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CARTAN-EILENBERG GORENSTEIN
FLAT COMPLEXES

GANG YANG and LI LIANG∗†

Abstract
In this paper, we study Cartan-Eilenberg Gorenstein flat complexes. We show that over coherent
rings a Cartan-Eilenberg Gorenstein flat complex can be gotten by a so-called complete Cartan-
Eilenberg flat resolution. We argue that over a coherent ring every complex has a Cartan-Eilenberg
Gorenstein flat cover.

1. Introduction and Preliminaries

In his thesis Verdier introduced the notion of a Cartan-Eilenberg injective com-
plex (Definition 4.6.1 of [17]) and considered the so called Cartan-Eilenberg
injective and projective resolutions of complexes. In [4], using the ideas of
Verdier, Enochs further showed that Cartan-Eilenberg resolutions can be de-
fined in terms of preenvelopes and precovers by Cartan-Eilenberg injective
and projective complexes. Also, Enochs considered Cartan-Eilenberg flat com-
plexes which are obvious extension of Cartan-Eilenberg projective complexes
and showed that they are precisely the direct limits of the finitely generated
Cartan-Eilenberg projective complexes. In this paper, we continue to study
Cartan-Eilenberg flat complexes and then Cartan-Eilenberg Gorenstein flat
complexes. We describe how the homological theory on Gorenstein flat mod-
ules generalizes to a homological theory on Cartan-Eilenberg Gorenstein flat
complexes.

Throughout, let R be an associative ring with 1, R-Mod (respectively, Mod-
R) the category of left (respectively, right) R-modules and C(R-Mod) (re-
spectively, C(Mod-R)) the category of complexes of left (respectively, right)
R-modules. Unless stated otherwise, an R-module (respectively, R-complex)
will be understood to be a left R-module (respectively, a complex of left R-
modules).
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To every complex C = · · · → Cm+1
δC
m+1−−−→ Cm

δC
m−−→ Cm−1 → · · ·, the mth

cycle of C is defined as Ker(δC
m) and is denoted by Zm(C), the mth boundary

is defined as Im(δC
m+1) and is denoted by Bm(C). We use Z(C), B(C) ⊆ C

to denote the subcomplexes of cycles and boundaries of the complex C, and
H(C) = Z(C)/B(C) to denote the homology complex of C. For a complex C,
the suspension of C, denoted by �C, is the complex given by (�C)m = Cm−1

and δ�C
m = −δC

m−1. The complex �(�C) is denoted by �2C and inductively
we define �mC for all m ∈ Z. In the paper, we use subscripts to distinguish
complexes. For example, if Cα is a complex with the subscript α, then Cα will
be

· · · → (Cα)m+1
δm+1−−−→ (Cα)m

δm−−→ (Cα)m−1
δm−1−−−→ (Cα)m−2 → · · · .

If M is an R-module then M can be regarded as a complex concentrated at
0. We will denote this complex by M . So M = · · · → 0 → M → 0 → · · ·
with M in the 0th degree. Similarly we denote the complex M = · · · → 0 →
M → M → 0 → · · · with M in the 1 and 0th degrees.

Given two complexes X and Y , we let Hom(X, Y ) denote the complex of
Z-modules

· · · →
∏
i∈Z

HomR(Xi, Yi+n)
δn−→

∏
i∈Z

HomR(Xi, Yi+n−1) → · · · ,

where δn((fi)i∈Z) = (δY
i+nfi − (−1)nfi−1δ

X
i )i∈Z. We say f : X → Y a morph-

ism of complexes if f = (fi)i∈Z ∈ ∏
i∈Z HomR(Xi, Yi) and δY

i fi = fi−1δ
X
i

for all i ∈ Z. The set of all morphisms from X to Y is denoted by Hom(X, Y ).
Let Hom(X, Y ) = Z(Hom(X, Y )), that is, Hom(X, Y ) is the complex of Z-
modules with nth component Hom(X, Y )n = Zn(Hom(X, Y )) = Hom(X,

�−nY ) and differential λn : Hom(X, Y )n → Hom(X, Y )n−1 is defined by
λn((fi)i∈Z) = ((−1)n∂Y

i+nfi)i∈Z for any (fi)i∈Z ∈ Hom(X, Y )n. Then we get
new functors Hom(X, −) and Hom(−, Y ) which are left exact and have right
derived functors whose values will be complexes. These functors should cer-
tainly be denoted by Exti (−, −). It is easy to see that Exti (X, Y ) is the complex

· · · → Exti (X, �n−1Y ) → Exti (X, �nY ) → Exti (X, �n+1Y ) → · · ·
with differential induced by the differential of Y .

If X is a complex of right R-modules and Y is a complex of left R-modules,
then their tensor product X ⊗· Y is defined by (X ⊗· Y )n = ⊕

i+j=n Xi ⊗R Yj

in degree n, the differential δn is defined by δX(x) ⊗ y + (−1)|x|x ⊗ δY (y)

on the generators, where |x| is the degree of the element x. Let X ⊗ Y =
(X⊗·Y )

B(X⊗·Y )
, that is, X ⊗ Y is the complex of Z-modules with nth component
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(X ⊗ Y )n = (X⊗·Y )n
Bn(X⊗·Y )

and differential λn : (X ⊗ Y )n → (X ⊗ Y )n−1 given by

λn(x ⊗ y) = δX(x) ⊗ y, where x ⊗ y is used to denote the coset in (X⊗·Y )n
Bn(X⊗·Y )

.
Since the category of complexes have enough projectives, and − ⊗ Y and
X ⊗− are right exact, we can construct left derived functors which we denote
by Tori (−, −).

The next result can be found in [6, Proposition 2.1].

