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PARABOLIC STEIN MANIFOLDS

A. AYTUNA and A. SADULLAEV∗

Abstract
An open Riemann surface is called parabolic in case every bounded subharmonic function on it
reduces to a constant. Several authors introduced seemingly different analogs of this notion for
Stein manifolds of arbitrary dimension. In the first part of this note we compile these notions of
parabolicity and give some immediate relations among these different definitions. In section 3 we
relate some of these notions to the linear topological type of the Fréchet space of analytic functions
on the given manifold. In section 4 we look at some examples and show, for example, that the
complement of the zero set of a Weierstrass polynomial possesses a continuous plurisubharmonic
exhaustion function that is maximal off a compact subset.

1. Introduction

In the theory of Riemann surfaces, simply connected manifolds, which are
equal to the complex plane are usually called parabolic and the ones which
equal to the unit disk are called hyperbolic. Several authors introduced ana-
logues of these notions for general complex manifolds of arbitrary dimension
in different ways; in terms of triviality (parabolic type) and non-triviality (hy-
perbolic type) of the Kobayashi or Caratheodory metrics, in terms of plur-
isubharmonic (psh) functions, etc. In some of these considerations existence
of rich family of bounded holomorphic functions play a significant role.

On the other hand, attempts to generalize Nevanlinna’s value distribution
theory to several variables by Stoll, Griffiths, King, et al. produced notions
of “parabolicity” in several complex variables defined by requiring the exist-
ence of certain special plurisubharmonic functions. The common features of
these special plurisubharmonic functions were that they were exhaustive and
maximal outside a compact set.

Following Stoll, we will call an n-dimensional complex manifold X, S-
parabolic in case there is a plurisubharmonic function ρ on X with the prop-
erties:

a) {z ∈ X : ρ(z) � C} ⊂⊂ X, ∀ C ∈ R+ (i.e. ρ is exhaustive),
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b) The Monge-Ampère operator (ddcρ)n is zero off a compact K ⊂⊂ X.
That is ρ is a maximal plurisubharmonic function outside K.

We note that without the maximality condition b), an exhaustion function
σ(z) ∈ psh(X) ∩ C∞(X) always exist for any Stein manifold X, because
such manifolds can be properly embedded in C2n+1

w and one can take for σ the
restriction of ln |w| to X.

On S-parabolic manifolds any bounded above plurisubharmonic function is
constant. In particular, there are no non-constant bounded holomorphic func-
tions on such manifolds. Complex manifolds, on which every bounded above
plurisubharmonic function reduces to a constant, a characteristic shared by
parabolic open Riemann surfaces and affine-algebraic manifolds, play an im-
portant role in the structure theory of Fréchet spaces of analytic functions
on Stein manifolds, especially in finding continuous extension operators for
analytic functions from complex submanifolds (see [34], [4], [7], [6]). Such
spaces will be called “parabolic” in this paper.

Special exhaustion functions with certain regularity properties play a key
role in the Nevanlinna’s value distribution theory of holomorphic maps f :
X → Pm, where Pm − m dimensional projective manifold (see [19], [25],
[29] ,[30]). On the other hand for manifolds which have a special exhaustion
function, one can define extremal Green functions as in the classical case (see
[14]) and apply pluripotential theory techniques to obtain analogues of some
classical results which were proved earlier for Cn ([11], [41]). In the special
case of an affine algebraic manifolds such a program was successfully carried
out in [42]

The aim of this paper is to state and analyze different notions of parabolicity,
give examples and relate the parabolicity of a Stein manifold X with the linear
topological properties of the Fréchet space of global analytic functions on X.

The organization of the paper is as follows: In section 2, we state and
compare different definitions of parabolicity. We also bring to attention, a
problem in complex pluripotential theory that arise in this context. In the third
section we relate the notion of parabolicity of a Stein manifold X with the
linear topological type of the Fréchet space O(X), of analytic functions on X.
We introduce the notion of tame isomorphism of O(X) to the space of entire
functions (Definition 3.2) and show (Theorem 3.7) that a Stein manifold of
dimension n is S∗-parabolic if and only if O(X) is tamely isomorphic to the
space of entire functions in n variables. The final section is devoted to some
classes of parabolic manifolds. First we look at complements of the zero sets
of entire functions and show that the complement in Cn of the zero set of a
global Weierstrass polynomial (algebroidal function), is S∗-parabolic. Then
we generalize a condition of Demailly for parabolicity and use it to show that
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Sibony-Wong manifolds (see section 4 for the definition) are parabolic.
Throughout the paper complex manifolds are always assumed to be con-

nected.

2. Different notions of parabolicity

Definition 2.1. A Stein manifold X is called parabolic, in case it does not
possess a non-constant bounded above plurisubharmonic function.

Thus, parabolicity of X is equivalent to the following: if u(z) ∈ psh(X) and
u(z) � C, then u(z) ≡ const. on X. It is convenient to describe parabolicity
in term of P-measures of pluripotential theory [20]. We will briefly recall this
notion which can be defined for a general Stein manifold X. In the discussion
below we will assume without loss a generality that our Stein manifold X is
properly imbedded in C2n+1

w , n = dim X, and σ(z) is the restriction of ln |w| to
X. Then σ(z) ∈ psh(X)∩C∞(X), {z : σ(z) � C} ⊂⊂ X ∀C ∈ R. We further
assume that 0 /∈ X and min σ(z) < 0. We consider σ -balls BR = {z ∈ X :
σ(z) < ln R} and as usual, define the class ℵ(B1, BR), R > 1, of functions
u(z) ∈ psh(BR) such, that u|BR

� 0, u|B1
� −1. We put

ω(z, B1, BR) = sup{u(z) : u ∈ ℵ(B1, BR)}.
The regularization ω∗(z, B1, BR) is called the P-measure of B1 with respect
to BR , [20].

The P-measure ω∗(z, B1, BR) is plurisubharmonic in BR , is equal to −1 on
B1 and tends to 0 for z → ∂BR . Moreover, it is maximal, that is (ddcω∗)n = 0
in BR \ B1 and decreasing by R. We put ω∗(z, B1) = limR→∞ ω∗(z, B1, BR).

It follows that

ω∗(z, B1) ∈ psh(X), −1 � ω∗(z, B1) � 0

and (ddcω∗(z, B1))
n = 0 in X \ B1.

