ON α -SHORT MODULES

M. DAVOUDIAN, O. A. S. KARAMZADEH and N. SHIRALI

Abstract

We introduce and study the concept of α -short modules (a 0-short module is just a short module, i.e., for each submodule *N* of a module *M*, either *N* or $\frac{M}{N}$ is Noetherian). Using this concept we extend some of the basic results of short modules to α -short modules. In particular, we show that if *M* is an α -short module, where α is a countable ordinal, then every submodule of *M* is countably generated. We observe that if *M* is an α -short module then the Noetherian dimension of *M* is either α or $\alpha + 1$. In particular, if *R* is a semiprime ring, then *R* is α -short as an *R*-module if and only if its Noetherian dimension is α .

1. α -short modules and α -almost Noetherian modules

Lemonnier [21], introduced the concept of deviation and codeviation of an arbitrary poset, which in particular, when applied to the lattice of all submodules of a module M_R give the concepts of Krull dimension (in the sense of Rentschler and Gabriel, see [19], [10]) and dual Krull dimension of M, respectively. Later, Chambless in [8] undertook a systematic study of the notion of dual Krull dimension and called it *N*-dimension. The second author also extensively studied the latter dimension in his Ph.D. thesis [13] and called it Noetherian dimension. Kirby in [20] calls it Noetherian dimension too, but Roberts in [22] calls this dual dimension again Krull-dimension. The latter dimension is also called dual Krull dimension in some other articles, see for example, [1], [2], [3] and [4]. In this article, all rings are associative with $1 \neq 0$, and all modules are unital right modules. If M is an R-module, by n-dim M, k-dim M we mean the Noetherian dimension and the Krull dimension of M over R, respectively. It is convenient, when we are dealing with the latter dimensions, to begin our list of ordinals with -1.

Bilhan and Smith in [7], introduced short modules. They show that short modules are countably generated. We shall call an *R*-module *M* to be α -short, if for each submodule *N* of *M*, either *n*-dim $N \leq \alpha$ or *n*-dim $\frac{M}{N} \leq \alpha$ and α is the least ordinal number with this property. Using this concept, we observe that each α -short module *M* is either with *n*-dim $M = \alpha$ or *n*-dim $M = \alpha + 1$. Consequently, if *M* is a short module, then either *M* is Noetherian or *n*-dim M = 1,

Received 13 October 2011, in final form 4 January 2012.

a fact which seems to have been overlooked in [7]. By applying the previous facts we prove more general results and obtain every single result in [7] as a consequence of our results. For example, we show that every submodule of an α -short module M, where α is countable, is countably generated, which is much stronger than the fact that every short module is countably generated, see [18, Corollary 1.2]. If an *R*-module *M* has Noetherian dimension and α is an ordinal number, then *M* is called α -conotable if *n*-dim $M = \alpha$ and *n*-dim $N < \alpha$ for all proper submodules *N* of *M*. An *R*-module *M* is called conotable if *M* is α -conotable for some ordinal α (note, conotable modules are also called atomic, dual critical and *N*-critical in some other articles, see for example [16], [20], [3] and [8]). For all concepts and basic properties of rings and modules which are not defined in this paper, we refer the reader to [6], [10], [18].

We recall that an *R*-module *M* is called a short module if for each submodule *N* of *M*, either *N* or $\frac{M}{N}$ is Noetherian, see [7]. In this section we introduce and study α -short and α -almost Noetherian modules. We extend some of the basic results of short (resp. almost Noetherian) modules to α -short (resp. α -almost Noetherian) modules.

Next, we give our definition of α -short modules.

DEFINITION 1.1. An *R*-module *M* is called α -short, if for each submodule *N* of *M*, either *n*-dim $N \leq \alpha$ or *n*-dim $\frac{M}{N} \leq \alpha$ and α is the least ordinal number with this property.

Clearly each 0-short module is just a short module.

REMARK 1.2. If *M* is an *R*-module with *n*-dim $M = \alpha$, then *M* is β -short for some $\beta \leq \alpha$.

REMARK 1.3. If *M* is an α -short module, then each submodule and each factor module of *M* is β -short for some $\beta \leq \alpha$.

We need the following result which is also in [14].

LEMMA 1.4. If M is an R-module and for each submodule N of M, either N or $\frac{M}{N}$ has Noetherian dimension, then so does M.