Lemma 1.1. Let Y , Z be two complexes and X a complex of right R-modules.
Then we have the following natural isomorphisms.

(1) Hom(X ⊗ Y, Z) ∼= Hom(X, Hom(Y, Z)).

(2) (lim−→ Xi) ⊗ Y ∼= lim−→(Xi ⊗ Y ) for a direct family {Xi} of complexes of
right R-modules.

(3) For an R-module M , Hom(�mM, Y ) ∼= �−1−mHomR(M, Y ) and
Hom(Y, �mM) ∼= �−mHomR(Y, M).

In the sequel we give some other definitions for use later.

Definition 1.2. An R-module M is called Gorenstein injective if there
exists an exact sequence

· · · → I2 → I1 → I0 → I−1 → I−2 → · · ·
of injective R-modules with M = Ker(I−1 → I−2), such that it remains exact
after applying HomR(I, −) for any injective R-module I .

Definition 1.3. An R-module N is called Gorenstein flat if there exists an
exact sequence

· · · → F2 → F1 → F0 → F−1 → F−2 → · · ·
of flat R-modules with N = Ker(F−1 → F−2), such that it remains exact after
applying I ⊗R − for any injective right R-module I .

The Gorenstein flat modules were introduced by Enochs, Jenda and Tor-
recillas in 1990’s [9] as generalizations of the classical flat modules. Over
Gorenstein rings, such modules were shown to have many properties similar
to those of the classical flat modules over general rings. Lately, Gorenstein flat
modules over more general rings have been studied by many authors such as
Ding and Chen [3], Holm [13], Bennis [2], and Yang and Liu [18] etc.

The following two definitions come from [4].

Definition 1.4. Given a class F of R-modules. A complex A is called a
Cartan-Eilenberg (C-E for short) F complex if A, Z(A), B(A) and H(A) are all
in C(F ), where C(F ) denotes the class of complexes with each component in
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F . In particular, if the class F consists of all injective R-modules then a C-E
F complex is just called a C-E injective complex. Also, we use the obvious
modifications, e.g. C-E projective, C-E flat, C-E Gorenstein injective and C-E
Gorenstein flat complexes, of such names. We let CE(F ) denote the class of
C-E F complexes for a given class F of R-modules.

Definition 1.5. A sequence of complexes · · · → C1 → C0 → C−1 →
· · · is said to be C-E exact if

(1) · · · → C1 → C0 → C−1 → · · ·,
(2) · · · → Z(C1) → Z(C0) → Z(C−1) → · · ·,
(3) · · · → B(C1) → B(C0) → B(C−1) → · · ·,
(4) · · · → C1/Z(C1) → C0/Z(C0) → C−1/Z(C−1) → · · ·,
(5) · · · → C1/B(C1) → C0/B(C0) → C−1/B(C−1) → · · ·,
(6) · · · → B(C1) → H(C0) → H(C−1) → · · ·

are all exact.

Remark 1.6. In the above definition, exactness of (1) and (2) implies ex-
actness of all (1)–(6), and exactness of (1) and (5) implies exactness of all
(1)–(6).

Given two complexes X and Y . It follows from [4, Theorems 5.5 and 5.7]
that there exist two C-E exact sequences · · · → P2 → P1 → P0 → X → 0
and 0 → Y → I 0 → I 1 → I 2 → · · ·, where each Pn is a C-E projective
complex and each I n is a C-E injective complex. By [4, Proposition 6.3], we
can compute derived functors of Hom(−, −) using either of the two sequences.
We denote these derived functors as Ext

n
(X, Y ). Now one can easily check

that for any C-E exact sequence 0 → A → B → C → 0, there exist exact
sequences

0 → Hom(X, A) → Hom(X, B) → Hom(X, C) → Ext
1
(X, A) → · · ·

and

0 → Hom(C, Y ) → Hom(B, Y ) → Hom(A, Y ) → Ext
1
(C, Y ) → · · · .

2. C-E flat complexes

In this section we give some characterizations of C-E flat complexes that will
be used in Section 3. We prove that R is right coherent if and only if every
complex of R-modules has a C-E flat preenvelope.

We recall from [6] that a complex F is flat if the functor − ⊗ F is exact.
Equivalently, a complex F is flat if and only if Tor1(X, F ) = 0 for any complex
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X of right R-modules if and only if it is exact and for each i ∈ Z, ZiF is a flat
R-module.

Lemma 2.1. Let P be a C-E projective complex. Then − ⊗ P is exact for
any short C-E exact sequence.

Proof. By [4, Proposition 3.4], we note that every C-E projective complex
can be written as (⊕i∈Z�

iKi)
⊕

(⊕i∈Z�
iLi), where Ki and Li are projective

R-modules. Thus we need only to show that −⊗�iQ and −⊗�iQ are exact
for any C-E exact sequence, where Q is a projective R-module.

Let 0 → A → B → C → 0 be a short C-E exact sequence of complexes of
right R-modules. Since �iQ is a flat complex, we get that −⊗�iQ is exact for
any exact sequence of complexes. Note that Q is a projective R-module, then
one can check easily that the sequence 0 → A⊗·Q → B⊗·Q → C⊗·Q → 0
is C-E exact, and so we have the exact sequence

0 → (A ⊗· Q)/B(A ⊗· Q) → (B ⊗· Q)/B(B ⊗· Q)

→ (C ⊗· Q)/B(C ⊗· Q) → 0.

This shows that the sequence 0 → A⊗Q → B ⊗Q → C ⊗Q → 0 is exact,
and hence the sequence 0 → A ⊗ �iQ → B ⊗ �iQ → C ⊗ �iQ → 0 is
exact. Thus the functor − ⊗ �iQ is exact for any C-E exact sequence.

