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ON α-SHORT MODULES

M. DAVOUDIAN, O. A. S. KARAMZADEH and N. SHIRALI

Abstract
We introduce and study the concept of α-short modules (a 0-short module is just a short module,
i.e., for each submodule N of a module M , either N or M

N
is Noetherian). Using this concept

we extend some of the basic results of short modules to α-short modules. In particular, we show
that if M is an α-short module, where α is a countable ordinal, then every submodule of M is
countably generated. We observe that if M is an α-short module then the Noetherian dimension
of M is either α or α + 1. In particular, if R is a semiprime ring, then R is α-short as an R-module
if and only if its Noetherian dimension is α.

1. α-short modules and α-almost Noetherian modules

Lemonnier [21], introduced the concept of deviation and codeviation of an
arbitrary poset, which in particular, when applied to the lattice of all submod-
ules of a module MR give the concepts of Krull dimension (in the sense of
Rentschler and Gabriel, see [19], [10]) and dual Krull dimension of M , re-
spectively. Later, Chambless in [8] undertook a systematic study of the notion
of dual Krull dimension and called it N -dimension. The second author also
extensively studied the latter dimension in his Ph.D. thesis [13] and called it
Noetherian dimension. Kirby in [20] calls it Noetherian dimension too, but
Roberts in [22] calls this dual dimension again Krull-dimension. The latter
dimension is also called dual Krull dimension in some other articles, see for
example , [1], [2], [3] and [4]. In this article, all rings are associative with
1 �= 0, and all modules are unital right modules. If M is an R-module, by
n-dim M , k-dim M we mean the Noetherian dimension and the Krull dimen-
sion of M over R, respectively. It is convenient, when we are dealing with the
latter dimensions, to begin our list of ordinals with −1.

Bilhan and Smith in [7], introduced short modules. They show that short
modules are countably generated. We shall call an R-module M to be α-short,
if for each submodule N of M , either n-dim N � α or n-dim M

N
� α and α is

the least ordinal number with this property. Using this concept, we observe that
each α-short module M is either with n-dim M = α or n-dim M = α+1. Con-
sequently, if M is a short module, then either M is Noetherian or n-dim M = 1,
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a fact which seems to have been overlooked in [7]. By applying the previous
facts we prove more general results and obtain every single result in [7] as a
consequence of our results. For example, we show that every submodule of
an α-short module M , where α is countable, is countably generated, which is
much stronger than the fact that every short module is countably generated,
see [18, Corollary 1.2]. If an R-module M has Noetherian dimension and
α is an ordinal number, then M is called α-conotable if n-dim M = α and
n-dim N < α for all proper submodules N of M . An R-module M is called
conotable if M is α-conotable for some ordinal α (note, conotable modules
are also called atomic, dual critical and N -critical in some other articles, see
for example [16], [20], [3] and [8]). For all concepts and basic properties of
rings and modules which are not defined in this paper, we refer the reader to
[6], [10], [18].

We recall that an R-module M is called a short module if for each submodule
N of M , either N or M

N
is Noetherian, see [7]. In this section we introduce and

study α-short and α-almost Noetherian modules. We extend some of the basic
results of short (resp. almost Noetherian) modules to α-short (resp. α-almost
Noethereian) modules.

Next, we give our definition of α-short modules.

Definition 1.1. An R-module M is called α-short, if for each submodule
N of M , either n-dim N � α or n-dim M

N
� α and α is the least ordinal number

with this property.

Clearly each 0-short module is just a short module.

Remark 1.2. If M is an R-module with n-dim M = α, then M is β-short
for some β � α.

Remark 1.3. If M is an α-short module, then each submodule and each
factor module of M is β-short for some β � α.

We need the following result which is also in [14].

Lemma 1.4. If M is an R-module and for each submodule N of M , either
N or M

N
has Noetherian dimension, then so does M .

Proof. Let M1 ⊆ M2 ⊆ · · · be any ascending chain of submodules of M .
If there exists some i such that M

Mi
has Noetherian dimension, then each Mk+1

Mk

has Noetherian dimension for k � i. Otherwise Mi has Noetherian dimension
for each i. Thus there exists some integer k such that in any case each Mi+1

Mi

has Noetherian dimension for each i � k. Consequently M has Noetherian
dimension.