In the construction of ω∗(z, B1) we have used the exhaustion function σ(z),
however it is not difficult to see that ω∗(z, B1) depends only on X and B1; not
on the choice of the exhaustion function. Indeed one can define the P-measure
for any non pluripolar compact K ⊂ X, by selecting any sequence of domains
K ⊂ Dj ⊂⊂ Dj+1 ⊂⊂ X, j = 1, 2, . . . , X = ⋃∞

j=1 Dj and employing the
above procedure with BR’s replaced with Dj ’s. It follows from the definition,
that the plurisubharmonic functions ω∗(z, K)+ 1 and ω∗(z, B1)+ 1 are dom-
inated by a constant multiple of each other. In particular ω∗(z, K) ≡ −1 if
and only if ω∗(z, B1) ≡ −1. Hence the later property is an inner property of
X. For further properties of P-measures we refer the reader to [20], [22], [37],
[38].
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Vanishing of ω∗(z, K)+1 on a parabolic manifold not only imply the trivi-
ality of bounded holomorphic functions but also give some information on the
growth of unbounded holomorphic functions. In fact on parabolic manifolds,
a kind of “Hadamard three domains theorem” with controlled exponents, is
true. The precise formulation of this characteristic, that will appear below, is an
adaptation of the property (DN) of Vogt [32], which was defined for general
Fréchet spaces, to the Fréchet spaces of analytic functions. As usual we will
denote by O(X) the Fréchet spaces of analytic functions defined on a complex
manifold X with the topology of uniform convergence on its compact subsets.
The proposition we will give below is due to Zaharyuta [39] and it has been
independently rediscovered by several other authors [4], [35]. We will include
a proof of this result for the convenience of the reader.

Proposition 2.2. The following are equivalent for a Stein manifold X

a) Xis parabolic;

b) P-measures are trivial on X i.e. ω∗(z, K) ≡ −1 for every nonpluripolar
compact K ⊆ X;

c) For every nonpluripolar compact set K0 ⊂ X and for every compact set
K of X there is another compact set L containing K such that

‖f ‖K � ‖f ‖ 1
2
K0

‖f ‖ 1
2
L, ∀ f ∈ O(X), (DN condition of Vogt)

where ‖∗‖H denotes the sup norm on H .

Proof. If X is parabolic, then ω∗(z, B1) being bounded and plurisubhar-
monic on X reduces to −1.

Conversely, let u(z) be an arbitrary bounded above psh function on X. Let
uR = supBR

u(z), ∞ > R � 1. If u(z) = const., then

u(z) − uR

uR − u1
∈ ℵ(B1, BR) and hence

u(z) − uR

uR − u1
� ω∗(z, B1, BR).

It follows that

(1) u(z) � −u1ω
∗(z, B1, BR) + uR(1 + ω∗(z, B1, BR)), z ∈ BR,

and as R → ∞ this gives

(2) u(z) � −u1ω
∗(z, B1) + u∞(1 + ω∗(z, B1)), z ∈ X.

If ω∗(z, B1) ≡ −1, then u(z) ≤ u1, z ∈ X, and by maximal principle we have
u(z) = u1 ≡ const., so that a) and b) are equivalent.
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Now we look at the sup norms ‖.‖Bm
on the sublevel balls Bm ⊃ K . Choose

an increasing sequence of norms ‖.‖k = ‖.‖mk
, k = 0, 1, . . . , m0 = 1, . . . ,

that satisfy the condition c) with the dominating norm ‖.‖0:

‖f ‖k � ‖f ‖ 1
2
0 ‖f ‖ 1

2
k+1, ∀ f ∈ O(X)

Iterating this inequality one gets:

(3) ‖f ‖1 � ‖f ‖
2k−1−1

2k−1

0 ‖f ‖
1

2k−1

k , ∀ f ∈ O(X).

Denoting the sequence of domains by Dk = Bmk
we consider the P-

measures ω∗(z, D0, Dk+1), k = 1, 2, . . . . Since these functions are continu-
ous, by Bremermann’s theorem (see [10]) for a fixed k we can find analytic
functions f1, f2, . . . , fm on Dk+1 and positive numbers a1, a2, . . . , am such
that

ω∗(z, D0, Dk+1) + 1 − ε � max
1�j�m

(aj ln |fj (z)|) � ω∗(z, D0, Dk+1) + 1

pointwise on Dk . We note that the compact Dk is polynomially convex in
C2n+1 ⊃ X, so by Runge’s theorem the functions fj can be uniformly approx-
imated on Dk by functions F ∈ O(X). This in turn by (3) gives us the estimate
ω∗(z, D0, Dk+1) + 1 � 1

2k−1 + ε, z ∈ D1. Now playing the same game with
D1 replaced by a given Dj we see that ω∗(z, K, Dk+1) converge uniformly to
−1 on any compact subset of X, i.e. ω∗(z, D0) ≡ −1. Hence c) ⇒ b).

Conversely, suppose that ω∗(z, K) ≡ −1 for any K ⊂⊂ X. Fix a non-
pluripolar compact K0 ⊂ X and fix an arbitrary compact set K ⊂ X. Let
Bk0 ⊃ K0 ∪ K , k0 ∈ N. Then, in view of Dini’s theorem we can choose k so
large that ω∗(z, K0, Bk) � −1/2 for z ∈ Bk0 . Since ω∗(z, K0, Bk) is maximal
on Bk \ K0, then for arbitrary f ∈ O(X), f = 0, the inequality

ln |f (z)|
‖f ‖K0

ln
‖f ‖Bk

‖f ‖K0

� ω∗(z, K0, Bk) + 1, z ∈ Bk,

is valid. This in turn implies that

‖f ‖K � ‖f ‖Bk0
� ‖f ‖1/2

K0
‖f ‖1/2

Bk
,

for all f ∈ O(X). Hence a) ⇒ c). This finishes the proof of the proposition.

Definition 2.3. A Stein manifold X is called S-parabolic, if there exit
exhaustion function ρ(z) ∈ psh(X) that is maximal outside a compact subset
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of X. If in addition we can choose ρ to be continuous then we will say that X

is S∗-parabolic.

In previous papers on parabolic manifolds (see for example [13], [29])
authors usually required the condition of C∞-smoothness of ρ. Here we only
distinguish the cases when the exhaustion function is just psh or continuous
psh.

