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NUMERICAL RADIUS INEQUALITIES FOR
SEVERAL OPERATORS
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Abstract
Let A, B, X, and A1, . . . , A2n be bounded linear operators on a complex Hilbert space. It is shown
that

w

(2n−1∑
k=1

A∗
k+1XAk + A∗

1XA2n

)
≤ 2

( n∑
k=1

‖A2k−1‖2
)1/2( n∑

k=1

‖A2k‖2
)1/2

w(X)

and

w(AB ± BA) ≤ 2
√

2 ‖B‖
√

w2(A) − |‖Re A‖2 − ‖Im A‖2|
2

,

where w(·) and ‖·‖ are the numerical radius and the usual operator norm, respectively. These
inequalities generalize and refine some earlier results of Fong and Holbrook. Some applications
of our results are given.

1. Introduction

Let H be a complex Hilbert space with inner product 〈·,·〉, and let �(H ) be
the space of all bounded linear operators on H . The numerical radius of an
operator X ∈ �(H ), denoted by w(X), is defined by

w(X) = sup
‖x‖=1

|〈Xx, x〉| .

It is well-known that w(·) defines a norm on �(H ), which is equivalent to the
usual operator norm ‖·‖. Namely, for X ∈ �(H ), we have

1

2
‖X‖ ≤ w(X) ≤ ‖X‖ .

There are some important properties of the numerical radius (see, e.g., [3])
such as its weak unitary invariance

w(U ∗XU) = w(X)
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for every unitary U ∈ �(H ), and the fact that it satisfies the power inequality

w(Xn) ≤ (w(X))n

for n = 1, 2, . . . .
In [6] Fong and Holbrook have established two remarkable numerical radius

inequalities for operators. These inequalities say that if A, B, X ∈ �(H ), then

(1.1) w(A∗X + XA) ≤ 2 ‖A‖ w(X)

and

(1.2) w(AB + BA) ≤ 2
√

2 ‖B‖ w(A).

Recent generalizations of the inequality (1.1) have been given in [4] and [5].
In this paper, we are interested in further analysis of these numerical radius

inequalities. In Section 2, we establish a generalization of the inequality (1.1)
to several operators. In Section 3, we present a general numerical radius in-
equality form which a refinement of the inequality (1.2) follows as a special
case.

2. A generalization of the inequality (1.1) to several operators

In this section, we present a generalization of the Fong-Holbrook inequality
(1.1) to several operators. In order to achieve our goal, we need the following
lemma [6].

Lemma 2.1. Let X ∈ �(H ), and let x1, . . . , xn ∈ H . Then

(2.1)

∣∣∣∣
n−1∑
k=1

〈Xxk, xk+1〉
∣∣∣∣ ≤
( n∑

k=1

‖xk‖2

)
w(X).

Based on Lemma 2.1, we have the following result. This result will play a
central role in our generalization of the inequality (1.1).

Lemma 2.2. Let X ∈ �(H ), and let x1, . . . , xn ∈ H . Then

(2.2)

∣∣∣∣
n−1∑
k=1

〈Xxk, xk+1〉 + 〈Xxn, x1〉
∣∣∣∣ ≤
( n∑

k=1

‖xk‖2

)
w(X).

Proof. Let m be a natural number, and define a sequence of vectors
(yk)

mn+1
k=1 in H by

yin+j =
{

xj , i = 0, . . . , m − 1, j = 1, . . . , n

x1, i = m, j = 1.
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Then

(2.3)

mn+1∑
k=1

‖yk‖2 = m

n∑
k=1

‖xk‖2 + ‖x1‖2

and

(2.4)

mn∑
k=1

〈Xyk, yk+1〉 = m

(n−1∑
k=1

〈Xxk, xk+1〉 + 〈Xxn, x1〉
)

.

Applying the inequality (2.1) to the sequence (yk)
mn+1
k=1 , we have

(2.5)

∣∣∣∣
mn∑
k=1

〈Xyk, yk+1〉
∣∣∣∣ ≤
(mn+1∑

k=1

‖yk‖2

)
w(X).

It follows from the identities (2.3), (2.4) and the inequality (2.5) that

(2.6)

∣∣∣∣
n−1∑
k=1

〈Xxk, xk+1〉 + 〈Xxn, x1〉
∣∣∣∣ ≤ m

∑n
k=1 ‖xk‖2 + ‖x1‖2

m
w(X).

Now, the desired inequality follows from the inequality (2.6) by letting m →
∞.