The previous result and Remark 1.2, immediately yield the next result.
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Corollary 1.5. Let M be an α-short module. Then M has Noetherian
dimension and n-dim M � α.

We recall that an R-module M is called almost Noetherian if every proper
submodule of M is finitely generated, see [7]. It is trivial to see that every almost
Noetherian R-module is either Noetherian or 1-conotable. In the following
definition we consider a related concept.

Definition 1.6. An R-module M is called α-almost Noetherian, if for each
proper submodule N of M , n-dim N < α and α is the least ordinal number
with this property.

Clearly each α-almost Noetherian module M , where α = 0, 1, is almost
Noetherian (note, in fact if α = 0 then M is simple, i.e., it is 0-conotable and
if α = 1 then it is either Noetherian or 1-conotable). It is also manifest that
if M is an α-almost Noetherian module, then each submodule and each factor
module of M is β-almost Noetherian for some β � α.

The next three trivial, but useful facts, are needed.

Lemma 1.7. If M is an α-almost Noetherian module, then M has Noetherian
dimension and n-dim M � α. In particular, n-dim M = α if and only if M is
α-conotable.

Lemma 1.8. If M is a module with n-dim M = α, then either M is α-
conotable, in which case it is α-almost Noetherian, or it is α + 1-almost
Noetherian.

Lemma 1.9. If M is an α-almost Noetherian module, then either M is α-
conotable or α = n-dim M + 1. In particular, if M is an α-almost Noetherian
module, where α is a limit ordinal, then M is α-conotable.

The following is now immediate.

Proposition 1.10. An R-module M has Noetherian dimension if and only
if M is α-short (resp. α-almost Noetherian) for some ordinal α.

The following, which is also evident, is stronger than [7, Lemma 1.9].

Corollary 1.11. Every α-short (resp. α-almost Noetherian) module has
finite uniform dimension.

Proposition 1.12. If M is an α-short R-module, then either n-dim M = α

or n-dim M = α + 1.

Proof. Clearly in view of Remark 1.2, Corollary 1.5, we have n-dim M �
α. If n-dim M �= α, then n-dim M � α + 1. Now let M1 ⊆ M2 ⊆ · · · be
any ascending chain of submodules of M . If there exists some k such that
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n-dim M
Mk

� α, then n-dim Mi+1

Mi
� n-dim M

Mi
= n-dim M/Mk

Mi/Mk
� n-dim M

Mk
� α

for each i � k. Otherwise n-dim Mi � α (note, M is α-short) for each i,
hence n-dim Mi+1

Mi
� α for each i. Thus in any case there exists an integer k

such that for each i � k, n-dim Mi+1

Mi
� α. This shows that n-dim M � α + 1,

i.e., n-dim M = α + 1.

Corollary 1.13. If M is a short module, then either n-dim M = 1 or M

is Noetherian.

In view of Proposition 1.12, the following remark is now evident.

Remark 1.14. IfM is aβ-shortR-module, then it is anα-almost Noetherian
module such that β � α � β + 2. We claim that all the cases in the latter
inequality can occur. To see this, we note that every 1-conotable module is 0-
short which is also 1-almost Noetherian and every α-conotable module, where
α is a limit ordinal, is an α-short module which is also α-almost Noetherian
(note, for every ordinal α, there exists an α-conotable module, see the comment
at the end of this section). Finally, there exists a 2-almost Noetherian module
which is 0-short, see Example 2.11.

Remark 1.15. An R-module M is −1-short if and only if it is simple.
Thus any −1-short module is 0-conotable and 0-critical (note, an R-module
M is called α-critical, if k-dim M = α and k-dim M

N
< α for all nonzero

submodules N of M).

Proposition 1.16. Let M be an R-module, with n-dim M = α, where α is
a limit ordinal. Then M is α-short.

Proof. We know that M is β-short for some β � α. If β < α, then by
Proposition 1.12, n-dim M � β + 1 < α, which is a contradiction. Thus M is
α-short.

Proposition 1.17. Let M be an R-module and n-dim M = α = β + 1.
Then M is either α-short or it is β-short.

Proof. We know that M is γ -short for some γ � α. If γ < β then by
Proposition 1.12, we have n-dim M � γ + 1 < β + 1, which is impossible.
Hence we are done.

For the conotable modules we have the following proposition.