Given a complexC, we letC+ stand for the character complex Hom(C,Q/Z)

ofC. The next result is well-known, but we are unable to find a precise reference
for it.

Lemma 2.2. For any complex C of R-modules the following conditions hold
for any n ∈ Z

(1) Zn(C
+) ∼= HomZ(C−n/B−n(C), Q/Z) = (C−n/B−n(C))+.

(2) Bn(C
+) ∼= HomZ(B−n−1(C), Q/Z) = (B−n−1(C))+.

(3) Hn(C
+) ∼= (H−n(C))+.

Proof. If C = · · · → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 → · · ·, then by Lem-
ma 1.1(3), C+ is

· · · → HomZ(C−n−1, Q/Z)
d∗

n−−→ HomZ(C−n, Q/Z)
d∗−n+1−−−→ HomZ(C−n+1, Q/Z) → · · ·
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with nth component (C+)n = Hom(C−n, Q/Z), and so

Zn(C
+) = Ker(d∗

−n+1) = {f ∈ HomZ(C−n, Q/Z) | f d−n+1 = 0}
∼= HomZ(C−n/B−n(C)), Q/Z) = (C−n/B−n(C))+,

Bn(C
+) = Im(d∗

−n) = {f d−n | f ∈ HomZ(C−n−1, Q/Z)}
∼= HomZ(B−n−1(C), Q/Z) = (B−n−1(C))+.

Note that 0 → H−n(C) → C−n/B−n(C) → B−n−1(C) → 0 is exact, thus
0 → (B−n−1(C))+ → (C−n/B−n(C))+ → (H−n(C))+ → 0 is exact. Now
it follows easily from the proof above that Hn(C

+) ∼= (H−n(C))+. This com-
pletes the proof.

Corollary 2.3. A complex F is C-E flat in C(R-Mod) if and only if F+ is
C-E injective in C(Mod-R). If R is right coherent, then a complex I of right
R-modules is C-E injective if and only if I+ is C-E flat in C(R-Mod).

Recall that if D is a class of objects in an abelian category A and X ∈ A ,
then a D -precover of X is a morphism f : D → X with D ∈ D , such that
the triangle

D′

D −−−−−→
f

X

can be completed for each morphism D′ → X with D′ ∈ D . A D -precover
f : D → X is called special if f is epimorphic and Ext1(G, Ker(f )) = 0 for
all G ∈ D . If the triangle

D

f

D −−−−−→
f

X

can be completed only by isomorphisms, then f is called a D -cover. (Special)
D -preenvelopes and D -envelopes are defined dually.

According to [4, Proposition 7.3], every complex C has a C-E flat cover,
which is easily seen epimorphic since any projective complex is clearly C-E
flat.

Lemma 2.4. If F → C is a C-E flat precover of C with kernel K then the
sequence 0 → K → F → C → 0 is C-E exact.

Proof. We note that each �iR is C-E projective, and so it is C-E flat. Then
applying the functor Hom(�iR, −) to the exact sequence 0 → K → F →
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C → 0, we get that 0 → Zi (K) → Zi (F ) → Zi (C) → 0 is exact by [4,
Proposition 2.1]. Therefore, 0 → K → F → C → 0 is C-E exact.

Lemma 2.5. A complex F is C-E flat in C(R-Mod) if and only if − ⊗ F is
exact for any short C-E exact sequence of complexes of right R-modules.

Proof. Suppose that F is a C-E flat complex and 0 → A → B → C → 0
is a short C-E exact sequence of complexes of right R-modules. Then F =
lim−→ Pi with Pi C-E projective complexes by [4, Theorem 7.2]. Hence, by
Lemmas 1.1(1) and 2.1, we get that the sequence 0 → A ⊗ F → B ⊗ F →
C ⊗ F → 0 is exact.

Conversely suppose that − ⊗ F is exact for any short C-E exact sequence.
By Corollary 2.3 we need only to show that F+ = Hom(F, Q/Z) is C-E
injective in C(Mod-R). For any complex A of right R-modules we let 0 →
K → P → A → 0 be a short C-E exact sequence in C(Mod-R) with P C-E
projective (its existence follows from [4, Proposition 5.4]). Then we have the
commutative diagram

Hom(P, F+) Hom(K, F+)

(P ⊗ F)+ −−−−−→ (K ⊗ F)+ 0

where the vertical arrows are isomorphisms by Lemma 1.1(1). Thus, the
morphism Hom(P, F+) → Hom(K, F+) is epic, and so Hom(P, F+) →
Hom(K, F+) → 0 is exact. On the other hand, we get that the sequence

Hom(P, F+) → Hom(K, F+) → Ext
1
(A, F+) → Ext

1
(P, F+) is exact,

where Ext
1
(P, F+) = 0 by [4, Theorem 9.4]. This implies that Ext

1
(A, F+) =

0, and so F+ is C-E injective in C(Mod-R) by [4, Theorem 9.4].

Now for any complex C we have a left C-E flat resolution · · · → F1 →
F0 → C → 0, that is, F0 → C and Fi → Ki−1 are all C-E flat precovers,
where Ki−1 = Ker(Fi−1 → Fi−2) for all i ≥ 1 with F−1 = C. Then by
Lemmas 2.4 and 2.5 we see that F ⊗ − applied to this resolution gives us an
exact sequence for any C-E flat complex F in C(Mod-R). This comment can
be used to give us the following result.

Theorem 2.6. The functor − ⊗ − is left balanced on C(Mod-R) ×
C(R-Mod) by CE(Flat-R) × CE(R-Flat), where R-Flat (respectively, Flat-R)
denotes the class of flat (respectively, right) R-modules.

Remark 2.7. By Theorem 2.6 together with the covariant-covariant version
of [14, Theorem 2.6], we can compute left derived functors of X ⊗ Y either
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using a left C-E flat resolution of X or Y . We denote these derived functors by
Tori (−, −). Then it is easy to check the following properties of Tori (−, −).