It is not difficult to see thatS-parabolic manifolds are parabolic. In fact, since
the exhaustion function ρ(z) of the definition of S-parabolicity is maximal off
some compact K ⊂⊂ X, the balls Br = {z : ρ(z) < ln r}, r � r0, contain K

for big enough r0 and hence

ω∗(z, Br0 , BR) = max

{
−1,

ρ(z) − R

R − r0

}
.

Consequently,

ω∗(z, Br0) = lim
R→∞ ω∗(z, Br0 , BR) ≡ −1, z ∈ X.

For Stein manifolds of dimension one, the notions of S-parabolicity, S∗-
parabolicity, and parabolicity coincide. This is a consequence of the existence
of Evans-Selberg potentials (subharmonic exhaustion functions that are har-
monic outside a given point) on a parabolic Riemann surfaces [24].

Problem 1. Do the notions of S-parabolicity and S∗-parabolicity coincide
for Stein manifolds of arbitrary dimension?

Problem 2. Do the notions of parabolicity and S-parabolicity coincide for
Stein manifolds of arbitrary dimension?

3. Spaces of Analytic Functions on Parabolic Manifolds

In this section we will relate the above discussed notions of parabolicity of a
Stein manifold X with the linear topological structure of O(X), the Fréchet
space of analytic functions on X with the compact open topology. The first
result which we will state is due toAytuna-Krone-Terzioglu and it characterizes
parabolicity of a Stein manifold X of dimension n, in terms of the similarity of
the linear topological structures of O(X) and O(Cn). For the proof, we refer
the reader to [5].

Theorem 3.1. For a Stein manifold X of dimension n the following are
equivalent:

a) X is parabolic;

b) O(X) is isomorphic as Fréchet spaces to O(Cn).
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The correspondence that sends an entire function f to its Taylor coefficients
(xm)∞m=0 ordered in the usual way, establishes an isomorphism between O(Cn)

and the infinite type power series space
(4)

�∞(αm) :=
{
x = (xm)∞m=0 : |x|k :=

∞∑
m=0

|xm|ekαm < ∞ ∀ k = 1, 2, . . . .

}

with αm = m
1
n , m = 0, 1, 2, . . . .

Recall that a graded Fréchet space is a tuple (X,|∗|s ), where X is a Fréchet
space and (|∗|s)∞s=1 is a fixed system of seminorms defining the topology of
X. Whenever we deal with �∞(αm), for an exponent sequence αm ↑ ∞ (not
necessarily (m1/n)m), we will tacitly assume that we are dealing with a graded
space and that the grading is given by the norms defined in the above expression.
We will need a definition from the structure theory of Fréchet spaces;

Definition 3.2. A continuous linear operator T between two graded
Fréchet spaces (X,|∗|k ) and (Y,‖∗‖k ) is called tame in case:

∃A > 0 ∀ k ∃C > 0 : ‖T (x)‖k � C|x|k+A, ∀ x ∈ X.

Two graded Fréchet spaces are called tamely isomorphic in case there is a one
to one tame linear operator from one onto the other whose inverse is also tame.

The graded space (O(C),‖∗‖k ) where ‖∗‖k is the sup norm on the disc with
radius ek , is tamely isomorphic, under the correspondence described above,
to the power series space �∞(m) in view of the Cauchy’s inequality. This
observation motivates our next definition:

Definition 3.3. Let X be a Stein manifold. The space O(X) is said to be
tamely isomorphic to an infinite type power series space in case there is an
exhaustion of X by connected holomorphically convex compact sets (Kk)

∞
k=1

with Kk ⊂ K◦
k+1, k = 1, 2, . . . , such that the graded space (O(X),

supKk
|∗|

) is
tamely isomorphic to an infinite type power series space.

The supremum norms are, in some sense, associated with the function
theory whereas the power series norms are associated with the structure theory
of Fréchet spaces, and tame equivalence gives one, a controlled equivalence
between these generating norm systems.

For a graded Fréchet space, linear topological properties that ensure tame
equivalence to an infinite type power series space were studied by D. Vogt and
his school, in the context of structure theory of nuclear Fréchet spaces [35],
[18]. In the proof of the theorem below, we will make use of a specific result of
Vogt in this direction. We recall this theorem here for the benefit of the reader.
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Definition 3.4. A graded nuclear Fréchet space (E,|∗|k ) is said to be a
(DN) space in standard form in case, with suitable constants Ck > 0,

|∗|2k � Ck|∗|k−1|∗|k+1

for all k = 1, 2, . . . .

Definition 3.5. A graded nuclear Fréchet space (F,|∗|k ) is said to be a (
)

space in standard form in case, with suitable constants Dk > 0,

|∗|∗2
k � Dk|∗|∗k−1|∗|∗k+1

for all k = 1, 2, . . . where |x∗|∗k = sup{|x∗(y)| : |y|k � 1}, k = 1, 2, . . . ,
denotes the dual “norms” on F ∗.

Theorem 3.6 ([35], Theorem 2.3). Let E be a nuclear (DN) space in
standard form, and F an (
) space in standard form. Suppose that there
exists a tame surjection from F onto E. Then E is tamely isomorphic to an
infinite type power series space.

For two nonnegative real valued functions α and β on a set T we will use
the notation α(t) ≺ β(t) to mean ∃ C > 0 such that α(t) � Cβ(t) ∀t ∈ T .

We can now state the main result of this section:

Theorem 3.7. Let X be a Stein manifold. The space of analytic functions
on X, O(X), is tamely isomorphic to an infinite type power series space if and
only if X is S∗-Parabolic.

Proof. ⇒: Suppose thatO(X) is tamely isomorphic to a power series space
�∞(αm) with αm ↑ ∞. Fix a tame isomorphism T : �∞(αm) → O(X). We
also fix an exhaustion {Kk}∞k=0 of X by holomorphically convex compact sets
and an integer B ′ such that for all k

(5) ‖T (x)‖k ≺ |x|k+B ′ and |x|k ≺ ‖T (x)‖k+B ′ ∀x ∈ �∞(αm),

where ‖∗‖k denotes the sup norm on Kk , k = 0, 1, 2, . . . . Let em � T (εm)

where, as usual, εm = (0, . . . , 0, 1, 0, . . .), m = 1, 2, . . . . Set

(6) ρ(z) � lim sup
ξ→z

lim sup
m→∞

log |em(ξ)|
αm

.