PROOF. Let $M_1 \subseteq M_2 \subseteq \cdots$ be any ascending chain of submodules of M. If there exists some i such that $\frac{M}{M_i}$ has Noetherian dimension, then each $\frac{M_{k+1}}{M_k}$ has Noetherian dimension for $k \ge i$. Otherwise M_i has Noetherian dimension for each i. Thus there exists some integer k such that in any case each $\frac{M_{i+1}}{M_i}$ has Noetherian dimension for each $i \ge k$. Consequently M has Noetherian dimension.

The previous result and Remark 1.2, immediately yield the next result.

COROLLARY 1.5. Let M be an α -short module. Then M has Noetherian dimension and n-dim $M \ge \alpha$.

We recall that an R-module M is called almost Noetherian if every proper submodule of M is finitely generated, see [7]. It is trivial to see that every almost Noetherian R-module is either Noetherian or 1-conotable. In the following definition we consider a related concept.

DEFINITION 1.6. An *R*-module *M* is called α -almost Noetherian, if for each proper submodule *N* of *M*, *n*-dim *N* < α and α is the least ordinal number with this property.

Clearly each α -almost Noetherian module M, where $\alpha = 0, 1$, is almost Noetherian (note, in fact if $\alpha = 0$ then M is simple, i.e., it is 0-conotable and if $\alpha = 1$ then it is either Noetherian or 1-conotable). It is also manifest that if M is an α -almost Noetherian module, then each submodule and each factor module of M is β -almost Noetherian for some $\beta \leq \alpha$.

The next three trivial, but useful facts, are needed.

LEMMA 1.7. If *M* is an α -almost Noetherian module, then *M* has Noetherian dimension and *n*-dim $M \leq \alpha$. In particular, *n*-dim $M = \alpha$ if and only if *M* is α -conotable.

LEMMA 1.8. If M is a module with n-dim $M = \alpha$, then either M is α conotable, in which case it is α -almost Noetherian, or it is $\alpha + 1$ -almost
Noetherian.

LEMMA 1.9. If M is an α -almost Noetherian module, then either M is α conotable or $\alpha = n$ -dim M + 1. In particular, if M is an α -almost Noetherian
module, where α is a limit ordinal, then M is α -conotable.

The following is now immediate.

PROPOSITION 1.10. An *R*-module *M* has Noetherian dimension if and only if *M* is α -short (resp. α -almost Noetherian) for some ordinal α .

The following, which is also evident, is stronger than [7, Lemma 1.9].

COROLLARY 1.11. Every α -short (resp. α -almost Noetherian) module has finite uniform dimension.

PROPOSITION 1.12. If M is an α -short R-module, then either n-dim $M = \alpha$ or n-dim $M = \alpha + 1$.

PROOF. Clearly in view of Remark 1.2, Corollary 1.5, we have *n*-dim $M \ge \alpha$. If *n*-dim $M \ne \alpha$, then *n*-dim $M \ge \alpha + 1$. Now let $M_1 \subseteq M_2 \subseteq \cdots$ be any ascending chain of submodules of M. If there exists some k such that

n-dim $\frac{M}{M_k} \leq \alpha$, then *n*-dim $\frac{M_{i+1}}{M_i} \leq n$ -dim $\frac{M}{M_i} = n$ -dim $\frac{M/M_k}{M_i/M_k} \leq n$ -dim $\frac{M}{M_k} \leq \alpha$ for each $i \geq k$. Otherwise *n*-dim $M_i \leq \alpha$ (note, *M* is α -short) for each *i*, hence *n*-dim $\frac{M_{i+1}}{M_i} \leq \alpha$ for each *i*. Thus in any case there exists an integer *k* such that for each $i \geq k$, *n*-dim $\frac{M_{i+1}}{M_i} \leq \alpha$. This shows that *n*-dim $M \leq \alpha + 1$, i.e., *n*-dim $M = \alpha + 1$.

COROLLARY 1.13. If M is a short module, then either n-dim M = 1 or M is Noetherian.

In view of Proposition 1.12, the following remark is now evident.

REMARK 1.14. If M is a β -short R-module, then it is an α -almost Noetherian module such that $\beta \leq \alpha \leq \beta + 2$. We claim that all the cases in the latter inequality can occur. To see this, we note that every 1-conotable module is 0short which is also 1-almost Noetherian and every α -conotable module, where α is a limit ordinal, is an α -short module which is also α -almost Noetherian (note, for every ordinal α , there exists an α -conotable module, see the comment at the end of this section). Finally, there exists a 2-almost Noetherian module which is 0-short, see Example 2.11.