Proposition 1.18. Let M be an α-conotable R-module, where α = β + 1,
then M is a β-short module.

Proof. Let N � M , therefore n-dim N < α. Thus n-dim N � β. This
shows that for some β ′ � β, M is β ′-short. If β ′ < β, then β ′ + 1 � β < α.
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But n-dim M � β ′+1 � β < α, by Proposition 1.12, which is a contradiction.
Thus β ′ = β and we are done.

The following remark, which is a trivial consequence of the previous fact,
shows that the converse of Proposition 1.16, is not true in general.

Remark 1.19. Let M be an α + 1-conotable R-module, where α is a limit
ordinal. Then M is an α-short module but n-dim M �= α.

Proposition 1.20. Let M be an R-module such that n-dim M = α + 1.
Then M is either an α-short R-module or there exists a submodule N of M

such that n-dim N = n-dim M
N

= α + 1.

Proof. We know that M is α-short or an α + 1-short R-module, by Pro-
position 1.17. Let us assume that M is not an α-short R-module, hence there
exists a submodule N of M such that n-dim N � α +1 and n-dim M

N
� α +1.

This shows that n-dim N = α + 1 and n-dim M
N

= α + 1 and we are through.

The next proposition is a generalization of [7, Proposion 1.8].

Proposition 1.21. Let M be a nonzero α-short R-module. Then either M is
β-almost Noetherian for some ordinal β � α + 1 or there exists a submodule
N of M with n-dim M

N
� α.

Proof. Suppose that M is not β-almost Noetherian for any β � α + 1.
This means that there must exist a submodule N of M such that n-dim N � α.
Inasmuch as M is α-short, we infer that n-dim M

N
� α and we are done.

Finally we conclude this section by providing some examples of α-almost
Noetherian (resp. α-short) modules, where α is any ordinal.

First, we recall that if M is an Artinian R-module with n-dim M = α, then
for any ordinal β � α there exists a β-conotable R-submodule of M , see the
comment which follows [18, Proposition 1.11]. We should remind the reader
that the latter fact is much stronger than [7, Proposition 1.1]. We also recall that
given any ordinal α there exists an Artinian module M such that n-dim M = α,
see [17, Example 1] and [9]. Consequently, we may take M to be an Artinan
module with n-dim M = α and for any ordinal β � α, we take N to be its β-
conotable submodule, then by Lemma 1.8, N is β-almost Noetherian module.
We recall that the only α-almost Noetherian modules, where α is a limit ordinal,
are α-conotable modules, see Lemma 1.9. Therefore to see an example of an
α-almost Noetherian module which is not α-conotable, the ordinal α must
be a non-limit ordinal. Thus we may take M to be a non-conotable module
with n-dim M = β, where α = β + 1, see [17, Example 1], hence it follows
trivially that M is an α-almost Noetherian module. As for examples of α-
short modules, one can similarly use the facts that there are Artinian modules
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M with Noetherian dimension equal to α and for each β � α there are β-
conotable submodules of M and then apply Propositions 1.16, 1.17, 1.18, to
give various examples of α-short modules (for example, by Proposition 1.18,
every α + 1-conotable module is α-short).

2. Properties of α-short modules and α-almost Noetherian modules

In this section some properties of α-short modules, α-almost Noetherian mod-
ules over an arbitrary ring R are investigated.

The following is an extension of [7, Proposition 2.4] in the case α = 0.

Proposition 2.1. If M is an α-short (resp. α-almost Noetherian) mod-
ule, where α is a countable ordinal, then every submodule of M is countably
generated.

Proof. Clearly n-dim M = α or n-dim M = α + 1 (resp. n-dim M � α),
by Proposition 1.12 (resp. Lemma 1.7). But we know that every module
with countable Noetherian dimension is countably generated, see [18, Co-
rollary 1.8], hence we are through.

Corollary 2.2. Short modules are countably generated.

The following lemma is an extension of [7, Lemma 1.4].

Lemma 2.3. Let R be a ring, if K is a submodule of an R-module M such
that n-dim K � α and M

K
is an α-short R-module. Then M is α-short.

