∫ t

0
g(u) du =

∫ t

0
(g(t)− g(u)) du,

we have that h1 ∈ N1 and therefore ϕEh1 ∈ N1. Moreover, Rϕ(ϕh1) = h.
Consequently, using Theorem 5.2, we conclude

ρH(F(H))(χ(0,2)h) ≤ ρH(F(H))(h) ≤ ρF(H)(ϕh1) = ρH (Rϕ(ϕh1)) = ρH (h).

This shows (5.5) and finishes the proof.
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Next we give examples where the optimal quasi-norms can be computed
explicitly. We consider similar situations to those studied in [3] for generalized
Besov spaces.

Example 5.4. Let H = L1∗(v), satisfying (5.2) and with αH = βH . Then
(3.4) holds. Putw(t) = ∫ ∞

t
v(u)du/u. According to Theorem 5.3, the optimal

domain quasi-norm is

ρF (g) = ρH (Rϕg) =
∫ ∞

0
v(t)

(∫ t

0

g(u)

ϕ(u)

du

u

)
dt

t
=

∫ ∞

0

w(u)

ϕ(u)
g(u)

du

u
.

Therefore F = L1∗(w/ϕ).
Note that if v is slowly varying, then we are in a critical case. Indeed, we

have αH = βH = 0 and, by the proof of Theorem 5.3, αF = βF = αϕ . The
last equalities follows also by direct computations because in this case ω is
slowly varying as well. Theorem 5.3 yields that the couple (ρL1∗(v), ρL1∗(w/ϕ))

is optimal.

Example 5.5. Let H = L∞∗ (v), where sup1<t<∞ v(t) < ∞ and with
αH = βH . Then (5.2) and (3.4) hold. The optimal domain quasi-norm is

ρF (g) = sup
0<t<∞

v(t)

∫ t

0

g(u)

ϕ(u)

du

u
.

Again, if v is slowly varying, then we are in a critical case.

The following result will allow us to show another example.

Theorem 5.6. Let ρS be a monotone quasi-norm satisfying Minkowski’s
inequality, with αS = βS = 0 and ρS(g(t2)) ≈ ρS(g(t)) for any g ∈ M+. Let
c, b be slowly varying functions on (0,∞) such that c(t) <∼ b(t), c(t2) ≈ c(t)

and ∫ 2

0
g(u)

du

u
<∼ ρS(bg), g ∈ M+,(5.6)

ρS(cχ(1,∞)) < ∞,(5.7)

ρS

(
χ(0,2)(t)c(t)

∫ t

0
g(u)

du

u

)
<∼ ρS(bg), g ∈ M+,(5.8)

∫ t

t2/e

c(u)

b(u)

du

u
>∼ 1, 0 < t < 1.(5.9)

Put
ρF (g) = ρS

(
bg

ϕ

)
, ρH (g) = ρS(cg), g ∈ M+.
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Then (ρF , ρH ) belongs to N , the couple is admissible and CH = CH(F).

Proof. The quasi-norm ρF is monotone and satisfies Minkowski’s inequal-
ity. Let 0 < ε < αϕ . Since ϕ(1) ≤ hϕ(1/t)ϕ(t), we get for t > 1

b(t)

ϕ(t)
<∼ t−αϕ+εb(t) = t−αϕ+εb(t)

c(t)
c(t) <∼ c(t)

where we have also used that b and c are slowly varying. Combining this with
(5.7) we obtain

ρ(χ(1,∞)) = ρS

(
bχ(1,∞)

ϕ

)
<∼ ρS(cχ(1,∞)) < ∞.

The indices of F are equal to those of ϕ, so we are in a critical case. Inequality
(4.3) is also satisfied because, using (5.6), we get

∫ 2

0

g(u)

ϕ(u)

du

u
<∼ ρS

(
bg

ϕ

)
= ρF (g).