Clearly ρ is a plurisubharmonic function on X. If we set Dτ � {z : ρ(z) < τ }
for τ ∈ R, we have:

Kk ⊆ Dk+B for large k, where B = B ′ + 1.
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Now fix an arbitrary z0 ∈ Dσ and choose, in view of Hartogs lemma, a small
ε > 0 such that |em(z0)| � Ceαm(σ−ε) for all m. For any x = ∑

xmεm ∈
�∞(αm) we have:

|T (x)(z0)| �
∑
m

|xm||em(z0)| ≺
∑
m

|xm|e(σ−ε)αm ≺ ‖T (x)‖[[σ ]]+1+B

Since T is onto and Km’s are holomorphically convex, we have that z0 ∈
K[[σ ]]+1+B . Hence Dσ ⊆ K[[σ ]]+1+B . Combining this with our previous find-
ings we get

(7) ∃ d > 0 such that Dσ ⊆ Dσ+d ∀α large

Now fix a nice compact set K , say K = D for some domain, with the property
that ∃ β > 0 such that |x|β ≺ sup

w∈K

|T (x)(w)| ∀x ∈ �∞(αm).

We wish to show that

�(z)

� lim sup
ξ→z

{ϕ(ξ) : ϕ ∈ psh(X), ϕ | K ≤ 0, ϕ � ρ + C for some C = C(ϕ)}

defines a plurisubharmonic function on X. To this end choose a ϕ ∈ psh(X)

with ϕ|K � 0 and ϕ � ρ + C for some C = C(ϕ) > 0. By Bremermann’s
theorem ([10]), we choose a representation

ϕ(z) = lim sup
ξ→z

lim sup
j

log |fj (ξ)|
cj

of ϕ on X for some fj ∈ O(X), j = 1, 2, . . . , and positive real numbers
cj ↑ ∞, j = 1, 2, 3, . . . . Using Hartogs lemma in a suitable neighborhood of
K we get:

∀ ε > 0 ∃ j0 : |fj (x)| � eεcj , j � j0, z ∈ K

In particular if yj � T −1(fj ) we have:

lim sup
j

log |yj |β
cj

� 0.

Taking into account the relation between ϕ and ρ and the inclusion Dσ ⊆
Dσ+d for large σ , we have, in view of Hartogs lemma:

sup
w∈Dσ

|fj (w)| ≺ e(σ+d+C)cj , ∀j, ∀σ large.
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In particular for large m, we have;

|yj |m ≺ e(m+d+C+2B)cj , ∀j.

For any non negative number t , we define:

h(t) � lim sup
j

log |yj |t
cj

.

This function is an increasing convex function on the positive real numbers.
Taking into account h(β) � 0 and h(m) � m + d + C + 2B for large m,it
follows, that

h(t) �
(

N + D

N − β

)
t −

(
N + D

N − β

)
β

on the interval [β, N ] for every N � β, where D = d + C + 2B. Hence
h(t) � t − β for t >> β.

Going back, since

sup
w∈Dσ

|fj (w)| ≺ |yj |σ+2+2B

for z with ρ(z) = σ , we see that,

ϕ(z) = lim sup
ξ→z

lim sup
n

log |fn(ξ)|
cn

� h(σ + 2 + 2B + d)

� σ + 2 + 2B + d − β = ρ(z) + Q,

where Q = Q(B, d, β) ∈ R+.
Hence

�(z) � ρ(z) + Q

and so � ∈ L∞
loc(X). In particular � is a plurisubharmonic function on X and

satisfies

∃ C1 > 0 and C2 > 0 such that ρ(z) − C1 � �(z) � ρ(z) + C2 on X.

It follows that � is an exhaustion and as a free envelope, is maximal outside a
compact set [8].

Observe also that the sublevel sets 
r � {z : �(z) < r} satisfy :

∃ κ0 > 0 such that 
r ⊆ 
r+κ0 for r large enough.

Now fix a decreasing sequence {uj } of continuous plurisubharmonic func-
tions on X converging to �. Fix a compact set K and ε > 0. Choose an r so
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large that
( r+κ0− ε

2
r

− 1
)

maxξ∈K �(ξ) � ε
2 . There exists an j0 such that for

j � j0 on 
r, uj � r + κ0 and uj |K � ε
2 . Hence on 
r :

uj − ε
2

r + κ0 − ε
2

≤ ω∗(K, 
r) = 1

r
�.

where ω∗ is the corresponding P-measure (see section 2). It follows that on K,

0 � uj − � �
(

r + κ − ε
2

r
− 1

)
max
ξ∈K

�(ξ) + ε

2
≤ ε for j � j0.

Hence the convergence is uniform on K . So � is continuous.
⇐: In the proof of this implication will use the above mentioned theorem

of D. Vogt. However, first we wish bring to light a particular 
-type condition
for O(X) provided by a given plurisubharmonic exhaustion function (see also
[37]). For this part of the argument, one does not need parabolicity. To stress
this point we will summarize our findings separately, in the below Proposition.

Let X be a Stein manifold and � : X → [−∞, ∞) a plurisubharmonic
function that is an exhaustion. Set Dt = (x | �(x) < t) for t ∈ R. Choose an
increasing function � so that for each t ∈ R, Dt ⊂ D�(t). We fix a volume form
dμ on X and using the notation of Lemma 1 [3], we let dε = cdμ where c is
the strictly positive continuous function that appears in Lemma 1 of [3]. Set;

Ut =
{
f ∈ O(X) :

∫
Dt

|f |2dε � 1

}
.

Fix positive numbers s1, s2, s such that �(0) < s1 � �(s1) � s2 � �(s2) � s

and L � 0. Let

�L(z) �

⎧⎨
⎩

0 if �(z) � 0

L�(z)

s
otherwise.

Consider an analytic function f ∈ Us2 . Using Lemma 1 of [3], we choose
a decomposition of f on W+ ∩ W−, f = f+ − f−, with f± ∈ O(W±),
W+ = (Ds1)

c, W− = Ds2 , and such that the estimates∫
W±

|f±|2e−�L dε � K

∫
W+∩W−

|f |2e−�L dμ

hold with K = K(X, s1, s2, s, �) > 0. On the other hand, since f ∈ Us2 ,∫
W+∩W−

|f |2e−�L dμ ≤ C

∫
W+∩W−

|f |2e−�L dε � Ce− Ls1
s for some C > 0.
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Hence ∫
W±

|f±|2e−�L dε � C1e
− Ls1

s for some C1 > 0.