Proof. Let N be a submodule of M , then n-dim N ∩K � α. If n-dim N
N∩K

� α, thenn-dim N � α. Now suppose thatn-dim N
N∩K

> α, then N+K
K

is a sub-
module of the α-short module M

K
such that n-dim N+K

K
> α. Therefore we must

have n-dim M/K

N+K/K
= n-dim M

N+K
� α. But n-dim N+K

N
= n-dim K

N∩K
�

n-dim K � α, hence n-dim M
N

= sup
{
n-dim N+K

N
, n-dim M

N+K

}
� α. This

implies that M is β-short for some β � α. But M
K

is α-short, hence by Re-
mark 1.3, we must also have α � β and we are done.

The following is an extension of [7, Lemma 1.6]. It is also the dual of the
previous lemma.

Lemma 2.4. Let R be a ring, if K is a submodule of an R-module M such
that K is an α-short R-module and n-dim M

K
� α. Then M is α-short.

Proof. Let N be any submodule of M . Then n-dim N+K
K

� n-dim M
K

� α.
Hence n-dim N

N∩K
� α. If n-dim N∩K � α, then n-dim N � α. Now suppose
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that n-dim N ∩ K > α. Since K is α-short, we infer that n-dim K
K∩N

� α and
hence n-dim M

N∩K
= sup

{
n-dim K

N∩K
, n-dim M

K

}
� α. But

n-dim
M

N ∩ K
= sup

{
n-dim

N

N ∩ K
, n-dim

M

N

}
� α.

Therefore n-dim M
N

� α. This shows that M is β-short for some β � α. But
K is α-short, hence β ≮ α, i.e., β = α and we are done.

Corollary 2.5. Let R be a ring and M be an R-module. If M = M1
⊕

M2

such that M1 is an α-short module and n-dim M2 � α, then M is α-short.

We note that the Z-module Z is Noetherian and the Z-module ZP ∞ is a 0-short
module. By the previous corollary , Zp∞ ⊕Z is a 0-short module. It is also clear
that Zp∞ ⊕ Z is not Noetherian.

The following proposition is an extension of [7, Theorem 1.11].

Proposition 2.6. Let R be a ring and M be an R-module containing sub-
modules L ⊆ N such that N

L
is α-short, n-dim M

N
� α, and n-dim L � α.

Then M is α-short.

Proof. Since N
L

is α-short and n-dim L � α, then N is α-short, by Lem-
ma 2.3. But n-dim M

N
� α and since N is α-short, M is α-short, by Lemma 2.4.

The next two results are now in order.

Proposition 2.7. Let R be a ring and M be a nonzero α-short module,
which is not a conotable module, then M contains a submodule L such that
n-dim M

L
� α.

Proof. Since M is not conotable, we infer that there exists a submodule L�
M , such that n-dim L = n-dim M . We know that n-dim M = α or n-dim M =
α + 1, by Proposition1.12. If n-dim M = α it is clear that n-dim M

L
� α.

Hence we may suppose that n-dim L = n-dim M = α + 1. Consequently,
n-dim M

L
� α and we are done.

Proposition 2.8. Let N be a submodule of an R-module M such that N

is α-short and M
N

is β-short. Let μ = sup{α, β}, then M is γ -short such that
μ � γ � μ + 1.

Proof. Since N is α-short, thus by Proposition1.12, n-dim N = α or
n-dim N = α + 1. Similarly since M

N
is β-short, n-dim M

N
= β or n-dim M

N
=

β+1. We infer that M has Noetherian dimension and n-dim M= sup
{
n-dim N,

n-dim M
N

}
. Therefore μ � n-dim M � μ+1. But by Remark 1.2, M is γ -short

for some ordinal number γ and by Proposition 1.12, γ � n-dim M � γ + 1.
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This shows that γ = μ, or γ = μ + 1 (note, we always have μ � γ ) and we
are done.

Using Lemma 1.9, we give the next immediate result which is the counter-
part of the previous proposition for α-almost Noetherian modules.

Proposition 2.9. Let N be a submodule of an R-module M such that N is
α-almost Noetherian and M

N
is β-almost Noetherian. Let μ = sup{α, β}, then

M is γ -almost Noetherian such that μ � γ � μ + 1.

Corollary 2.10. Let R be a ring. If M1 is an α1-short (resp. α1-almost
Noetherian) R-module and M2 is an α2-short (resp. α2- almost Noetherian)
R-module and let α = sup{α1, α2}. Then M1 ⊕M2 is μ-short (resp. μ- almost
Noetherian) for some ordinal number μ such that α � μ � α + 1.