REMARK 1.15. An *R*-module *M* is -1-short if and only if it is simple. Thus any -1-short module is 0-conotable and 0-critical (note, an *R*-module *M* is called α -critical, if *k*-dim $M = \alpha$ and *k*-dim $\frac{M}{N} < \alpha$ for all nonzero submodules *N* of *M*).

PROPOSITION 1.16. Let M be an R-module, with n-dim $M = \alpha$, where α is a limit ordinal. Then M is α -short.

PROOF. We know that *M* is β -short for some $\beta \leq \alpha$. If $\beta < \alpha$, then by Proposition 1.12, *n*-dim $M \leq \beta + 1 < \alpha$, which is a contradiction. Thus *M* is α -short.

PROPOSITION 1.17. Let M be an R-module and n-dim $M = \alpha = \beta + 1$. Then M is either α -short or it is β -short.

PROOF. We know that *M* is γ -short for some $\gamma \leq \alpha$. If $\gamma < \beta$ then by Proposition 1.12, we have *n*-dim $M \leq \gamma + 1 < \beta + 1$, which is impossible. Hence we are done.

For the conotable modules we have the following proposition.

PROPOSITION 1.18. Let M be an α -conotable R-module, where $\alpha = \beta + 1$, then M is a β -short module.

PROOF. Let $N \subsetneq M$, therefore $n \operatorname{-dim} N < \alpha$. Thus $n \operatorname{-dim} N \leqslant \beta$. This shows that for some $\beta' \leqslant \beta$, M is β' -short. If $\beta' < \beta$, then $\beta' + 1 \leqslant \beta < \alpha$.

But *n*-dim $M \leq \beta' + 1 \leq \beta < \alpha$, by Proposition 1.12, which is a contradiction. Thus $\beta' = \beta$ and we are done.

The following remark, which is a trivial consequence of the previous fact, shows that the converse of Proposition 1.16, is not true in general.

REMARK 1.19. Let *M* be an α + 1-conotable *R*-module, where α is a limit ordinal. Then *M* is an α -short module but *n*-dim $M \neq \alpha$.

PROPOSITION 1.20. Let *M* be an *R*-module such that *n*-dim $M = \alpha + 1$. Then *M* is either an α -short *R*-module or there exists a submodule *N* of *M* such that *n*-dim N = n-dim $\frac{M}{N} = \alpha + 1$.

PROOF. We know that *M* is α -short or an α + 1-short *R*-module, by Proposition 1.17. Let us assume that *M* is not an α -short *R*-module, hence there exists a submodule *N* of *M* such that *n*-dim $N \ge \alpha + 1$ and *n*-dim $\frac{M}{N} \ge \alpha + 1$. This shows that *n*-dim $N = \alpha + 1$ and *n*-dim $\frac{M}{N} = \alpha + 1$ and we are through.

The next proposition is a generalization of [7, Proposion 1.8].

PROPOSITION 1.21. Let M be a nonzero α -short R-module. Then either M is β -almost Noetherian for some ordinal $\beta \leq \alpha + 1$ or there exists a submodule N of M with n-dim $\frac{M}{N} \leq \alpha$.

PROOF. Suppose that *M* is not β -almost Noetherian for any $\beta \leq \alpha + 1$. This means that there must exist a submodule *N* of *M* such that *n*-dim $N \leq \alpha$. Inasmuch as *M* is α -short, we infer that *n*-dim $\frac{M}{N} \leq \alpha$ and we are done.

Finally we conclude this section by providing some examples of α -almost Noetherian (resp. α -short) modules, where α is any ordinal.

First, we recall that if *M* is an Artinian *R*-module with *n*-dim $M = \alpha$, then for any ordinal $\beta \leq \alpha$ there exists a β -conotable *R*-submodule of *M*, see the comment which follows [18, Proposition 1.11]. We should remind the reader that the latter fact is much stronger than [7, Proposition 1.1]. We also recall that given any ordinal α there exists an Artinian module *M* such that *n*-dim $M = \alpha$, see [17, Example 1] and [9]. Consequently, we may take *M* to be an Artinan module with *n*-dim $M = \alpha$ and for any ordinal $\beta \leq \alpha$, we take *N* to be its β conotable submodule, then by Lemma 1.8, *N* is β -almost Noetherian module. We recall that the only α -almost Noetherian modules, where α is a limit ordinal, are α -conotable modules, see Lemma 1.9. Therefore to see an example of an α -almost Noetherian module which is not α -conotable, the ordinal α must be a non-limit ordinal. Thus we may take *M* to be a non-conotable module with *n*-dim $M = \beta$, where $\alpha = \beta + 1$, see [17, Example 1], hence it follows trivially that *M* is an α -almost Noetherian module. As for examples of α short modules, one can similarly use the facts that there are Artinian modules *M* with Noetherian dimension equal to α and for each $\beta \leq \alpha$ there are β conotable submodules of *M* and then apply Propositions 1.16, 1.17, 1.18, to
give various examples of α -short modules (for example, by Proposition 1.18,
every α + 1-conotable module is α -short).