(1) Tor0(−, −) = − ⊗ −.

(2) Tori (−, D) = 0 for all i ≥ 1 and any C-E flat complex D of R-modules.

(3) Tori (D, −) = 0 for all i ≥ 1 and any C-E flat complex D of right
R-modules.

The next result gives some relations between the new functor Tori (−, −)

and the classical one Tori (−, −).

Proposition 2.8. Let C be a complex of R-modules. Then the following
statements are equivalent.

(1) C is exact.

(2) Tori (−, C) ∼= Tori (−, C) for all i ≥ 0.

(3) Tor1(−, C) ∼= Tor1(−, C).

Proof. (1) ⇒ (2). Let C be an exact complex and · · · → F2 → F1 →
F0 → C → 0 be a left special flat resolution of C, that is, F0 → C and
Fi → Ki−1 are all special flat precovers, where Ki−1 = Ker(Fi−1 → Fi−2)

for all i ≥ 1 with F−1 = C. Then Ext1(F, Ki) = 0 for any flat complex F ,
and it is easy to see that Ki is exact for all i ≥ 0. Thus it follows from [10,
Proposition 4.3.3(1)] and [11, Theorem 3.12] that all Ki are C-E cotorsion

complexes for i ≥ 0, and so Ext
1
(G, Ki) = 0 for any C-E flat complex G by [4,

Theorem 9.4]. We note that the sequence · · · → F2 → F1 → F0 → C → 0
is C-E exact, then the sequence · · · → F2 → F1 → F0 → C → 0 is a left
C-E flat resolution of C, and so we have Tori (D, C) ∼= Tori (D, C) for any
complex D of right R-modules and i ≥ 0.

(2) ⇒ (3) is trivial.
(3) ⇒ (1). If Tor1(D, C) ∼= Tor1(D, C) for any complex D of right R-

modules, then we have Tor1(�
kR, C) ∼= Tor1(�

kR, C) = 0 by Remark 2.7(3),
and so

Ext1(�kR, C+) ∼= (Tor1(�
kR, C))+ = 0

by [10, Lemma 5.4.2(b)]. Thus Ext1(�kR, C+) = 0, and so C+ is an exact
complex by [5, Remark 5.2]. This implies that C is exact.

Recall that a complex P is finitely generated if, in case P = ∑
λ∈� Pλ

with Pλ subcomplexes of P , then there exists a finite subset F ⊆ � such that
P = ∑

λ∈F Pλ. A complex Q is finitely presented if Q is finitely generated
and for any exact sequence of complexes 0 → K → P → Q → 0 with
P finitely generated, K is also finitely generated. In fact, a complex P is
finitely generated (respectively, presented) if and only if P is bounded (that
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is, Pi = 0 holds for |i| � 0) and each Pi is finitely generated (respectively,
presented) for i ∈ Z. According to [6, Definition 2.6], a short exact sequence
of complexes 0 → S → C → C/S → 0 is said to be pure, if 0 → D ⊗ S →
D ⊗ C is exact for any (finitely presented) complex D in C(Mod-R), or
equivalently, Hom(P, C) → Hom(P, C/S) → 0 is exact for any finitely
presented complex P . In this case, we say S a pure subcomplex of C.

Lemma 2.9. Every pure subcomplex of a C-E flat complex is C-E flat.

Proof. Let K ≤ F be a pure subcomplex of a C-E flat complex F . Given
a short C-E exact sequence 0 → A → B → C → 0 in C(Mod-R), we then
have the following commutative diagram

0 0

A ⊗ K B ⊗ K

0 A ⊗ F B ⊗ F

where the bottom row is exact by Lemma 2.5. Note that all the columns are
exact since K is pure in F . Then we have that A ⊗ K → B ⊗ K is a mono-
morphism, and so K is C-E flat by Lemma 2.5.

Using an argument as in the proof of [10, Theorem 5.2.2], we get the
following result.

Theorem 2.10. Let R be a ring. Then the following conditions are equival-
ent.

(1) R is right coherent.

(2) Every complex has a C-E flat preenvelope.

Proof. (1) ⇒ (2). We note that Bi

(∏
Cα

) ∼= ∏
Bi (Cα), Zi

(∏
Cα

) ∼=∏
Zi (Cα) and Hi

(∏
Cα

) ∼= ∏
Hi (Cα) for any family of complexes {Cα}.

Then it is easy to see that under the hypothesis the class of C-E flat complexes
is closed under direct products.

Given a complexC, we takeκ an infinite cardinal number such that Card(C)·
Card(R) ≤ κ . Set S = {F ∈ C(R-Mod) | F is C-E flat and Card(F ) ≤ κ}.
Let {Fλ}λ∈� be a family of representatives of this class with index set �.
Let Sλ = Hom(C, Fλ) for each λ ∈ � and let F = ∏

λ∈� F
Sλ

λ . Now define
f : C → F so that the composition of f with the projection map F → F

Sλ

λ

maps x ∈ Ci to (hi(x))h∈Sλ
. Then it easy to see that f : C → F is a morphism.

In the next, we show that f : C → F is a C-E flat preenvelope of C. Let



14 gang yang and li liang

g : C → G be a morphism with G a C-E flat complex. By [10, Lemma 5.2.1],
the subcomplex g(C) can be enlarged to a pure subcomplex H ≤ G with
Card(H) ≤ κ . Since H is C-E flat by Lemma 2.9, H is isomorphic to one of
the Fλ. By construction of the morphism f , it is not hard to show that g can
be factored through f , as desired.