Now since �L is zero on D0 we have,∫
D0

|f−|2 dε =
∫

D0

|f−|2e−�L dε ≤
∫

W−
|f−|2e−�L dε ≤ C1e

− Ls1
s

and ∫
W−

|f − f−|2 dε � C2e
L(s−s1)

s .

Set

G =
{

f+ on W+

f − f− on W−

Clearly G ∈ O(X), and,∫
Ds

|G|2 dε �
∫

Ds∩W+
|G|2e−�Le�L dε +

∫
W−

|G|2 dε

� C3
(
e

L(s−s1)

s + e
L(s−s1)

s

)
� C4e

L(s−s1)

s .

Moreover∫
D0

|G − f |2 dε =
∫

D0

|f−|2 dε =
∫

D0

|f−|2e−�L dε � C1e
− Ls1

s .

Hence we obtain:

Us2 ⊆ Ce− Ls1
s U0 + Ce

L(s−s1)

s Us

for some constant C > 0 which does not depend upon L.
Set t � 1 − s1

s
, and r = eL(1−t)−log C . Varying the parameter L, a short

computation yields

∃ C > 0 such that: Us2 ⊆ 1

r
U0 + Cr

t
1−t Us for all r ∈ [1, ∞] .

Since the above inclusion obviously holds for 0 < r � 1, and writing the
value of t we have:

∃ D > 0 such that: Us2 ⊆ D

r
U0 + r

s
s1

r
Us for all r ∈ (0, ∞).
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This is an 
-type condition introduced by Vogt and Wagner [33]. In terms of
the “dual norms” this condition can we expressed as (see [33]):

(8) ∃C > 0 such that ‖x∗‖∗
s2

� C(|||x∗|||∗0)1− s1
s (|||x∗|||∗s )

s1
s , ∀x∗ ∈ O(X)∗,

where |||x∗|||∗t � sup{|x∗(f )| : f ∈ O(X), |||f |||t � 1}, x∗ ∈ O(X)∗, t ∈ R

and |||f |||t = (∫
Dt

|f |2 dε
) 1

2 .
We collect our findings, with the above notation, in:

Proposition 3.8. Let X be a Stein manifold and � a plurisubharmonic
function on X such that Dt � {z : �(z) < t} ⊂⊂ X, ∀ t ∈ R. If we have

(9) Ds0 ⊆ Ds1 ⊆ Ds1 ⊆ Ds2 ⊆ Ds2 ⊆ Ds

for some indexes s0 < s1 < s2 < s, then the Fréchet space O(X), with the
norms defined above, satisfies the following 
-condition:

(10) ∃ C > 0 : |||x∗|||∗s2
� C(|||x∗|||∗s0

)
s−s1
s−s0 (|||x∗|||∗s )

s1−s0
s−s0 , ∀ x∗ ∈ O(X)∗

Now we return to the proof of the theorem. Lets fix a continuous proper
plurisubharmonic function � on X that is maximal outside a compact set. We
can arrange things so that � is maximal outside a compact subset of D0, where
as usual Dt = {x : �(x) < t}. Since � is continuous, for a given k, by taking
s0 = k − 1 − 1

k−1 , s2 = k − 1
k
, s = k + 1 − 1

k+1 and choosing s1, s0 < s1 < s2,
so that s−s1

s−s0
� 1

2 , the above proposition gives

∀ k � 2 ∃ Ck > 0 : |||x∗|||∗
k− 1

k

≤ Ck

(|||x∗|||∗
k−1− 1

k−1

) 1
2
(|||x∗|||∗

k+1− 1
k+1

) 1
2 ,

∀ x∗ ∈ O(X)∗.

Hence O(X), with the grading |||f |||k = (∫
D

k− 1
k

|f |2 dε
) 1

2 , k = 1, 2, . . .

is an 
-space in standard form. On the other hand the grading ‖f ‖k =
supz∈Dk

|f (z)|, k = 0, 1, 2, . . . , on O(X), satisfies

‖f ‖2
k ≤ ‖f ‖k+1‖f ‖k−1

In fact for a non-constant analytic function f on X, and fixed k ∈ N , the
plurisubharmonic function

ρ(z) = 2
ln

( |f (z)|
‖f ‖k+1

)
ln

( ‖f ‖k+1

‖f ‖k−1

)
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is dominated by the maximal function � − (k + 1) on the boundary of the
region (z : k − 1 < �(z) < k + 1) and hence is dominated by it on the whole
region. Rewriting this domination on the level set � = k yields the desired
inequality.

Hence, O(X) with the grading ‖f ‖k = supDk
|f |, k = 0, 1, 2, . . . is a

(DN)-space in standard form.
Moreover for every k = 1, 2, . . . , there is a Kk > 0, such that |||f |||k ≤

Kk‖f ‖k and ‖f ‖k ≤ Kk|||f |||k+2. Now all the conditions of Vogt’s theorem
mentioned above, are satisfied with identity as the required surjection. It fol-
lows that O(X) is tamely isomorphic to an infinite type power space. This
finishes the proof of the theorem.

The theorem above associates to every special plurisubharmonic continu-
ous exhaustion function � on a S∗-parabolic Stein manifold X, an exponent
sequence (αm)m such that the spaces (O(X),‖∗‖k ) with grading coming from
the sup norms on the level sets of �, and �∞(αm) are tamely isomorphic. It
might be of interest to examine the exponent sequences (αm)∞m=0 obtained in
this way and see how they depend upon the special exhaustion function �.

To this end let X be a Stein manifold with a continuous plurisubharmonic
exhaustion function � that is maximal off a compact set that lies in the interior
of K0 = {z : �(z) ≤ 0}. We will choose a hilbertian grading (‖∗‖∧

k )k of

O(X) so that the Hilbert spaces Hk � (O(X),‖∗‖∧
k )

∞
k=0 satisfy the continuous

inclusions;

Hk ↪→ O(Dk) ↪→ A(K0) ↪→ H0, ∀ k = 1, 2, . . .

where Dk = (z : �(z) < k), and A(K0) is the germs of analytic functions on
K0 with the inductive topology. Moreover we also require that:

a) The tuple (H0, Hk) is admissible for the pair (K0, Dk) in the sense of
Zaharyuta [39], ∀ k ∈ N,

b) The theorem above is valid i.e. there is an infinite type power series space
�∞(α) so that (O(X),‖∗‖∧

k )∞k=0 is tamely isomorphic to �∞(α).