2. Properties of α-short modules and α-almost Noetherian modules

In this section some properties of α -short modules, α -almost Noetherian modules over an arbitrary ring *R* are investigated.

The following is an extension of [7, Proposition 2.4] in the case $\alpha = 0$.

PROPOSITION 2.1. If *M* is an α -short (resp. α -almost Noetherian) module, where α is a countable ordinal, then every submodule of *M* is countably generated.

PROOF. Clearly *n*-dim $M = \alpha$ or *n*-dim $M = \alpha + 1$ (resp. *n*-dim $M \leq \alpha$), by Proposition 1.12 (resp. Lemma 1.7). But we know that every module with countable Noetherian dimension is countably generated, see [18, Corollary 1.8], hence we are through.

COROLLARY 2.2. Short modules are countably generated.

The following lemma is an extension of [7, Lemma 1.4].

LEMMA 2.3. Let R be a ring, if K is a submodule of an R-module M such that n-dim $K \leq \alpha$ and $\frac{M}{K}$ is an α -short R-module. Then M is α -short.

PROOF. Let *N* be a submodule of *M*, then *n*-dim $N \cap K \leq \alpha$. If *n*-dim $\frac{N}{N \cap K} \leq \alpha$, then *n*-dim $N \leq \alpha$. Now suppose that *n*-dim $\frac{N}{N \cap K} > \alpha$, then $\frac{N+K}{K}$ is a submodule of the α -short module $\frac{M}{K}$ such that *n*-dim $\frac{N+K}{K} > \alpha$. Therefore we must have *n*-dim $\frac{M/K}{N+K/K} = n$ -dim $\frac{M}{N+K} \leq \alpha$. But *n*-dim $\frac{N+K}{N} = n$ -dim $\frac{K}{N \cap K} \leq n$ -dim $K \leq \alpha$, hence *n*-dim $\frac{M}{N} = \sup\{n$ -dim $\frac{N+K}{N}$, *n*-dim $\frac{M}{N+K}\} \leq \alpha$. This implies that *M* is β -short for some $\beta \leq \alpha$. But $\frac{M}{K}$ is α -short, hence by Remark 1.3, we must also have $\alpha \leq \beta$ and we are done.

The following is an extension of [7, Lemma 1.6]. It is also the dual of the previous lemma.

LEMMA 2.4. Let R be a ring, if K is a submodule of an R-module M such that K is an α -short R-module and n-dim $\frac{M}{K} \leq \alpha$. Then M is α -short.

PROOF. Let *N* be any submodule of *M*. Then *n*-dim $\frac{N+K}{K} \leq n$ -dim $\frac{M}{K} \leq \alpha$. Hence *n*-dim $\frac{N}{N\cap K} \leq \alpha$. If *n*-dim $N \cap K \leq \alpha$, then *n*-dim $N \leq \alpha$. Now suppose that $n - \dim N \cap K > \alpha$. Since K is α -short, we infer that $n - \dim \frac{K}{K \cap N} \leq \alpha$ and hence $n - \dim \frac{M}{N \cap K} = \sup \{n - \dim \frac{K}{N \cap K}, n - \dim \frac{M}{K}\} \leq \alpha$. But

$$n\operatorname{-dim} \frac{M}{N\cap K} = \sup\left\{n\operatorname{-dim} \frac{N}{N\cap K}, n\operatorname{-dim} \frac{M}{N}\right\} \leqslant \alpha.$$

Therefore *n*-dim $\frac{M}{N} \leq \alpha$. This shows that *M* is β -short for some $\beta \leq \alpha$. But *K* is α -short, hence $\beta \leq \alpha$, i.e., $\beta = \alpha$ and we are done.

COROLLARY 2.5. Let *R* be a ring and *M* be an *R*-module. If $M = M_1 \bigoplus M_2$ such that M_1 is an α -short module and *n*-dim $M_2 \leq \alpha$, then *M* is α -short.