(2) ⇒ (1). Let M be an R-module and φ : M → F be a C-E flat preenvelope
of M . Then one can check easily that φ1 : M → F1 is a flat preenvelope of
M , and so R is right coherent by [7, Proposition 6.5.1].

In the end of this section, we give another characterization of C-E flat
complexes.

Proposition 2.11. For a complex F , the following conditions are equival-
ent.

(1) F is C-E flat.

(2) Every short C-E exact sequence 0 → K → P → F → 0 is pure.

(3) There exists a pure exact sequence 0 → K → P → F → 0 such that
P is C-E projective (C-E flat).

Proof. (1) ⇒ (2). Let 0 → K → P → F → 0 be a short C-E exact
sequence and let C be a complex of right R-modules. If Q → C is a C-E
projective precover of C then we have a C-E exact sequence 0 → L → Q →
C → 0 by [4, Proposition 5.4]. Consider the following commutative diagram

0

L ⊗ K L ⊗ P L ⊗ F 0

0 Q ⊗ K Q ⊗ P Q ⊗ F 0

C ⊗ K C ⊗ P C ⊗ F 0.

0 0 0

Since every C-E projective complex is C-E flat, we get that the right-hand
column and the middle row in the diagram above are exact by Lemma 2.5.
Thus, we get that 0 → C ⊗K → C ⊗P → C ⊗F → 0 is exact by the snake
lemma. Hence the C-E exact sequence 0 → K → P → F → 0 is pure.

(2) ⇒ (3) follows from [4, Proposition 5.4].
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(3) ⇒ (1). Let 0 → K → P → F → 0 be a pure exact sequence with P

C-E projective (C-E flat), and let 0 → A → B → C → 0 be a C-E exact
sequence in C(Mod-R). Now Consider the following commutative diagram

0

0 A ⊗ K A ⊗ P A ⊗ F 0

0 B ⊗ K B ⊗ P B ⊗ F 0

0 C ⊗ K C ⊗ P C ⊗ F 0.

0 0 0

Since all the rows and the middle column in the diagram above are exact by
hypothesis, we get by the snake lemma that the right-hand column is exact.
Thus F is C-E flat by Lemma 2.5.

Corollary 2.12. Let 0 → X → Y → Z → 0 be a C-E exact sequence
with Z C-E flat. Then X is C-E flat if and only if Y is C-E flat.

Proof. Let 0 → A → B → C → 0 be a C-E exact sequence in
C(Mod-R). Then we get that all the rows in the following commutative dia-
gram are exact by Proposition 2.11, and the right-hand column is exact by
Lemma 2.5 since Z is C-E flat.

0

0 A ⊗ X A ⊗ Y A ⊗ Z 0

0 B ⊗ X B ⊗ Y B ⊗ Z 0

0 C ⊗ X C ⊗ Y C ⊗ Z 0.

0 0 0

Thus the above diagram implies that 0 → A ⊗ Y → B ⊗ Y → C ⊗ Y → 0
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is exact if and only if 0 → A ⊗ X → B ⊗ X → C ⊗ X → 0 is exact. Hence
Y is C-E flat if and only if X is C-E flat by Lemma 2.5.

3. C-E Gorenstein flat complexes

We have already defined a C-E Gorenstein flat complex in Definition 1.4. But
we show that over right coherent rings one can also use a modification of
Definition 1.3 to define such a complex. We start with the following.

Lemma 3.1. Let R be a right coherent ring and M a Gorenstein flat R-
module. Then any flat preenvelope f : M → F of M is a monomorphism and
Coker(f ) is a Gorenstein flat R-module.

Proof. By [7, Proposition 6.5.1], M has a flat preenvelope f : M → F .
Since M is a Gorenstein flat R-module, there exists an exact sequence 0 →
M α−→ F−1 with F−1 flat. Thus f must be a monomorphism since there exists
a homomorphism g : F → F−1 such that gf = α. Hence, we have the exact
sequence 0 → M

f−→ F → N → 0, where N = Coker(f ). Let I be any
injective right R-module. Then we have the following commutative diagram

0 (I ⊗R N)+ (I ⊗R F)+ (I ⊗R M)+ 0

∼= ∼= ∼=

0 HomR(N, I+) HomR(F, I+) HomR(M, I+) 0

where the bottom row is exact since f : M → F is a flat preenvelope of
M and I+ is flat. So the top row is exact too. This yields the exactness of
0 → I ⊗R M → I ⊗R F → I ⊗R N → 0. Thus TorR

1 (I, N) = 0, and hence
N is Gorenstein flat by [13, Proposition 3.8].

It was shown by Enochs [4, Theorem 8.5] that a complex G is C-E Goren-
stein injective if and only if there exists a C-E exact sequence · · · → I2 →
I1 → I0 → I−1 → I−2 → · · · of C-E injective complexes with G =
Ker(I−1 → I−2), such that it remains exact after applying Hom(J, −) for
any C-E injective complex J .

In the next, we focus on Cartan-Eilenberg Gorenstein flat complexes and
we show that over right coherent rings such complexes can be gotten by a so
called complete Cartan-Eilenberg flat resolution.

Definition 3.2. For a complex G ∈ C(R-Mod), by a complete C-E flat
resolution of G we mean a C-E exact sequence · · · → F2 → F1 → F0 →
F−1 → F−2 → · · · of C-E flat complexes with G = Ker(F−1 → F−2), such
that it remains exact after applying I ⊗ − for any C-E injective complex I of
right R-modules.
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In the following we use the symbol R-Gorflat to stand for the class of
Gorenstein flat R-modules.

Lemma 3.3. Let R be a right coherent ring. Then a complex G in C(R-Mod)

is such that G and G/B(G) are in C(R-Gorflat) if and only if G+ is C-E
Gorenstein injective in C(Mod-R).