The next example shows that in the previous corollary we may have all the
cases for μ.

Example 2.11. If M1 = M2 = Z, then M1 and M2 are 0-short (resp. 1-
almost Noetherian) Z-modules such that M1 ⊕ M2 is also 0-short (resp. 1-
almost Noetherian). Now let M1 = M2 = Zp∞ . In this case the Z-module ZP ∞

is 0-short (resp. 1-almost Noetherian), but the Z-module ZP ∞ ⊕ ZP ∞ is 1-short
(resp. 2-almost Noetherian). We should also note that Zp∞ ⊕ Z is a 0-short
Z-module which is 2-almost Noetherian.

Theorem 2.12. Let M be a nonzero R-module and α be an ordinal number.
Let every proper factor module of M be γ -short for some ordinal number
γ � α. If α = −1, then M is also μ-short for some μ � 0. If not, then M is
μ-short where μ � α. Moreover, n-dim M � α + 1.

Proof. If α = −1, then each proper nonzero submodule of M is both a
maximal and a simple submodule ofM , i.e., n-dim M = 0. Hence let us assume
that α � 0. Now let 0 �= N ⊆ M be any submodule such that M

N
is γ -short for

some ordinal number γ with γ � α. We infer that n-dim M
N

� γ + 1 � α + 1,
by Proposition 1.12. But we know that n-dim M = sup

{
n-dim M

N
: N �= 0

}
,

see [16, Proposition 1.4]. This shows that n-dim M � α + 1. If n-dim M � α,
then it is clear that M is μ-short for some μ � α. Hence we may suppose that
n-dim M = α + 1. If 0 �= N � M is a submodule of M , then we are to show
that either that n-dim M

N
� α or n-dim N � α. To this end, let us suppose that

n-dim M
N

= α + 1 and show that n-dim N � α. Now let 0 �= N ′ � N � M .

Since M
N ′ is γ -short for some γ � α, and n-dim M/N ′

N/N ′ = n-dim M
N

= α + 1, we

must have n-dim N
N ′ � α. But n-dim N = sup

{
n-dim N

N ′ : 0 �= N ′ ⊆ N
}

� α

and we are through. The final part has already been proved.
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Corollary 2.13. Let every proper factor module of M be 0-short (i.e.,
every proper factor module of M is a short module), then so is M .

Remark 2.14. If every proper factor module of an R-module M is −1-
short, then every proper submodule of M is both a maximal and a minimal
submodule of M , and vice versa.

The next result is the dual of Theorem 2.12.

Theorem 2.15. Let α be an ordinal number and M be an R-module. If
every proper submodule of M is γ -short for some ordinal number γ � α.
Then either n-dim M = α + 1 or M is μ-short for some ordinal number
μ � α. In particular, M is μ-short for some ordinal μ � α + 1.

Proof. Let N �M be any submodule. Since N is γ -short for some ordinal
number γ � α, we infer that n-dim N � γ + 1 � α + 1, by Proposition 1.12.
This immediately implies that n-dim M � α + 2, see [16, Proposition 1.4]. If
n-dim M � α+1 then we are through. Hence we may suppose that n-dim M =
α + 2 and M is not μ-short for any μ � α and seek a contradiction. Since
M is not μ-short for any μ � α, we infer that there must exist a submodule
N of M such that n-dim N � α + 1. But we have already observed that
n-dim N � α+1, hence n-dim N = α+1. We now claim that n-dim M

N
� α+1

which trivially implies that n-dim M = α + 1 and this is the contradiction that
we were looking for (note, n-dim M = α+2). To see this, we note that for any
proper submodule P of M containing N we must have n-dim P

N
� α, for P is

γ -short for some γ � α and n-dim P = α+1. But n-dim M
N

� sup
{
n-dim P

N
:

P
N

� M
N

} + 1 � α + 1, see [16, Proposition 1.4] and we are done. The final
part is now evident.

The following example shows that in the previous theorem we may have
μ = α + 1.

Example 2.16. Let M = A ⊕ B, where A and B are simple R-modules.
Clearly M is 0-short. We claim that every proper submodule P of M is −1-
short (i.e., P is simple). Since P � M and M is semisimple, there exists a
maximal submodule Q of M such that P ⊆ Q � M . Now we can not have
Q∩A �= 0 �= Q∩B, for otherwise Q ⊇ A and Q ⊇ B, hence Q = M , which
is absurd. Hence we may suppose that, Q∩A = 0, consequently M = Q⊕A,
which means that M

A
	 Q. But M

A
	 B, i.e., Q is simple, thus P = Q or

P = 0, and we are done.