We will only use a special property of admissible pairs, so we will just refer
the reader to [40] for the definition, construction and a detailed discussion of
this notion. However we should mention that in our case we can take H0 to
be the closure in L2(X, ddc max(0, �))n), of the space of analytic functions
defined near K0, and Hk to be O(Dk) ∩ L2(dε) where dε is the measure that
appears in the proof of Theorem 2 ([40], [3]) and the existence of an infinite
type power series space satisfying the required property for this choice of
generating norms follows from the proof of the theorem given above. In what
follows, we will denote the corresponding graded space by (O(X),�).
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Since O(X), for a parabolic Stein manifold X of dimension n, is isomorphic
to �∞(m

1
n ), regardless of the special exhaustion function we have:

∃ C > 0 :
1

C
≤ lim inf

m

αm

m
1
n

≤ lim sup
m

αm

m
1
n

≤ C

for all exponent sequences (αm)∞m=0 such that O(X) and �∞(α) are iso-
morphic.

To proceed further we need the notion of a Kolmogorov diameter. For a
vector space L, let us denote the collection of all subspaces of Y ⊂ L with
dim Y ≤ m, by Lm, m = 1, 2, . . . .

Definition 3.9. Let (X,|∗|k ) be a graded Fréchet space with an increasing
sequence of seminorms. Let Ui = {x ∈ X : |x|i ≤ 1}, i = 1, 2, . . . . The mth

diameter of Ui with respect to Uj , i < j , is defined by

dm(Ui, Uj ) � inf{λ > 0 : ∃ Y ∈ Xm such that Ui ⊆ λUj + Y }.

Now fix a S∗-parabolic Stein manifold X and suppose that (O(X),�) and
�∞(αm) are tamely isomorphic under an isomorphism T . In particular there
exists an A > 0 such that,

∀ k ∃ C > 0 : ‖T (x)‖∧
k ≤ C|x|k+A and C‖T (x)‖∧

k+A � |x|k, ∀ x ∈ �∞(αm).

We will denote by Ui and Vi the unit balls corresponding to the i th norms
of (O(X),�) and �∞(αm) respectively.

Fix a k >> l large and suppose

Uk ⊆ λUl + L,

for some λ > 0 and L some m-dimensional subspace of O(X). Applying T −1

to both sides and using the tame continuity estimates we have:

1

C
Vk+A ⊆ T −1(Uk) ⊆ λT −1(Ul) + L′ ⊆ λCVl−A + L′, L′ � T −1(L).

Hence
dm(Vk+A, Vl−A) ≤ Cdm(Uk, Ul)

for all m, where the constant depends only on indices k and l.
Arguing in a similar fashion, we also have

dm(Uk+A, Ul−A) ≤ Cdm(Vk, Vl), ∀ m

It is a standard fact that dm(Vk, Vl) = e(l−k)αm for k >> l ([12]). On the
other hand our requirement of admissibility of the norms (‖∗‖∧

k )k gives, in
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view of a result of Nivoche-Poletsky-Zaharyuta (Theorem 5 of [40], see also,
[16]) the asymptotics

lim
m

− ln dm(Uk, Ul)

m
1
n

= 2π(n!)
1
n

(C(Dl, Dk))
1
n

, ∀ k >> l

where Ds = (z : �(z) < s) is as above, and C(Dl, Dk) is the Bedford-Taylor
capacity of the condenser (Dl, Dk) [8].

Putting all these things together we have:

lim inf
m

αm

m
1
n

� lim
m

[− ln dm(Uk, Ul)

m
1
n

( − ln C

(k − l + 2A)(− ln dm(Uk+A, Ul−A))

+ 1

(k − l + 2A)

)]
= 2π(n!)

1
n

(C(Dl, Dk))
1
n

· 1

(k − l + A)
.

lim sup
m

αm

m
1
n

≤ lim
m

[− ln dm(Uk+A, Ul−A)

m
1
n

(
ln C

(k − l)(− ln dm(Uk+A, Ul−A))

+ 1

(k − l)

)]
= 2π(n!)

1
n

(C(Dl−A, Dk+A))
1
n

· 1

(k − l)
.

On the other hand, since � is maximal off a compact set we can use the
function

ρ(z) = � − r

r − s

to compute the capacity of the condenser (Ds, Dr) for r � s large enough. To
be precise, in our case we get [8]:

C(Ds, Dr) = 1

(r − s)n

∫
X

(ddc�)n.

Taking this into account, we obtain:

lim
m

αm

m
1
n

= 2π(n!)
1
n

(∫
X

(ddc�)n
)− 1

n

.
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We collect our findings in the proposition below. As usual ‖∗‖K denote the
sup norm on a given compact set K .

Proposition 3.10. Let X be a S∗-parabolic Stein manifold of dimension n.
Fix a plurisubharmonic exhaustion function � on X that is maximal outside
a compact set. Then the exponent sequence (αm)n of the infinite type power
series space associated to X by Theorem 3.7 above satisfies:

lim
m

αm

m
1
n

= 2π(n!)
1
n

(∫
X

(ddc�)n
)− 1

n

Note that one can construct a new plurisubharmonic exhaustion function
that is again maximal off a compact set and with a prescribed positive right hand
side value in the equation above, by simply multiplying the given exhaustion
function with a positive constant. In particular we have:

Corollary 3.11. A Stein manifold X of dimension n is S∗-parabolic if and
only if there exists an exhaustion of X by connected, holomorphically convex
compact sets (Kk)

∞
k=1, Kk ⊂ (Kk+1)

◦, k = 1, 2, . . . , such that the graded
spaces (O(X),‖∗‖Kk ) is tamely isomorphic to (O(Cn),‖∗‖�k ), where �k is the
polydisc in Cn with radius k.