Proof. Assume that G and G/B(G) are in C(R-Gorflat). Then all right
R-modules HomZ(G−n, Q/Z) and HomZ(G−n/B−n(G), Q/Z) are Gorenstein
injective by [13, Theorem 3.6], but HomZ(G−n/B−n(G), Q/Z) ∼= Zn(G

+) by
Lemma 2.2, and clearly HomZ(G−n, Q/Z) = (G+)n. Now using the exact
sequences 0 → Zn(G

+) → (G+)n → Bn−1(G
+) → 0 and 0 → Bn(G

+) →
Zn(G

+) → Hn(G
+) → 0, we get by [13, Theorem 2.6] that all right R-

modules Bn(G
+) and Hn(G

+) are Gorenstein injective, and so G+ is C-E
Gorenstein injective in C(Mod-R) by [4, Theorem 8.5].

Conversely suppose G+ is C-E Gorenstein injective in C(Mod-R). Then by
[4, Theorem 8.5] we get that each (G+)n = HomZ(G−n, Q/Z), and Zn(G

+),
which is isomorphic to HomZ(G−n/B−n(G), Q/Z) by Lemma 2.2, are Goren-
stein injective, and so G−n and G−n/B−n(G) are Gorenstein flat by [13, The-
orem 3.6]. This proves that G and G/B(G) are in C(R-Gorflat).

Remark 3.4. Let f : X → Y be a morphism of complexes. As one has
δY
i fi = fi−1δ

X
i for all i ∈ Z, there is an inclusion f (B(X)) ⊆ B(Y ). It follows

that f induces a morphism of complexes f : X/B(X) → Y/B(Y ), which is
given by the assignment x + Bi (X) �→ fi(x) + Bi (Y ) for any x ∈ Xi . With
this definition one can check easily that C → C/B(C) is a right exact functor.

Theorem 3.5. Let R be a right coherent ring and G be a complex in
C(R-Mod). Then the following conditions are equivalent.

(1) B(G) and H(G) are in C(R-Gorflat).
(2) G and G/B(G) are in C(R-Gorflat).
(3) G has a complete C-E flat resolution.
(4) G is C-E Gorenstein flat.

Proof. (1) ⇒ (2). Since Bm(G) and Hm(G) are Gorenstein flat in R-Mod,
and the sequences 0 → Bm(G) → Zm(G) → Hm(G) → 0 and 0 →
Zm(G) → Gm → Bm−1(G) → 0 are exact for all m ∈ Z, we get from
[13, Theorem 3.7] that Gm are Gorentein flat in R-Mod for all m ∈ Z. For the
same argument we get that Gm/Bm(G) is Gorentein flat since the sequence
0 → Hm(G) → Gm/Bm(G) → Bm−1(G) → 0 is exact.

(2) ⇒ (1) can be proved similarly.
(2) ⇒ (3). By Theorem 2.10, G has a C-E flat preenvelope α : G → F−1.

Suppose that F is a flat R-module. Then �mF is C-E flat for any m ∈ Z, and
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so Hom(F−1, �
mF) → Hom(G, �mF) → 0 is exact. This implies that

Hom((F−1)m, F ) → Hom(Gm, F ) → 0

is exact by [4, Proposition 2.1]. Thus αm : Gm → (F−1)m is a flat preenvelope
of Gm, and so αm is a monomorphism and Coker(αm) is a Gorenstein flat
R-module by Lemma 3.1 since Gm is Gorenstein flat. Hence, we have an
exact sequence of complexes 0 → G α−→ F−1 → L−1 → 0, where L−1 =
Coker(α) is in C(R-Gorflat). Since the functor C → C/B(C) is right exact by
Remark 3.4, we get that G/B(G) → F−1/B(F−1) → L−1/B(L−1) → 0 is
exact. Now for any flatR-moduleF , applying the functor Hom(−, �mF) to the
exact sequence 0 → G α−→ F−1 → L−1 → 0, we get by [4, Proposition 2.1]
that the sequence

0 → Hom((L−1)m/Bm(L−1), F ) → Hom((F−1)m/Bm(F−1), F )

→ Hom(Gm/Bm(G), F ) → 0

is exact since �mF is C-E flat and α : G → F−1 is a C-E flat preenvelope
of G. This implies that Gm/Bm(G) → (F−1)m/Bm(F−1) is a flat preenvelope
of Gm/Bm(G) since F−1 is C-E flat. Thus Gm/Bm(G) → (F−1)m/Bm(F−1)

is a monomorphism and its cokernel (L−1)m/Bm(L−1) is Gorenstein flat by
Lemma 3.1 since Gm/Bm(G) is Gorenstein flat. Hence, the sequence 0 →
G/B(G) → F−1/B(F−1) → L−1/B(L−1) → 0 is exact with L−1/B(L−1)

in C(R-Gorflat). Therefore, the sequence

(∗) 0 → G α−→ F−1 → L−1 → 0

is C-E exact.
In the following, we show that the C-E exact sequence (∗) remains exact

after applying I ⊗ − for any C-E injective complex I of right R-modules. Let
I be any C-E injective complex of right R-modules. Then we have that I+ is
C-E flat by Corollary 2.3. Consider the following commutative diagram

0 (I ⊗ L−1)
+ (I ⊗ F−1)

+ (I ⊗ G)+ 0

∼= ∼= ∼=

0 Hom(L−1, I
+) Hom(F−1, I

+) Hom(G, I+) 0

where the vertical isomorphisms are obtained directly by Lemma 1.1(1). Note
that the bottom row in the diagram above is exact since α : G → F−1 is
a C-E flat preenvelope of G. So the top row is also exact. This means 0 →
I ⊗ G → I ⊗ F−1 → I ⊗ L−1 → 0 is exact. Therefore, the sequence (∗)

remains exact after applying I ⊗ − for any C-E injective complex I of right
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R-modules. Using the same procedure we can construct a C-E exact sequence
of complexes

(
) 0 → G → F−1 → F−2 → · · ·
such that each Fi is C-E flat and it remains exact after applying I ⊗ − for any
C-E injective complex I of right R-modules.