Therefore, ρF ∈ Nd . It is not hard to check that ρH ∈ Nt . It follows from
c(t) <∼ b(t) that

ρH

(
χ(0,2)

g

ϕ

)
= ρS

(
χ(0,2)

cg

ϕ

)
<∼ ρS

(
bg

ϕ

)
= ρF (g).

Whence (ρF , ρH ) ∈ N . The couple is admissible because, by (5.8),

ρH (χ(0,2)Rϕg) = ρS

(
χ(0,2)(t)c(t)

∫ t

0

g(u)

ϕ(u)

du

u

)
<∼ ρS

(
bg

ϕ

)
= ρF (g).

As for the optimality, it follows from Theorem 5.2 that CH(F) ↪→ CH . Let
us check the converse embedding. According to (3.7), it suffices to show that

ρH(F)(χ(0,2)g) <∼ ρH (g), g ∈ N0.

Given g, let h be the function defined by the equality

b(t)h(t)

ϕ(t)
= g

(√
4et

)
c
(√

4et
)
.

Since c and b are slowly varying functions, we have that h ∈ N1. Using (5.9)
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and the properties of c, we have for 0 < t < 2

Rϕh(t) =
∫ t

0

g
(√

4eu
)
c
(√

4eu
)

b(u)

du

u
≥

∫ t/2

t2/4e

g
(√

4eu
)
c
(√

4eu
)

b(u)

du

u

>∼ g(t)

∫ t/2

t2/4e

c(4eu)

b(u)

du

u
>∼ g(t)

∫ t/2

t2/4e

c(u)

b(u)

du

u
>∼ g(t).

Consequently,

ρH(F)(χ(0,2)g) <∼ ρF (h) = ρS

(
bh

ϕ

)
= ρS

(
g
(√

4et
)
c
(√

4et
))

≈ ρS(g(4et)c(4et)) <∼ ρH (g).

In the following example, boundedness of Rϕ can be realized as bounded-
ness of the classical Hardy operator between weighted Lq spaces, which is
characterized by Muckenhoupt’s condition (see [36] or [14, Thm. 2.2.1]).

Example 5.7. Let 1 ≤ q ≤ ∞ and 1/q+1/q ′ = 1. PutF = L
q
∗(b/ϕ) and

H = L
q
∗(c) with c and b being slowly varying functions on (0,∞), satisfying

that c(t2) ≈ c(t), b(t) <∼ (1 + | log t |)c(t) and

(5.10)

(∫ ∞

t

cq(u)
du

u

)1/q(∫ t

0
b−q ′

(u)
du

u

)1/q ′

<∼ 1, 1/q + 1/q ′ = 1.

Then �(E,F) ↪→ CH and CH = CH(F).
Indeed, take S = L

q
∗ in Theorem 5.6. It is easy to check that ρS(g(t2)) ≈

ρS(g(t)) and αS = βS = 0. Using that

c(t) <∼
(∫ ∞

t

cq(u)
du

u

)1/q

and

(∫ t

0
b−q ′

(u)
du

u

)−1/q ′

<∼ b(t),

we derive from (5.10) that c(t) <∼ b(t). Moreover, (5.10) also implies (5.6)
and (5.7). Namely

∫ 2

0
g(u)

du

u
≤

(∫ 2

0
(b(u)g(u))q

du

u

)1/q(∫ 2

0
b(u)−q

′ du

u

)1/q ′

<∼ ρS(bg),

and

ρS(cχ(1,∞)) =
(∫ ∞

1
cq(u)

du

u

)1/q

< ∞.
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Inequality (5.8) is another consequence of (5.10) by Muckenhoupt’s result

ρS

(
χ(0,2)(t)c(t)

∫ t

0
g(u)

du

u

)
<∼

(∫ ∞

0
(b(u)g(u))q

du

u

)1/q

.

Finally, to check (5.9) note that for 0 < t < 1 we have

∫ t

t2/e

c(u)

b(u)

du

u
>∼

∫ t

t2/e

1

1 − log u

du

u
= log 2.
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