We note that the Z-module Z is Noetherian and the Z-module $Z_{P^{\infty}}$ is a 0-short module. By the previous corollary, $Z_{P^{\infty}} \oplus Z$ is a 0-short module. It is also clear that $Z_{P^{\infty}} \oplus Z$ is not Noetherian.

The following proposition is an extension of [7, Theorem 1.11].

PROPOSITION 2.6. Let R be a ring and M be an R-module containing submodules $L \subseteq N$ such that $\frac{N}{L}$ is α -short, n-dim $\frac{M}{N} \leq \alpha$, and n-dim $L \leq \alpha$. Then M is α -short.

PROOF. Since $\frac{N}{L}$ is α -short and *n*-dim $L \leq \alpha$, then *N* is α -short, by Lemma 2.3. But *n*-dim $\frac{M}{N} \leq \alpha$ and since *N* is α -short, *M* is α -short, by Lemma 2.4.

The next two results are now in order.

PROPOSITION 2.7. Let *R* be a ring and *M* be a nonzero α -short module, which is not a conotable module, then *M* contains a submodule *L* such that n-dim $\frac{M}{L} \leq \alpha$.

PROOF. Since *M* is not conotable, we infer that there exists a submodule $L \subsetneq M$, such that *n*-dim L = n-dim *M*. We know that *n*-dim $M = \alpha$ or *n*-dim $M = \alpha + 1$, by Proposition 1.12. If *n*-dim $M = \alpha$ it is clear that *n*-dim $\frac{M}{L} \le \alpha$. Hence we may suppose that *n*-dim L = n-dim $M = \alpha + 1$. Consequently, *n*-dim $\frac{M}{L} \le \alpha$ and we are done.

PROPOSITION 2.8. Let N be a submodule of an R-module M such that N is α -short and $\frac{M}{N}$ is β -short. Let $\mu = \sup\{\alpha, \beta\}$, then M is γ -short such that $\mu \leq \gamma \leq \mu + 1$.

PROOF. Since *N* is α -short, thus by Proposition1.12, n-dim $N = \alpha$ or n-dim $N = \alpha + 1$. Similarly since $\frac{M}{N}$ is β -short, n-dim $\frac{M}{N} = \beta$ or n-dim $\frac{M}{N} = \beta + 1$. We infer that *M* has Noetherian dimension and n-dim $M = \sup\{n$ -dim N, n-dim $\frac{M}{N}\}$. Therefore $\mu \leq n$ -dim $M \leq \mu + 1$. But by Remark 1.2, M is γ -short for some ordinal number γ and by Proposition 1.12, $\gamma \leq n$ -dim $M \leq \gamma + 1$.

This shows that $\gamma = \mu$, or $\gamma = \mu + 1$ (note, we always have $\mu \leq \gamma$) and we are done.

Using Lemma 1.9, we give the next immediate result which is the counterpart of the previous proposition for α -almost Noetherian modules.

PROPOSITION 2.9. Let N be a submodule of an R-module M such that N is α -almost Noetherian and $\frac{M}{N}$ is β -almost Noetherian. Let $\mu = \sup\{\alpha, \beta\}$, then M is γ -almost Noetherian such that $\mu \leq \gamma \leq \mu + 1$.

COROLLARY 2.10. Let R be a ring. If M_1 is an α_1 -short (resp. α_1 -almost Noetherian) R-module and M_2 is an α_2 -short (resp. α_2 - almost Noetherian) R-module and let $\alpha = \sup\{\alpha_1, \alpha_2\}$. Then $M_1 \oplus M_2$ is μ -short (resp. μ - almost Noetherian) for some ordinal number μ such that $\alpha \leq \mu \leq \alpha + 1$.

The next example shows that in the previous corollary we may have all the cases for μ .

EXAMPLE 2.11. If $M_1 = M_2 = Z$, then M_1 and M_2 are 0-short (resp. 1almost Noetherian) Z-modules such that $M_1 \oplus M_2$ is also 0-short (resp. 1almost Noetherian). Now let $M_1 = M_2 = Z_{p^{\infty}}$. In this case the Z-module $Z_{P^{\infty}}$ is 0-short (resp. 1-almost Noetherian), but the Z-module $Z_{P^{\infty}} \oplus Z_{P^{\infty}}$ is 1-short (resp. 2-almost Noetherian). We should also note that $Z_{p^{\infty}} \oplus Z$ is a 0-short Z-module which is 2-almost Noetherian.