Suppose that the sequence

(

) · · · → F2 → F1 → F0 → G → 0

is a left C-E flat resolution of G. Then we break it into short exact sequences,
and we need only to show that all the sequences remain exact after applying
I ⊗ − for any C-E injective complex I of right R-modules. First consider the
short exact sequence 0 → K1 → F0 → G → 0, where K1 = Ker(F0 →
G). Then it is C-E exact by Lemma 2.4. Let I be any C-E injective com-

plex of right R-modules. Then by [4, Lemmas 9.1 and 9.2] Ext
1
(I, X) =

0 for any C-E Gorenstein injective complex X since I can be written as
(⊕k∈Z�

kEk)
⊕

(⊕k∈Z�
kE′

k) where Ek, E
′
k are injective R-modules, and so

Ext
1
(I, �−mG+) = 0 for any m ∈ Z since G+ is C-E Gorenstein injective by

Lemma 3.3. Note that the sequence 0 → �−mG+ → �−mF+
0 → �−mK+

1 →
0 is C-E exact by Lemma 2.2, then the sequence 0 → Hom(I, �−mG+) →
Hom(I, �−mF+

0 ) → Hom(I, �−mK+
1 ) → 0 is exact. This implies that

0 → Hom(I, G+) → Hom(I, F+
0 ) → Hom(I, K+

1 ) → 0

is exact, and so 0 → (I ⊗ G)+ → (I ⊗ F0)
+ → (I ⊗ K1)

+ → 0 is exact by
Lemma 1.1(1). Thus 0 → I ⊗ K1 → I ⊗ F0 → I ⊗ G → 0 is exact, that is,
the sequence 0 → K1 → F0 → G → 0 remains exact after applying I ⊗ −.
Note that the sequence 0 → K1 → F0 → G → 0 is C-E exact, then one can
check that K1 and K1/B(K1) are in C(R-Gorflat) by [13, Theorem 3.7]. Thus,
we can continuously use the same method to the other short exact sequences
and get that the sequence (

) remains exact after applying I ⊗ − for any C-E
injective complex I of right R-modules. Now assemble the two sequences (
)

and (

), we get a complete C-E flat resolution of G.
(3) ⇒ (2). Suppose that the sequence

· · · → F2 → F1 → F0 → F−1 → F−2 → · · ·
is a complete C-E flat resolution with G = Ker(F−1 → F−2), and I is a C-E
injective complex of right R-modules. Then the sequence

· · · → I ⊗ F2 → I ⊗ F1 → I ⊗ F0 → I ⊗ F−1 → I ⊗ F−2 → · · ·
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is exact, and so the sequence

· · · → (I ⊗ F−2)
+ → (I ⊗ F−1)

+ → (I ⊗ F0)
+ → (I ⊗ F1)

+ → · · ·
is exact. By Lemma 1.1(1), we get that the sequence

· · · → Hom(I, F+
−2) → Hom(I, F+

−1)

→ Hom(I, F+
0 ) → Hom(I, F+

1 ) → · · ·
is exact. This implies that the sequence

· · · → Hom(I, F+
−2) → Hom(I, F+

−1)

→ Hom(I, F+
0 ) → Hom(I, F+

1 ) → · · ·
is exact. We note that the sequence

· · · → F+
−2 → F+

−1 → F+
0 → F+

1 → F+
2 → · · ·

is C-E exact, G+ = Ker(F+
0 → F+

1 ), and each F+
i is C-E injective by

Corollary 2.3. Then G+ is C-E Gorenstein injective by [4, Theorem 8.5], and
hence we get the desired result by Lemma 3.3.

(1)⇔(4) is obvious.

For an R-module M , the Gorenstein flat dimension, Gfd(M), is defined by
using a resolution by Gorenstein flat R-modules, see [13]. Similarly, we give
the following definition.

Definition 3.6. The C-E Gorenstein flat dimension, CE-Gfd(C), of a com-
plex C is defined as CE-Gfd(C) = inf{ n | there exists a C-E exact sequence
0 → Xn → Xn−1 → · · · → X0 → C → 0 with each Xi C-E Gorenstein flat}.
If no such n exists, set CE-Gfd(C) = ∞.

Proposition 3.7. Let R be a right coherent ring and C be a complex of
R-modules. Then CE-Gfd(C) = sup{Gfd(Hi (C)), Gfd(Bi (C)) | i ∈ Z}.

Proof. If sup{Gfd(Hi (C)), Gfd(Bi (C)) | i ∈ Z} = ∞, then

CE-Gfd(C) ≤ sup{Gfd(Hi (C)), Gfd(Bi (C)) | i ∈ Z}.
So naturally we may assume that sup{Gfd(Hi (C)), Gfd(Bi (C)) | i ∈ Z} = n

is finite. Consider the C-E exact sequence

0 → Kn → Fn−1 → · · · → F1 → F0 → C → 0,

where each Fj is C-E flat. Then we have two exact sequences

0 → H(Kn) → H(Fn−1) → · · · → H(F1) → H(F0) → H(C) → 0
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and

0 → B(Kn) → B(Fn−1) → · · · → B(F1) → B(F0) → B(C) → 0,

and so Hi (Kn) and Bi (Kn) are Gorenstein flat for all i ∈ Z by [13, The-
orem 3.14]. Now, by Theorem 3.5, Kn is a C-E Gorenstein flat complex. This
shows that CE-Gfd(C) ≤ sup{Gfd(Hi (C)), Gfd(Bi (C)) | i ∈ Z}.