The next immediate result is the counterparts of Theorems 2.12, 2.15, for
α-almost Noetherian modules.
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Proposition 2.17. Let M be an R-module and α be an ordinal number.
If each proper submodule N of M (resp. each proper factor module of M) is
γ -almost Noetherian with γ � α, then M is a μ-almost Noetherian module
with μ � α + 1, n-dim M � α + 1 (resp. with μ � α + 1, n-dim M � α).

The following proposition will raise the natural question, namely, for which
rings R, R is α-short if and only if n-dim R = α, or more generally, for which
R-modules M , M is α-short if and only if n-dim M = α.

Proposition 2.18. Let R be a semiprime ring. Then the right R-module R

is α-short if and only if n-dim R = α.

Proof. Let R be α-short as an R-module. We are to show that n-dim R =
α. If for each essential right ideal E of R, n-dim R

E
� α then n-dim R =

sup
{
n-dim R

E
: E ⊆e R

}
� α, see [16, Proposition 1.5]. Since R is α-

short we have n-dim R = α, by Proposition 1.12. Now suppose that there
exists an essential right ideal E′ of R such that n-dim R

E′ � α. Since R is
α-short, we infer that n-dim E′ � α. But R is a right Goldie ring, by [10,
Corollary 3.4]. Hence there exists a regular element c in E′, which implies
that n-dim R = n-dim cR � n-dim E′

R � α. Consequently, we must have
n-dim R = α, by Proposition 1.12. Conversely, by Remark 1.2, R is β-short
for some β � α. But by the first part of the proof, we must have n-dim R = β,
i.e., β = α and we are through.

Clearly every α-almost Noetherian (resp. α-short) module has Noetherian
dimension (i.e., it has Krull dimension, for by a nice result due to Lemonnier,
every module has Noetherian dimension if and only if it has Krull dimension,
see [21, Corollary 6]). Consequently, we have the following immediate result,
which is the counterpart of [7, Proposition 1.2].

Proposition 2.19. The following statements are equivalent for a ring R.

(1) Every R-module with Krull dimension is Noetherian.
(2) Every α-short R-module is Noetherian for all α.
(3) Every α-almost Noetherian R-module is Noetherian for all α.

We should remind the reader that the comment which follows [7, Proposi-
tion 1.2], trivially remains valid if we replace short modules in that comment
by α-short modules. Moreover, if R is a right perfect ring (i.e., every R-module
is a Loewy module) then every α-short (resp. α-almost Noetherian) R-module
is both Artinian and Noetherian, see [17, Proposition 2.1], which is stronger
than the fact that short modules are Noetherian over right perfect rings, see the
aforementioned comment in [7].

Before concluding this section with our last observation, let us cite the next
result which is in [17, Theorem 2.9], see also [11, Theorem 3.2].
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Theorem 2.20. For a commutative ring R the following statements are
equivalent.

(1) Every R-module with finite Noetherian dimension is Noetherian.
(2) Every Artinian R-module is Noetherian.
(3) Every R-module with Noetherian dimension is both Artinian and Noeth-

erian.

Now in view of the above theorem and the well-known fact that each domain
with Krull dimension 1 is Noetherian, see [10, Proposition 6.1] and also [18,
Corollary 2.15], we observe the following result which is much stronger than
[7, Proposition 1.3].

Proposition 2.21. The following statements are equivalent for a commut-
ative ring R.

(1) Every Artinian R-module is Noetherian.
(2) Every m-short module is both Artinian and Noetherian for all integers

m � −1.
(3) Every α-short module is both Artinian and Noetherian for all ordinals

α.
(4) Every m-almost Noetherian R-module is both Artinian and Noetherian

for all non-negative integers m.
(5) Every α-almost Noetherian R-module is both Artinian and Noetherian

for all ordinals α.
(6) No homomorphic image of R can be isomorphic to a dense subring of a

complete local domain of Krull dimension 1.

Proof. Only the proof of (5) → (6) → (1), which is an easy consequence
of [7, Proposition 1.3], is needed.
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