THEOREM 2.12. Let M be a nonzero R-module and α be an ordinal number. Let every proper factor module of M be γ -short for some ordinal number $\gamma \leq \alpha$. If $\alpha = -1$, then M is also μ -short for some $\mu \leq 0$. If not, then M is μ -short where $\mu \leq \alpha$. Moreover, n-dim $M \leq \alpha + 1$.

PROOF. If $\alpha = -1$, then each proper nonzero submodule of M is both a maximal and a simple submodule of M, i.e., n-dim M = 0. Hence let us assume that $\alpha \ge 0$. Now let $0 \ne N \subseteq M$ be any submodule such that $\frac{M}{N}$ is γ -short for some ordinal number γ with $\gamma \le \alpha$. We infer that n-dim $\frac{M}{N} \le \gamma + 1 \le \alpha + 1$, by Proposition 1.12. But we know that n-dim $M = \sup\{n$ -dim $\frac{M}{N} : N \ne 0\}$, see [16, Proposition 1.4]. This shows that n-dim $M \le \alpha + 1$. If n-dim $M \le \alpha$, then it is clear that M is μ -short for some $\mu \le \alpha$. Hence we may suppose that n-dim $M = \alpha + 1$. If $0 \ne N \subseteq M$ is a submodule of M, then we are to show that either that n-dim $\frac{M}{N} \le \alpha$ or n-dim $N \le \alpha$. To this end, let us suppose that n-dim $\frac{M}{N} = \alpha + 1$ and show that n-dim $\frac{M/N'}{N/N'} = n$ -dim $\frac{M}{N} = \alpha + 1$, we must have n-dim $\frac{N}{N'} \le \alpha$. But n-dim $N = \sup\{n$ -dim $\frac{N}{N'} : 0 \ne N' \subseteq N\} \le \alpha$ and we are through. The final part has already been proved.

COROLLARY 2.13. Let every proper factor module of M be 0-short (i.e., every proper factor module of M is a short module), then so is M.

REMARK 2.14. If every proper factor module of an R-module M is -1-short, then every proper submodule of M is both a maximal and a minimal submodule of M, and vice versa.

The next result is the dual of Theorem 2.12.

THEOREM 2.15. Let α be an ordinal number and M be an R-module. If every proper submodule of M is γ -short for some ordinal number $\gamma \leq \alpha$. Then either n-dim $M = \alpha + 1$ or M is μ -short for some ordinal number $\mu \leq \alpha$. In particular, M is μ -short for some ordinal $\mu \leq \alpha + 1$.

PROOF. Let $N \subsetneq M$ be any submodule. Since *N* is γ -short for some ordinal number $\gamma \leqslant \alpha$, we infer that *n*-dim $N \leqslant \gamma + 1 \leqslant \alpha + 1$, by Proposition 1.12. This immediately implies that *n*-dim $M \leqslant \alpha + 2$, see [16, Proposition 1.4]. If *n*-dim $M \leqslant \alpha + 1$ then we are through. Hence we may suppose that *n*-dim $M = \alpha + 2$ and *M* is not μ -short for any $\mu \leqslant \alpha$ and seek a contradiction. Since *M* is not μ -short for any $\mu \leqslant \alpha$, we infer that there must exist a submodule *N* of *M* such that *n*-dim $N \geqslant \alpha + 1$. But we have already observed that *n*-dim $N \leqslant \alpha + 1$, hence *n*-dim $N = \alpha + 1$. We now claim that *n*-dim $\frac{M}{N} \leqslant \alpha + 1$ which trivially implies that *n*-dim $M = \alpha + 2$. To see this, we note that for any proper submodule *P* of *M* containing *N* we must have *n*-dim $\frac{M}{N} \leqslant \alpha$, for *P* is γ -short for some $\gamma \leqslant \alpha$ and *n*-dim $P = \alpha + 1$. But *n*-dim $\frac{M}{N} \leqslant \sup\{n-\dim \frac{P}{N} : \frac{M}{N}\} + 1 \leqslant \alpha + 1$, see [16, Proposition 1.4] and we are done. The final part is now evident.

The following example shows that in the previous theorem we may have $\mu = \alpha + 1$.