Next we will show that sup{ Gfd(Hi (C)), Gfd(Bi (C)) | i ∈ Z } ≤
CE-Gfd(C). Naturally, we may assume that CE-Gfd(C) = n is finite. Then
there exists a C-E exact sequence of complexes 0 → Gn → Gn−1 → · · · →
G1 → G0 → C → 0 such that each Gj is C-E Gorenstein flat. Now
since Hi (Gj ) and Bi (Gj ) are Gorenstein flat modules for all i ∈ Z and all
j = 0, 1, · · · , n, we get that Gfd(Hi (C)) ≤ n and Gfd(Bi (C)) ≤ n for all
i ∈ Z, and so sup{Gfd(Hi (C)), Gfd(Bi (C)) | i ∈ Z} ≤ n = CE-Gfd(C), as
desired.

The notion of a cotorsion pair was first introduced by Salce in [16] and later
rediscovered by Enochs and Jenda [7], and Göbel and Trlifaj [12]. Cotorsion
pairs are homologically useful if they are complete. For definitions of undefined
terms see [7] and [12]. There the definitions and results were for modules. But
it is straightforward to modify them to apply to complexes.

Lemma 3.8. Suppose that (A , B) is a hereditary and complete cotorsion
pair in R-Mod and 0 → X1 → X2 → X3 → 0 is a short exact sequence of
R-modules. If fi : Ai → Xi is a special A -precover of Xi for i = 1 and 3,
then there exists a commutative diagram

0 0 0

0 K1 A1
f1

X1 0

0 K2 A2
f2

X2 0

0 K3 A3
f3

X3 0

0 0 0

with exact rows and columns such that f2 : A2 −→ X2 is a special A -precover
of X2, where Ki = Ker(fi) for i = 1, 2, 3.
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Proof. It follows from [1, Theorem 3.1].

By [4, Theorem 9.4], (CE(A ), CE(B)) forms a hereditary cotorsion pair in

C(R-Mod) relative to Ext
1
(−, −) whenever (A , B) is a hereditary cotorsion

pair in R-Mod. Furthermore, we have the following result.

Theorem 3.9. Let (A , B) be a hereditary cotorsion pair in R-Mod. If
(A , B) is complete then the cotorsion pair (CE(A ), CE(B)) in C(R-Mod)

relative to Ext
1
(−, −) is complete.

Proof. Let C be any complex. Then Bi (C) and Hi (C) have special A -
precovers since (A , B) is complete. Let fi : Di → Bi (C) be a special A -
precover of Bi (C), and hi : D′

i → Hi (C) be a special A -precover of Hi (C).
Then using the exact sequence 0 → Bi (C) → Zi (C) → Hi (C) → 0 and
Lemma 3.8 we can construct a special A -precover f̃i : D̃i → Zi (C) of Zi (C)

such that the following diagram

0 0 0

0 Ei Di
fi Bi (C) 0

0 Ẽi D̃i
f̃i Zi (C) 0

0 E′
i D′

i

hi Hi (C) 0

0 0 0

is commutative and each row and column are exact. Using Lemma 3.8 together
with the special A -precover f̃i : D̃i → Zi (C) of Zi (C) and the given special
A -precover fi−1 : Di−1 → Bi−1(C) of Bi−1(C) and the exact sequence
0 → Zi (C) → Ci → Bi−1(C) → 0 we can construct a special A -precover
φi : Gi → Ci of Ci such that the following diagram



c-e gorenstein flat complexes 23

0 0 0

0 Ẽi D̃i
f̃i Zi (C) 0

0 Ki Gi
φi

Ci 0

0 Ei−1 Di−1
fi−1 Bi−1(C) 0

0 0 0

is commutative and each row and column are exact. By construction above we
have the following commutative diagram

...
...

...

0 Ki Gi
φi

Ci 0

0 Ei−1 Di−1
fi−1 Bi−1(C) 0

0 Ẽi−1 D̃i−1
f̃i−1 Zi−1(C) 0

0 Ki−1 Gi−1
φi−1

Ci−1 0

...
...

...

with exact rows. This yields an exact sequence 0 → K → G
φ−→ C → 0 with

G in CE(A ) and K in CE(B). Note that 0 → Zi (K) → Zi (G)
f̃i−→ Zi (C) →

0 is exact since Zi (K) = Ẽi and Zi (G) = D̃i by construction. Thus we get
that 0 → K → G

φ−→ C → 0 is C-E exact by Remark 1.6. Similarly, using
the dual result of Lemma 3.8 we can prove that there is a C-E exact sequence
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0 → C → H → G → 0 with H in CE(B) and G in CE(A ). This completes
the proof.

Let R be a right coherent ring, and let GC = {M ∈ R-Mod | Ext1
R(G, M) =

0 for any Gorenstein flat R-module G}. Then, by [8, Theorem 2.11],
(R-Gorflat, GC ) is a complete cotorsion pair. Now the next result follows
by [4, Theorem 9.4] and Theorem 3.9.

Corollary 3.10. If R is a right coherent ring then (CE(R-Gorflat),
CE(GC )) is a hereditary and complete cotorsion pair in C(R-Mod) relative

to Ext
1
(−, −).

Corollary 3.11. If R is a right coherent ring then any complex has a C-E
Gorenstein flat cover.

Proof. By Corollary 3.10, the cotorsion pair (CE(R-Gorflat), CE(GC ))

relative to Ext
1
(−, −) is complete. Then it is easily seen that any complex C

has a C-E Gorenstein flat precover and so it has a C-E Gorenstein flat cover by
[15, Proposition 1] since the class of C-E Gorenstein flat complexes is closed
under direct limits.
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