An application of Lemma 2.2 can be seen in the following result.

Proposition 2.3. Let X ∈ �(H ),and let X̃ be the n × n operator matrix
in �(⊕n

k=1H ) that has the operator X in the subdiagonal and in the top right-
hand corner in the position (1, n). Then

w(X̃) = w(X).

In particular, for n = 2, 3, and 4, we have

w

([
0 X

X 0

])
= w

([ 0 0 X

X 0 0
0 X 0

])
= w

⎛
⎜⎝
⎡
⎢⎣

0 0 0 X

X 0 0 0
0 X 0 0
0 0 X 0

⎤
⎥⎦
⎞
⎟⎠ = w(X).

Proof. Let y = [y1, . . . , yn]T be a unit vector in ⊕n
k=1H . Then

|〈X̃y, y〉| =
∣∣∣∣
n−1∑
k=1

〈Xyk, yk+1〉 + 〈Xyn, y1〉
∣∣∣∣
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≤
( n∑

k=1

‖yk‖2

)
w(X) (by Lemma 2.2)

= ‖y‖2w(X)

= w(X).(2.7)

It follows, by taking the supremum of the left-hand side of the inequality (2.7)
over all unit vectors y in ⊕n

k=1H , that

(2.8) w(X̃) ≤ w(X).

On the other hand, let x be a unit vector in H , and let y0 = [y1, . . . , yn]T with
yk = x√

n
, k = 1, . . . , n. Then y0 is a unit vector in ⊕n

k=1H , and so

w(X̃) ≥ |〈X̃y0, y0〉|

=
∣∣∣∣
n−1∑
k=1

〈Xyk, yk+1〉 + 〈Xyn, y1〉
∣∣∣∣

=
∣∣∣∣1n

n−1∑
k=1

〈Xx, x〉 + 1

n
〈Xx, x〉

∣∣∣∣
= |〈Xx, x〉|.(2.9)

It follows, by taking the supremum of the right-hand side of the inequality
(2.9) over all unit vectors x in H , that

(2.10) w(X̃) ≥ w(X).

Now, the result follows from the inequalities (2.8) and (2.10).

Based on Lemma 2.2, we have the following numerical radius inequalities
for several operators.

Theorem 2.4. Let A1, . . . , An, X ∈ �(H ). Then

w

(n−1∑
k=1

A∗
k+1XAk + A∗

1XAn

)
≤
( n∑

k=1

‖Ak‖2

)
w(X).

In particular, if A1, . . . , An are contractions, then

w

(n−1∑
k=1

A∗
k+1XAk + A∗

1XAn

)
≤ nw(X).
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Proof. Let x ∈ H be a unit vector, and let xk = Akx, k = 1, . . . , n. Then∣∣∣∣
〈(n−1∑

k=1

A∗
k+1XAk + A∗

1XAn

)
x, x

〉∣∣∣∣
=
∣∣∣∣
n−1∑
k=1

〈XAkx, Ak+1x〉 + 〈XAnx, A1x〉
∣∣∣∣

=
∣∣∣∣
n−1∑
k=1

〈Xxk, xk+1〉 + 〈Xxn, x1〉
∣∣∣∣

≤
( n∑

k=1

‖xk‖2

)
w(X) (by Lemma 2.2)

=
( n∑

k=1

‖Akx‖2

)
w(X)

≤
( n∑

k=1

‖Ak‖2

)
w(X)(2.11)

Now, the result follows by taking supremum of the left-hand side of the in-
equality (2.11) over all unit vectors x in H .

Remark 2.5. Another proof of Theorem 2.4 can be seen as follows. Let

Ã =

⎡
⎢⎢⎢⎢⎣

A2 0 · · · 0
A3 0 · · · 0
...

...
...

An 0 · · · 0
A1 0 · · · 0

⎤
⎥⎥⎥⎥⎦

be n × n operator matrix in �(⊕n
k=1H ), and let X̃ be as in Proposition 2.3.

Then

w

(n−1∑
k=1

A∗
k+1XAk + A∗

1XAn

)
= w(Ã∗X̃Ã)

≤ ‖Ã‖2w(X̃)

=
( n∑

k=1

‖Ak‖2

)
w(X) (by Proposition 2.3).

In the following result, we present our generalization of the inequality (1.1)
to several operators.
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Theorem 2.6. Let A1, . . . , A2n, X ∈ �(H ). Then

w

(2n−1∑
k=1

A∗
k+1XAk + A∗

1XA2n

)

≤ 2

( n∑
k=1

‖A2k−1‖2

)1/2( n∑
k=1

‖A2k‖2

)1/2

w(X).