4. Some classes of parabolic manifolds

An immediate class of parabolic manifolds can be obtained by considering
Stein manifolds that admit a proper analytic surjection onto some Cn. Affine
algebraic manifolds belong to this class. Moreover such manifolds are S∗-
parabolic [30].

In this section we will look at some ways of generating parabolic manifolds
and give some nontrivial examples.

4.1. Complements of analytic multifunctions

Let A ⊂ Cn be a closed pluripolar set whose complement is pseudoconvex.
Such sets are called “analytic multifunctions” by some authors. They are stud-
ied extensively by various authors and are extremely important in approxim-
ation theory, in the theory of analytic continuation and in the description of
polynomial convex hulls (see [1], [9], [15], [17], [23], [27], [28], [36] and
others). These sets are removable for the class of bounded plurisubharmonic
functions defined on their complements. Hence their complements are para-
bolic Stein manifolds. We would like to restate Problem 2 given above in this
setting since we hope that it will be more tractable.

Problem 3. Let A be as above. Is X = Cn \ A, S-parabolic?
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In classical case, n = 1, every closed polar set A ⊂ C is analytic multi-
function. As is well-known, if K ⊂⊂ C is a closed polar set, then there exist a
subharmonic in C and harmonic in C \ K function u(z), such that u|K ≡ −∞
and u(z)−ln |z| → 0 as z → ∞. One can use such functions to construct a spe-
cial exhaustion function on C\A. To this end fix a z0 /∈ K � A∪{∞} an arbit-
rary point. Then there exist u(z) ∈ sh(C\{z0})∩har((C\K)\{z0}) : u|K ≡ −∞
and u(z) → +∞ as z → z0. Therefore, ρ(z) = −u(z) is exhaustion for
X = C \ A, with one singular point z0.

On the other hand if A = {p(z) = 0} ⊂ Cn is an algebraic set, then it is
easy to see that the function

ρ(z) � − 1

deg p
ln |p| + 2 ln |z|

is a special exhaustion function for Cn \ A [41].

Theorem 4.1. Let A = {(′z, zn) : F(′z, zn) = zk
n + f1(

′z)zk−1
n + · · · +

fk(
′z) = 0} be a Weierstrass polynomial (algebraiodal) set in Cn, where fj ∈

O(Cn−1) are entire functions, j = 1, 2, . . . , k, k � 1. Then X = Cn \ A is
S∗-parabolic.

Proof. We put

(11) ρ(z) = − ln |F(z)| + ln(|′z|2 + |F(z) − 1|2).
Then ρ(z) = −∞ precisely on the finite set Q = {′z = 0, F (′0, zn) = 1}.
Moreover, ρ is maximal, (ddcρ)n = 0 and continuous outside of A ∪ Q,
because − ln |F(z)| is pluriharmonic and ln(|′z|2 + |F(z) − 1|2) is maximal,
since for any holomorphic vector-function f = (f1, f2, . . . , fn) : f = 0 the
function ln ‖f ‖2 is a maximal psh function outside the zero set of f .

We will show, that ρ(z) is exhaustion on X = Cn \ A, i.e.

(12) {z : ρ(z) < R} ⊂⊂ X for every R ∈ R.

If F(z) = 0, then ρ(z) = +∞ + ln(|′z|2 + 1) = +∞, so that ρ|A =
+∞. The condition (12) is clear, if all fj , j = 0, 1, . . . , k, are constant
and so we assume that, at least one of them is not constant. Then MR =
max|′z|�R{|f1(

′z)|, . . . , |fk(
′z)|} → ∞. For |′z| = R � 1 and |zn| � M2

R we
have

ρ(z) = ln
|′z|2 + |F(z) − 1|2

|F(z)| � ln
|′z|2 + |F(z) − 1|2

1 + |F(z) − 1|

� ln
|′z|2 + |F(z) − 1|2
|′z| + |F(z) − 1| � ln

|′z| + |F(z) − 1|
2

� ln
R

2
.
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On the other hand on |′z| � R and |zn| = M2
R we have:

ρ(z) = ln
|′z|2 + |F(z) − 1|2

|F(z)|

� ln
(M2k

R − MRM2k−2
R − . . . − MR − 1)2

M2k
R + MRM2k−2

R + . . . + MR

= ln M2k
R (1 + αk),

where αk → 0 for R → ∞. It follows that ρ|∂UR
→ +∞ for R → ∞, where

UR = {(|′z| � R, |zn| � M2
R)}.

Let us now consider the level set DC = {z : ρ(z) < C}, C-constant. It
is an open set and it contains the pole set Q. If R is so big, that UR ⊃ Q

and min
{
ln R

2 , ln M2k
R (1 + αR)

}
� C, then DC ⊂⊂ UR , since DC has no any

component outside UR because of maximality of ρ on X \UR . This completes
the proof that ρ is an exhaustion function.

Corollary 4.2. The complement, Cn \�, of the graph � = {(′z, zn) ∈ Cn :
zn = f (′z)} of an entire function f is S∗-parabolic.

4.2. Manifolds, which admit an exhaustion function with small (ddc)n mass

Demailly [11] considered manifolds X which admit a continuous plurisubhar-
monic exhaustion function ϕ, with the property that,

(13) lim
r→∞

∫
Br

(ddcϕ)n

ln r
= 0,

where Br = {z : ϕ(z) < ln r}.
We note, that S∗-parabolic manifolds satisfy the condition (13). In fact, if

ρ(z) is special exhaustion function, then (ddcρ)n = 0 off a compact K ⊂⊂ X

so
∫
Br

(ddcρ)n = ∫
K
(ddcρ)n = const., r � r0. Hence, (13) holds.

If X has a continuous plurisubharmonic exhaustion function satisfying the
condition (13), then every bounded above plurisubharmonic function on X

is constant [11], so that this kind of manifolds are parabolic. In fact, a more
general result is also true.