EXAMPLE 2.16. Let $M = A \oplus B$, where A and B are simple R-modules. Clearly M is 0-short. We claim that every proper submodule P of M is -1short (i.e., P is simple). Since $P \subsetneq M$ and M is semisimple, there exists a maximal submodule Q of M such that $P \subseteq Q \subsetneq M$. Now we can not have $Q \cap A \neq 0 \neq Q \cap B$, for otherwise $Q \supseteq A$ and $Q \supseteq B$, hence Q = M, which is absurd. Hence we may suppose that, $Q \cap A = 0$, consequently $M = Q \oplus A$, which means that $\frac{M}{A} \simeq Q$. But $\frac{M}{A} \simeq B$, i.e., Q is simple, thus P = Q or P = 0, and we are done.

The next immediate result is the counterparts of Theorems 2.12, 2.15, for α -almost Noetherian modules.

PROPOSITION 2.17. Let *M* be an *R*-module and α be an ordinal number. If each proper submodule *N* of *M* (resp. each proper factor module of *M*) is γ -almost Noetherian with $\gamma \leq \alpha$, then *M* is a μ -almost Noetherian module with $\mu \leq \alpha + 1$, *n*-dim $M \leq \alpha + 1$ (resp. with $\mu \leq \alpha + 1$, *n*-dim $M \leq \alpha$).

The following proposition will raise the natural question, namely, for which rings R, R is α -short if and only if n-dim $R = \alpha$, or more generally, for which R-modules M, M is α -short if and only if n-dim $M = \alpha$.

PROPOSITION 2.18. Let *R* be a semiprime ring. Then the right *R*-module *R* is α -short if and only if *n*-dim $R = \alpha$.

PROOF. Let *R* be α -short as an *R*-module. We are to show that *n*-dim $R = \alpha$. If for each essential right ideal *E* of *R*, *n*-dim $\frac{R}{E} \leq \alpha$ then *n*-dim $R = \sup\{n-\dim \frac{R}{E} : E \subseteq_e R\} \leq \alpha$, see [16, Proposition 1.5]. Since *R* is α -short we have *n*-dim $R = \alpha$, by Proposition 1.12. Now suppose that there exists an essential right ideal *E'* of *R* such that *n*-dim $\frac{R}{E'} \leq \alpha$. Since *R* is α -short, we infer that *n*-dim $E' \leq \alpha$. But *R* is a right Goldie ring, by [10, Corollary 3.4]. Hence there exists a regular element *c* in *E'*, which implies that *n*-dim R = n-dim $cR \leq n$ -dim $E'_R \leq \alpha$. Consequently, we must have *n*-dim $R = \alpha$, by Proposition 1.12. Conversely, by Remark 1.2, *R* is β -short for some $\beta \leq \alpha$. But by the first part of the proof, we must have *n*-dim $R = \beta$, i.e., $\beta = \alpha$ and we are through.

Clearly every α -almost Noetherian (resp. α -short) module has Noetherian dimension (i.e., it has Krull dimension, for by a nice result due to Lemonnier, every module has Noetherian dimension if and only if it has Krull dimension, see [21, Corollary 6]). Consequently, we have the following immediate result, which is the counterpart of [7, Proposition 1.2].

PROPOSITION 2.19. The following statements are equivalent for a ring R.

- (1) Every *R*-module with Krull dimension is Noetherian.
- (2) Every α -short *R*-module is Noetherian for all α .
- (3) Every α -almost Noetherian *R*-module is Noetherian for all α .

We should remind the reader that the comment which follows [7, Proposition 1.2], trivially remains valid if we replace short modules in that comment by α -short modules. Moreover, if *R* is a right perfect ring (i.e., every *R*-module is a Loewy module) then every α -short (resp. α -almost Noetherian) *R*-module is both Artinian and Noetherian, see [17, Proposition 2.1], which is stronger than the fact that short modules are Noetherian over right perfect rings, see the aforementioned comment in [7].

Before concluding this section with our last observation, let us cite the next result which is in [17, Theorem 2.9], see also [11, Theorem 3.2].

THEOREM 2.20. For a commutative ring R the following statements are equivalent.

- (1) Every *R*-module with finite Noetherian dimension is Noetherian.
- (2) Every Artinian R-module is Noetherian.
- (3) Every *R*-module with Noetherian dimension is both Artinian and Noetherian.

Now in view of the above theorem and the well-known fact that each domain with Krull dimension 1 is Noetherian, see [10, Proposition 6.1] and also [18, Corollary 2.15], we observe the following result which is much stronger than [7, Proposition 1.3].

PROPOSITION 2.21. The following statements are equivalent for a commutative ring R.