Proof. It follows from Theorem 2.4 that

(2.12) w

(2n−1∑
k=1

A∗
k+1XAk + A∗

1XA2n

)
≤
( 2n∑

k=1

‖Ak‖2

)
w(X).

In the inequality (2.12), replacing A2k−1 by tA2k−1 and A2k by 1
t
A2k , t > 0,

k = 1, . . . , n, we have

(2.13) w

(2n−1∑
k=1

A∗
k+1XAk + A∗

1XA2n

)
≤ t4α + β

t2
w(X),

where α =∑n
k=1 ‖Ak‖2 and β =∑n

k=1 ‖A2k‖2. Since inf t>0
t4α+β

t2 = 2
√

αβ,
then the result follows by taking infimum of the right hand side of the inequality
(2.13) over all positive real numbers t .

A particular case of Theorem 2.6 can be presented as follows. This result
shows that Theorem 2.6 is a generalization of the inequality (1.1) to several
operators.

Corollary 2.7. Let A, B, X ∈ �(H ). Then

w(A∗XB + B∗XA) ≤ 2 ‖A‖ ‖B‖ w(X).

In particular, letting B = I , we have

w(A∗X + XA) ≤ 2 ‖A‖ w(X).

Proof. The result follows by applying Theorem 2.6, for n = 1, to the
operators A1 = A and A2 = B.

3. A refinement of the inequality (1.2)

The aim of this section is to give a refinement of the Fong-Holbrook inequality
(1.2). In their proof of the inequality (1.2), Fong and Holbrook used a result of



116 omar hirzallah and fuad kittaneh

M. J. Crabb (see, e.g., [1, Theorem 3] and [2, Theorem 3.7]). This result says
that if A ∈ �(H ) such that w(A) ≤ 1, then

(3.1) ‖Ax‖2 + ‖A∗x‖2 ≤ 4

for all unit vectors x ∈ H . In order to give a refinement of the inequality (1.2),
we have to refine the inequality (3.1). To do this, we start with the following
result.

Lemma 3.1. Let A, B ∈ �(H ). Then

(3.2) ‖AA∗ + BB∗‖
≤ max

(‖A + B‖2, ‖A − B‖2
)−

∣∣‖A + B‖2 − ‖A − B‖2
∣∣

2
.

In particular, letting B = A∗, we have

(3.3) ‖AA∗ + A∗A‖
≤ 4 max

(‖Re A‖2, ‖Im A‖2
)− 2

∣∣‖Re A‖2 − ‖Im A‖2
∣∣.

Proof. We have

max
(‖A + B‖2, ‖A − B‖2

)
= max

(‖A∗ + B∗‖2, ‖A∗ − B∗‖2
)

= ‖A∗ + B∗‖2 + ‖A∗ − B∗‖2

2
+
∣∣‖A∗ + B∗‖2 − ‖A∗ − B∗‖2

∣∣
2

=
∥∥|A∗ + B∗|2∥∥+ ∥∥|A∗ − B∗|2∥∥

2
+
∣∣‖A + B‖2 − ‖A − B‖2

∣∣
2

≥
∥∥|A∗ + B∗|2 + |A∗ − B∗|2∥∥

2
+
∣∣‖A + B‖2 − ‖A − B‖2

∣∣
2

= ‖AA∗ + BB∗‖ +
∣∣‖A + B‖2 − ‖A − B‖2

∣∣
2

.

Our refinement of the inequality (3.1) can be stated as follows.

Lemma 3.2. Let A ∈ �(H ) such that w(A) ≤ 1, and let x be a unit vector
in H . Then

(3.4) ‖Ax‖2 + ‖A∗x‖2 ≤ 4

(
1 − |‖Re A‖2 − ‖Im A‖2|

2

)
.
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Proof. It follows from the inequality (3.3) that

‖Ax‖2 + ‖A∗x‖2

= |〈(AA∗ + A∗A)x, x〉|
≤ ‖AA∗ + A∗A‖
≤ 4 max

(‖Re A‖2, ‖Im A‖2
)− 2

∣∣‖Re A‖2 − ‖Im A‖2
∣∣ (by Lemma 3.1)

= 4 max
(
w2(Re A), w2(Im A)

)− 2
∣∣‖Re A‖2 − ‖Im A‖2

∣∣
≤ 4w2(A) − 2

∣∣‖Re A‖2 − ‖Im A‖2
∣∣

≤ 4

(
1 − |‖Re A‖2 − ‖Im A‖2|

2

)
.