Theorem 4.3. If on a Stein manifold X of dimension n, there exist a plur-
isubharmonic (not necessary continuous) exhaustion function ϕ that satisfies,

(14) lim inf
r→∞

∫
Br

(ddcϕ)n

[ln r]n
= 0,

then X is parabolic.
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Proof. Let’s assume that X satisfies the condition (14), but X is not para-
bolic. We take a sequence 1 < r1 < r2 < · · ·, rk → ∞, such that

(15) lim
r→∞

∫
Brk

(ddcϕ)n

[ln rk]n
= 0

Without loss of generality we can assume that the ball B1 = {z : ϕ(z) < 0} =
∅. Then according the Proposition 2.2 the P-measure ω∗(z, B1, Brk

) decreases
to ω∗(z, B1) = −1 as k → ∞. The function ω∗(z, B1) is maximal, that is
(ddcω∗)n = 0 in X\B1 and is equal −1 on B1. Hence, by comparison principle
of Bedford-Taylor [8] we have:∫

Brk

[ddcω∗(z, B1, Brk
)]n =

∫
B1

[ddcω∗(z, B1, Brk
)]n

�
∫

B1

[ddcω∗(z, B1)]
n = α > 0.

However, if we apply again the comparison principle to ω∗(z, B1, Brk
) and

w(z) = ϕ(z) − ln rk

ln rk

,

then

1

(ln rk)n

∫
Brk

[ddcϕ(z)]n =
∫

Brk

[ddcw(z)]n

�
∫

Brk

[ddcω∗(z, B1, Brk
)]n � α > 0.

This contradiction proves the theorem.

4.3. Sibony-Wong manifolds

We next consider an important class of Stein manifolds (analytic sets) with the
Liouville property, which were introduced by Sibony-Wong [26]. To describe
these spaces we need to introduce some notation. For an n dimensional closed
subvariety X of CN

w let us denote, as usual, by σ , the restriction of ln |w| on X.
Denoting the intersection of the r-ball in CN with X by Br = {z ∈ X : σ(z) <

ln r} we can describe Sibony-Wong class as those X′s, such that

lim
r→∞

vol(Br)

ln r
< ∞,
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where the projective volume, vol(Br) is equal to H2n(Br )

r2n , H2n-the Hausdorff
measure (R2n-volume) of Br . Sibony and Wong showed that on such spaces
any bounded holomorphic function is constant.

When n = 1, a special case of a result by Takegoshi [31] states that if

sup
r

vol(Br)

g(r)
< ∞,

where g : R+ → R+ is a nondecreasing continuous function such that∫ ∞

0

dr

g(r)
= ∞,

then every negative smooth subharmonic function on X reduces to a constant,
i.e. X is parabolic.

The proof of this proposition is based on the following estimation:

v(r)2 ≤ Cg(r)
d

dr
(v(r)), ∀ v ∈ sh(X) ∩ C1(X),

where v(r) = ∫
Br

dv ∧ dcv and C > 0 is a constant. We note that if v is an
arbitrary subharmonic function we can approximate it by smooth subharmonic
functions vj ↓ v, we conclude that the above expression is also valid for
arbitrary subharmonic functions and hence the proof given in [31] shows that
such an X is parabolic. Taking g(r) = ln r , we see that 1-dimensional Sibony-
Wong manifolds are parabolic.

For n > 1, taking into account that vol(Br) = ∫
Br

(ddcσ )n, by Wirtinger’s
theorem, we can deduce from Theorem 4.3 above that X is parabolic. Summar-
izing, we conclude that Sibony-Wong manifolds are parabolic for any n ∈ N.

In connection with Problem 2 of Section 2 it will be of interest to investigate
S∗-parabolicity of Sibony-Wong manifolds. Affine algebraic manifolds are
among this class since their projective volume is finite. Moreover they are
S∗-parabolic as we have already seen. On the other hand special exhaustion
functions for S∗-parabolic Sibony-Wong manifolds other than the algebraic
ones can not be asymptotically bigger than σ(z) = ln |z| restricted to X.

Theorem 4.4. Let X ⊂ CN be a closed submanifold and ρ(z) a special
exhaustion function on it. If

lim
ρ(z)

σ (z)
� α > 0,

then X is an affine-algebraic set in CN .
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Proof. Taking Cρ instead ρ, if it is necessary, we can assume that, there
is some compact K ⊂⊂ X such, that

ρ(z)

σ (z)
� 1, z ∈ X \ K.

Let supK ρ(z) = r0. Then Br = {z ∈ X : ρ(z) < ln r}, r > r0, is not empty
and open. Hence, the closure Br is not pluripolar. Therefore, the extremal
Green function

Vρ(z, Br) = sup{u(z) ∈ psh(X) : u|Br
� 0, u(z) � Cu + ρ(z) ∀ z ∈ X}

is locally bounded on X (see [41]). In the other hand, since ρ(z) � σ(z)

outside of compact K , then

V (z, Br) � Vρ(z, Br), where V (z, Br) = Vσ (w, Br)|X,

Vσ (w, Br) = sup{u(w) ∈ psh(CN) : u|Br
� 0, u(w) � Cu + ln |w|}.

But the extremal function V (z, Br) is locally bounded on X if and only if X

affine-algebraic ([20], [21]). This completes the proof.

Remark 1. Stoll in [30] introduced and studied analytic sets, for which the
solution of the equation (in the notation of the above section),

ddcωR ∧ � = 0, ωR|∂B0 = −1, ωR|∂BR
= 0,

has the parabolic property, that ωR → −1, for R ↗ ∞, where � is close,
positive (n − 1, n − 1) form. Atakhanov [2] called this kind of sets “parabolic
type” and proved that the sets which satisfy

lim
r→∞

vol(Br)

ln r
= 0

are of this type. Moreover, he constructed Nevanlinna’s equidistribution theory
for holomorphic maps f : X → P m. In particular, on this kind of sets theorems
of Picard, Nevanlinna, Valiron on defect hyperplanes are true.

Remark 2. In the literature there exists quite a number of Liouville-type
theorems for specific complex manifolds. However the property that every
bounded analytic function reduces to a constant need not imply parabolicity,
as is well known to people working in classification theory of open Riemann
surfaces. The simple example below illustrates this point.

Example. Choose, on complex plane Cz1 a subharmonic function u with the
property that {z : u(z1) = −∞} = {

0, 1, 1
2 , 1

3 , . . .
}
. Let w(z1, z2) = u(z1) +
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ln |z2|. Then w ∈ psh(C2), and the component D of {(z1, z2) ∈ C2 : w(z1, z2)<

0} containing the origin, being pseudoconvex, is a Stein manifold. Any bounded
holomorphic function on it is constant by the Liouville’s theorem. However,
the plurisubharmonic function w(z1, z2) = const. and is bounded from above
i.e. D is not parabolic.
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