- (1) Every Artinian R-module is Noetherian.
- (2) Every *m*-short module is both Artinian and Noetherian for all integers $m \ge -1$.
- (3) Every α-short module is both Artinian and Noetherian for all ordinals α.
- (4) Every m-almost Noetherian R-module is both Artinian and Noetherian for all non-negative integers m.
- (5) Every α-almost Noetherian R-module is both Artinian and Noetherian for all ordinals α.
- (6) No homomorphic image of R can be isomorphic to a dense subring of a complete local domain of Krull dimension 1.

PROOF. Only the proof of $(5) \rightarrow (6) \rightarrow (1)$, which is an easy consequence of [7, Proposition 1.3], is needed.

ACKNOWLEDGMENT. The authors would like to thank the referee for a detailed report and for giving numerous constructive comments which have significantly improved the presentation of this paper.

REFERENCES

- 1. Albu, T., and Smith, P. F., *Localization of modular lattices, Krull dimension, and the Hopkins-Levitzki Theorem (I)*, Math. Proc. Cambridge Philos. Soc. 120 (1996), 87–101.
- 2. Albu, T., and Smith, P. F., *Localization of modular lattices, Krull dimension, and the Hopkins-Levitzki Theorem (II)*, Comm. Algebra 25 (1997), 1111–1128.
- Albu, T., and Vamos, P., *Global Krull dimension and global dual Krull dimension of valuation rings*, pp. 37–54 in: Abelian groups, module theory, and topology, Lect. Notes Pure Appl. Math. 201, Dekker, New York 1998.
- Albu, T., and Smith, P. F., *Dual Krull dimension and duality*, Rocky Mountain J. Math. 29 (1999), 1153–1165.

- Albu, T., and Teply, L., *Generalized deviation of posets and modular lattices*, Discrete Math. 214 (2000), 1–19.
- Anderson, F. W., and Fuller, K. R., *Rings and categories of modules*, Grad. Texts Math. 13, Springer, Berlin 1992.
- Bilhan, G., and Smith, P. F., Short modules and almost Noetherian modules, Math. Scand. 98 (2006), 12–18.
- Chambless, L., N-dimension and N-critical modules. Application to Artinian modules, Comm. Algebra 8 (1980), 1561–1592.
- 9. Fuchs, L., *Torsion preradical and ascending Loewy series of modules*, J. Reine Angew. Math. 239 (1969), 169–179.
- Gordon, R., and Robson, J. C., *Krull dimension*, Mem. Amer. Math. Soc. 133, Amer. Math. Soc., Providence 1973.
- 11. Hashemi, J., Karamzadeh, O. A. S., and Shirali, N., *Rings over which the Krull dimension and the Noetherian dimension of all modules coincide*, Comm. Algebra 37 (2009), 650–662.
- 12. McConell, J. C., and Robson, J. C., *Noncommutative Noetherian rings*, Wiley, Chichester 1987.
- 13. Karamzadeh, O. A. S., Noetherian-dimension, Ph.D. thesis, Exeter 1974.
- Karamzadeh, O. A. S., and Motamedi, M., On α-DICC modules, Comm. Algebra 22 (1994), 1933–1944.
- 15. Karamzadeh, O. A. S., and Motamedi, M., *a-Noetherian and Artinian modules*, Comm. Algebra 23 (1995), 3685–3703.
- Karamzadeh, O. A. S., and Sajedinejad, A. R., *Atomic modules*, Comm. Algebra 29 (2001), 2757–2773.
- 17. Karamzadeh, O. A. S., and Sajedinejad, A. R., On the Loewy length and the Noetherian dimension of Artinian modules, Comm. Algebra 30 (2002), 1077–1084.
- Karamzadeh, O. A. S., and Shirali, N., On the countablity of Noetherian dimension of modules, Comm. Algebra 32 (2004), 4073–4083.
- 19. Krause, G., On fully left bounded left Noetherian rings, J. Algebra 23 (1972), 88-99.
- Kirby, D., Dimension and length for Artinian modules, Quart. J. Math. Oxford. 41 (1990), 419–429.
- Lemonnier, B., Déviation des ensembles et groupes abéliens totalement ordonnés, Bull. Sc. Math. 96 (1972), 289–303.
- Roberts, R. N., Krull-dimension for Artinian modules over quasi local commutative Rings, Quart. J. Math. Oxford. 26 (1975), 269–273.

DEPARTMENT OF MATHEMATICS SHAHID CHAMRAN UNIVERSITY AHVAZ IRAN *E-mail:* davoudian_mm@scu.ac.ir karamzadeh@ipm.ir shirali_n@scu.ac.ir