Based on Lemma 3.2, we have the following general numerical radius in-
equality.

Theorem 3.3. Let A, B, X, Y ∈ �(H ). Then

(3.5) w(AXB ± BYA)

≤ 2
√

2‖B‖ max(‖X‖, ‖Y‖)
√

w2(A) − |‖Re A‖2 − ‖Im A‖2|
2

.

Proof. First, suppose that w(A) ≤ 1, ‖X‖ ≤ 1, ‖Y‖ ≤ 1, and let x be a
unit vector in H . Then∣∣〈(AX ± YA)x, x〉∣∣ = ∣∣〈Xx, A∗x〉 ± 〈Ax, Y ∗x〉∣∣

≤ ‖Xx‖‖A∗x‖ + ‖Ax‖‖Y ∗x‖
≤ ‖X∗‖‖A∗x‖ + ‖Ax‖‖Y ∗‖
≤ ‖A∗x‖ + ‖Ax‖
≤ √

2
(‖A∗x‖2 + ‖Ax‖2

)1/2

≤ 2
√

2

√
1 − |‖Re A‖2 − ‖Im A‖2|

2
(by Lemma 3.2),

and so

w((AX ± YA)) = sup
‖x‖=1

∣∣〈(AB ± BA)x, x〉∣∣
≤ 2

√
2

√
1 − |‖Re A‖2 − ‖Im A‖2|

2
.(3.6)
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For the general case, let A, X, and Y be any operators in �(H ). It is clear
that the result is trivial if w(A) = 0 or max(‖X‖, ‖Y‖) = 0, so suppose that
w(A) 
= 0 and max(‖X‖, ‖Y‖) 
= 0. In the inequality (3.6), replacing the
operators A, X, and Y by the operators A

w(A)
, X

max(‖X‖,‖Y‖) , and Y
max(‖X‖,‖Y‖) ,

respectively, we have

w(AX ± YA)

≤ 2
√

2 max(‖X‖, ‖Y‖)w(A)

√
1 −

∣∣∥∥Re
(

A
w(A)

)∥∥2 − ∥∥Im
(

A
w(A)

)∥∥2∣∣
2

= 2
√

2 max(‖X‖, ‖Y‖)
√

w2(A) − |‖Re A‖2 − ‖Im A‖2|
2

.(3.7)

Now, in the inequality (3.7), replacing the operators X and Y by XB and BY ,
respectively, we have

w(AXB ± BYA)

≤ 2
√

2 max(‖XB‖, ‖BY‖)
√

w2(A) − |‖Re A‖2 − ‖Im A‖2|
2

≤ 2
√

2 ‖B‖ max(‖X‖, ‖Y‖)
√

w2(A) − |‖Re A‖2 − ‖Im A‖2|
2

,

as required.

An application of Theorem 3.3 can be seen as follows. This result contains
our promised refinement of the inequality (1.2).

Corollary 3.4. Let A, B ∈ �(H ). Then

(3.8) w(AB ± BA) ≤ 2
√

2 ‖B‖
√

w2(A) − |‖Re A‖2 − ‖Im A‖2|
2

and

(3.9) w(A2) ≤ √
2 ‖A‖

√
w2(A) − |‖Re A‖2 − ‖Im A‖2|

2
.

Proof. The inequality (3.8) follows from Theorem 3.3 by letting X = Y =
I , while the inequality (3.9) follows from the inequality (3.8) by letting B = A.

An application of Corollary 3.4 can be stated as follows.

Corollary 3.5. Let A, B ∈ �(H ) such that w(AB + BA) = 2
√

2 ‖B‖ ·
w(A) or w(AB − BA) = 2

√
2 ‖B‖w(A). Then ‖Re A‖ = ‖Im A‖.
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Proof. Suppose that w(AB + BA) = 2
√

2 ‖B‖w(A) or w(AB − BA) =
2
√

2 ‖B‖w(A). Since

w(AB ± BA) ≤ 2
√

2 ‖B‖
√

w2(A) − |‖Re A‖2 − ‖Im A‖2|
2

≤ 2
√

2 ‖B‖w(A),

it follows that √
w2(A) − |‖Re A‖2 − ‖Im A‖2|

2
= w(A),

and so ‖Re A‖ = ‖Im A‖.
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